Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 15 | 3 | 365-376
Tytuł artykułu

A small sequence in domain V of the mitochondrial large ribosomal RNA restores Drosophila melanogaster pole cell determination in UV-irradiated embryos

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The mechanism by which the mitochondrial large rRNA is involved in the restoration of the pole cell-forming ability in Drosophila embryos is still unknown. We identified a 15-ribonucleotide sequence which is conserved from the protobacterium Wolbachia to the higher eukaryotes in domain V of the mitochondrial large rRNA. This short sequence is sufficient to restore pole cell determination in UV-irradiated Drosophila embryos. Here, we provide evidence that the conserved 15-base sequence is sufficient to restore luciferase activity in vitro. Moreover, we show that the internal GAGA sequence is involved in protein binding and that mutations in this tetranucleotide affect the sequence’s ability to restore luciferase activity. The obtained results lead us to propose that mtlrRNA may be involved either in damaged protein reactivation or in protein biosynthesis during pole cell determination.
Wydawca
-
Rocznik
Tom
15
Numer
3
Strony
365-376
Opis fizyczny
p.365-376,fig.,ref.
Twórcy
autor
  • Istituto Superiore di Sanita Viale Regina Elena 299, 00161 Roma, Italy
autor
autor
autor
Bibliografia
  • 1.Davidson, E.H. Developmental biology at the systems level. Biochem. Biophys. Acta 1789 (2009) 248-249.
  • 2. Beams, H.W. and Kessel, R.G. The problem of germ cell determinants. Int. Rev. Cytol. 39 (1974) 413-479.
  • 3. Eddy, E.M. Germ plasm and the differentiation of the germ cell line. Int. Rev. Cytol. 43 (1975) 229-280.
  • 4. Ephrussi, A. and Lehmann, R. Induction of germ cell formation by oskar. Nature 358 (1992) 387-392.
  • 5. Nakamura, A., Amikura, R., Mukai, M., Kobayashi, S. and Lasko, P.F. Requirement for a noncoding RNA in Drosophila polar granules for germ cell establishment. Science 274 (1996) 2075-2079.
  • 6. Breitwieser, W., Markussen, F.H., Horstmann, H. and Ephrussi, A. Oskar protein interaction with Vasa represents an essential step in polar granules assembly. Genes Dev. 10 (1996) 2179-2188.
  • 7. Amikura, R., Kashikawa, M., Nakamura, A. and Kobayashi, S. Presence of mitochondria-type ribosomes outside mitochondria in germ plasm of Drosophila embryos. Proc. Natl. Acad. Sci. USA 98 (2001) 9133-9138.
  • 8. Okada, M. Germline cell formation in Drosophila embryogenesis. Genes Genet. Syst. 73 (1998) 1-8.
  • 9. Kobayashi, S., Amikura, R. and Okada, M. Presence of mitochondrial large ribosomal RNA outside mitochondria in germ plasm of Drosophila melanogaster. Science 260 (1993) 1521-1524.
  • 10. Kobayashi, S. and Okada, M. Restoration of pole-cell-forming ability to u.v.-irradiated. Development 107 (1989) 733-42.
  • 11. Kobayashi, S. and Okada, M. Complete cDNA sequence encoding mitochondrial large ribosomal RNA of Drosophila melanogaster. Nucleic Acids Res. 18 (1990) 4592.
  • 12. Jongens, T.A., Hay, B., Jan, L.Y. and Jan, Y.N. The germ cell-less gene product: a posteriorly localized component necessary for cell development in Drosophila. Cell 70 (1992) 569-584.
  • 13. Amikura, R., Sato, K. and Kobayashi, S. Role of mitochondrial ribosomedependent translation in germline formation in Drosophila embryos. Mech. Develop. 122 (2005) 1087-1093.
  • 14. Braig, H.R., Guzman, H., Tesh R.B. and O’Neil, S.L. Replacement of the natural Wolbachia symbiont of Drosophila simulans with a mosquito counterpart. Nature 367 (1994) 453-455.
  • 15. Sambrook, J., Fritsch, E. and Maniatis, T. Molecular cloning. A Laboratory Manual. 2nd Edition. New York: Cold Spring Harbor Laboratory Press, 1989.
  • 16. Ban, N., Nissen, P., Hansen, J., Moore, P.B. and Steitz, T.A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289 (2000) 905-920.
  • 17. Schluenzen, F., Tocilj, A., Zarivach, R., Harms, J., Gluehmann, M., Janell, D., Bashan, A., Bartels, H., Agmon, I., Franceschi, F. and Yonath, A. Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution. Cell 102 (2000) 615-623.
  • 18. Moazed, D. and Noller, H.F. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327 (1987) 389-394.
  • 19. Nissen, P., Hansen, J., Ban, N., Moore, P.B. and Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 289 (2000) 920- 930.
  • 20. Hausner, T.P., Atmadja, J. and Nierhaus, K.H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie 69 (1987) 911-923.
  • 21. Moazed, D., Robertson, J.M. and Noller, H.F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature 334 (1988) 362-364.
  • 22. Emelyanov, V.V. Rickettsiaceae, Rickettsia-like endosymbionts, and the origin of mitochondria. Biosci. Rep. 21 (2001) 1-17.
  • 23. Emelyanov, V.V. Mitochondrial connection to the origin of the eukaryotic cell. Eur. J. Biochem. 270 (2003) 1599-1618.
  • 24. Chattopadhyay, S., Das, B. and DasGupta, C. Reactivation of denatured proteins by 23S ribosomal RNA: role of domain V. Proc. Natl. Acad. Sci. USA 93 (1996) 8284-8287.
  • 25. Grossweiner, L.I. Photochemical inactivation of enzymes. Curr. Top. Radiat. Res. Q. 11 (1976) 141-199.
  • 26. Davies, M.J. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305 (2003) 761-770.
  • 27. Pal, S., Chandra, S., Chowdhury, S., Sarkar, D., Ghosh, A.N. and DasGupta, C. Complementary role of two fragments of domain V of 23S ribosomal RNA in protein folding. J. Biol. Chem. 274 (1999) 32771-32777.
  • 28. Sulijoadikusumo, I., Horikoshi, N. and Usheva, A. Another function for the mitochondrial ribosomal RNA: protein folding. Biochemistry 40 (2001) 11559-11564.
  • 29. Sanyal, S.C., Pal, S., Chowdhury, S., DasGupta, C. and Chowdhury, S. 23S rRNA assisted folding of cytoplasmic malate dehydrogenase is distinctly different from its self-folding. Nucleic Acids Res. 30 (2002) 2390-2397.
  • 30. Chowdhury, S., Pal, S., Ghosh, J. and DasGupta, C. Mutations in domain V of the 23S ribosomal RNA of Bacillus subtilis that inactivate its protein folding property in vitro. Nucleic Acids Res. 30 (2002) 1278-1285.
  • 31. Mahowald, A.P., Illmensee, K. and Turner, F.R. Interspecific transplantation of polar plasm between Drosophila embryos. J. Cell. Biol. 70 (1976) 358-373.
  • 32. Illmensee, K., Mahowald, A.P. and Loomis, M.R. The ontogeny of germ plasm. Development 109 (1976) 425-33.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-aaf6ac0b-a1c9-499b-b791-ba49d863ec6e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.