Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 33 | 3 |
Tytuł artykułu

Methane and nitrous oxide emissions from agriculture in the Podlaskie Voivodeship in years 1999–2015

Warianty tytułu
PL
Emisja metanu i podtlenku azotu z rolnictwa w województwie podlaskim w latach 1999–2015
Języki publikacji
EN
Abstrakty
EN
Podlaskie as an agricultural region is expected to face environmental problems, mainly climate-related GHG emissions resulting from intensification of animal production. The aim of this study was to evaluate the methane and nitrous oxide emissions from agriculture in this region in years 1999–2015. The GHG emissions were calculated using methodology by the National Centre for Emissions Management (NCEM). The methane emissions attributed to agriculture in the Podlaskie increased from 59.2 Gg in 1999 to 84.0 Gg in 2015 which was in opposition to the trend for Poland. N2O emissions in 1999 amounted to 3.05 Gg and increased to 4.14 Gg in 2015. This growing trend is primarily related to the increasing number of livestock, specifically ruminant animals and increasing N2O emissions from soils and manure management. In changing food market, farmers will probably be forced to find new niches, which will be profitable but less troublesome for the environment, including GHG emissions
PL
Województwo podlaskie jest regionem rolniczym, a intensyfikacja produkcji mleczarskiej i mięsnej prowadzi do zwiększania obciążenia środowiska m.in. przez emisję gazów cieplarnianych. Celem badań była ocena emisji metanu i podtlenku azotu z rolnictwa w województwie podlaskim w latach 1999–2015. Emisję gazów cieplarnianych obliczono za pomocą metodyki wykorzystywanej w krajowym raporcie gazów cieplarnianych. Emisja metanu z rolnictwa w województwie podlaskim wzrosła z 59,2 Gg w 1999 r. do 84,0 Gg w 2015 r., a emisja podtlenku azotu zwiększyła się z 3,05 Gg w 1999 do 4,14 Gg w 2015 r. Wzrost emisji gazów cieplarnianych związany jest ze zwiększeniem się liczby zwierząt gospodarskich oraz ze zwiększeniem się emisji podtlenku azotu z gleby i nawozów organicznych. Obecnie należy przeciwdziałać emisji gazów cieplarnianych z rolnictwa, stąd też rolnicy będą zmuszeni do poszukiwania nowych nisz na rynku zbytu, które nadal będą przynosić dochód, a jednocześnie będą umożliwiały zmniejszenie emisji gazów cieplarnianych
Słowa kluczowe
Wydawca
-
Rocznik
Tom
33
Numer
3
Opis fizyczny
p.433-453,fig.,ref.
Twórcy
  • Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Wiejska 45A, 15-351 Bialystok, Poland
autor
  • Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, Poland
autor
  • Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, Poland
Bibliografia
  • AUDSLEY E., WILKINSON M. 2014. What is the potential for reducing national greenhouse gas emis-sions from crop and livestock production systems? J. Clean. Prod., 73: 263–268.
  • BACENETTI J., BAVA L., ZUCALI M., LOVARELLI D., SANDRUCCI A., TAMBURINI A., FIALA M. 2016. Anaerobic digestion and milking frequency as mitigation strategies of the environmental burden in the milk production system. Sci. Total Environ., 539: 450–459.
  • BAJZELJ B., RICHARDSK.S., ALLWOODJ.M., SMITH P., DENNISJ.S., CURMI E., GILLIGANC.A. 2014. Importance of food-demand management for climate mitigation. Nat. Clim. Change, 4: 924–929.
  • BEAUCHEMINK.A., JANZENH.H., LITTLES.M., MCALLISTERT.A., MCGINNS.M. 2011. Mitigation of greenhouse gas emissions from beef production in western Canada – Evaluation using farm--based life cycle assessment. Anim. Feed Sci. Tech., 166–167: 663–677.
  • BELLM.J., HINTON N., CLOAJ.M., TOPPC.F.E., REESR.M., CARDENAS L., SCOTT T., WEBSTER C., ASHTONR.W., WHITMOREA.P., WILLIAMSJ.R., BALSHAW H., PAINE F., GOULDINGK.W.T., CHADWICKD.R. 2015. Nitrous oxide emissions from fertilised UK arable soils. Fluxes, emission factors and mitigation. Agr. Ecosyst. Environ., 212: 134–147.
  • BELLM.J., HINTONN.J., CLOYJ.M., TOPPC.F.E., REESR.M., WILLIAMSJ.R., MISSELBROOKT.H., CHADWICKD.R. 2016. How do emission rates and emission factors for nitrous oxide and am-monia vary with manure type and time of application in a Scottish farmland? Geoderma, 264: 81–93.
  • BENNETT R., BLANEY R. 2002. Social consensus, moral intensity and willingness to pay to address a farm animal welfare issue. J. Econ. Psychol., 23: 501–520.
  • BURATTI C., FANTOZZI F., BARBANERA M., LASCARO E., CHIORRI M., CECCHINI L. 2017. Carbon footprint of conventional and organic beef production systems. An Italian case study. Sci. Total Environ., 576: 129–137.
  • CHADWICKD.R., SNEATHR.W., PHILLIPSV.R., PAINB.F. 1999. A UK inventory of nitrous oxide emissions from farmed livestock. Atmos. Environ., 33(20): 3345–3354.
  • CHADWICK D., SOMMER S., THORMAN R., FANGUEIRO D., CARDENAS L., AMON B., MISSELBROOK T. 2011. Manure management. Implications for greenhouse gas emissions. Anim. Feed Sci. Tech., 166–167: 514–531.
  • COLOMBINI S., ZUCALI M., RAPETTI L., CROVETTOG.M., SANDRUCCI A., BAVA L. 2015. Substitution of corn silage with sorghum silages in lactating cow diets. In vivo methane emission and global warming potential of milk production. Agr. Syst., 136: 106–113.
  • CSO 2017. Means of production in agriculture in the 2015/2016 farming year. Central Statistical Office, Warsaw.
  • DALGAARD T., OLESEN J.E., PETERSEN S.O., PETERSEN B.M., JØRGENSEN U., KRISTENSEN T., HUT-CHINGS N.J., GYLDENKÆRNE S., HERMANSEN J.E. 2011. Developments in greenhouse gas emissions and net energy use in Danish agriculture – How to achieve substantial CO2 reductions?Environ. Pollut., 159: 3193–3203.
  • DE VRIES M., DE BOER I.J.M. 2010. Comparing environmental impacts for livestock products: A review of life cycle assessments. Livest. Sci., 128: 1–11.
  • DEEMER D.R, LOBAO L.M. 2011. Public concern with farm-animal welfare. Religion, politics, and human disadvantage in the food sector. Rural Sociol., 76(2): 167–196
  • DEL PRADO A., CHADWICK D., CARDENAS L., MISSELBROOK T., SCHOLEFIELD D., MERINO P. 2010. Exploring systems responses to mitigation of GHG in UK dairy farms. Agr. Ecosyst. Environ., 136: 318–332.
  • DESJARDINS R.L., WORTH D.E., PATTEY E., VANDERZAAG A., SRINIVASAN R., MAUDERC M., WORTHY D., SWEENEY C., METZGER S. 2018. The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements. Agr. Forest Meteorol., 248: 48–59.
  • EC-JRC 2015. Energy use in the EU Food Sector. State of play and opportunities for improvement. JRC Science and Policy Report. European Commission, Joint Research Centre, Institute for Energy and Transport and Institute for Environment and Sustainability, Publications Office of the European Union, Luxembourg.
  • EUROSTAT 2016a. Greenhouse gas emission statistics. Eurostat Statistics Explained. http://ec.europa.eu/eurostat/statistics-explained/index.php/Greenhouse_gas_emission_ Statistics, access: 14.11.2017.
  • EUROSTAT 2016b. Agriculture – greenhouse gas emission statistics. Eurostat Statistics Expla-ined. http://ec.europa.eu/eurostat/statistics-explained/index.php/Agriculture_-_greenhouse_gas_emission_statistics#Agriculture.27s_contribution, access: 14.11.2017.
  • EUROSTAT 2016c. Greenhouse gas emissions by source sector. http://ec.europa.eu/eurostat/web/environment/air-emissions-inventories/database, access: 14.11.2017.
  • EUROSTAT 2016d. Milk and milk production. Eurostat Statistics Explained. http://ec.europa.eu/eurostat/statistics-explained/index.php/Milk_and_milk_product_ statistics, access: 14.11.2017.
  • FELICIANO D., HUNTER C., SLEE B., SMITH P. 2013. Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector. A case study of North East Scotland. J. Environ. Manage., 120: 93–104.
  • FLYSJÖ A., CEDERBERG C., HENRIKSSON C., LEDGARD S. 2012. The interaction between milk and beef production and emissions from land use change – critical considerations in life cycle assessment and carbon footprint studies of milk. J. Clean. Prod., 28: 134–142.
  • FREIBAUER A. 2003. Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Europ. J. Agronomy, 19: 135–160.
  • GARNETT T. 2009. Livestock-related greenhouse gas emissions: impact and options for policy ma-kers. Environ. Sci. Policy, 12: 491–503.
  • GERSSEN-GONDELACH S.J., LAUWERIJSSEN R.B.G., HAVLÍK P., HERRERO M., VALIN H., FAAIJA.P.C., WICKE B. 2017. Intensification pathways for beef and dairy cattle production systems. Impacts on GHG emissions, land occupation and land use change. Agr. Ecosyst. Environ., 240: 135–147.
  • GÓRNIAK A. 2000. Klimat województwa podlaskiego. Białystok,
  • IMGW.GVI 2017. Komunikat Głównego Lekarza Weterynarii o ogniskach afrykańskiego pomoru świń (ASF) u świń. General Veterinary Inspectorate, https:// www.wetgiw.gov.pl/main/komuni-katy/Komunikat-Glownego-Lekarza-Weterynarii-o-ogniskach-afrykanskiego-pomoru-swin-ASF-u-swin/idn:634, access: 15.12.2017.
  • HANSEN M.N., HENRIKSEN K., SOMMER S.G. 2006. Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmos. Environ., 40: 4172–4182.
  • HANSEN M.J., NØRGAARD J.V., ADAMSEN A.P.S., POULSEN H.D. 2014. Effect of reduced crude pro-tein on ammonia, methane, and chemical odorants emitted from pig houses. Livest. Sci., 169: 118–124.
  • HILLIER J., WALTER C., MALIN D., GARCIA-SUAREZ T., MILA-I-CANALS C., SMITH P. 2011. A farm-focused calculator for emissions from crop and livestock production. Environ. Model. Software, 26: 1070–1078.
  • HÜNERBERG M., LITTLE S.M., BEAUCHEMIN K.A., MCGINN S.M., O’CONNOR D., OKINE E.K., HAR-STAD O.M., KRÖBEL R., MCALLISTER T.A. 2014. Feeding high concentrations of corn dried distillers’ grains decreases methane, but increases nitrous oxide emissions from beef cattle production. Agr. Syst., 127: 19–27.
  • IPCC 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Intergovernmental Panel on Climate Change, http://www.ipcc-nggip.iges.or.jp/public/2006gl/, access: 15.10.2017.
  • IPCC 2015. 9th Corrigenda for the 2006 IPCC Guidelines. Intergovernmental Panel on Climate Change, http://www.ipcc-nggip.iges.or.jp/public/2006gl/corrigenda9.html, access: 5.10.2017.
  • ISERMANN K. 1994. Agriculture’s share in the emission of trace gases affecting the climate and some cause-oriented proposals for sufficiently reducing this share. Environ. Pollut., 83: 95–111.
  • KRUSZEWSKI T. 2011. Pogłowie koni w Polsce i w województwie podlaskim. In: Analiza kierunków rozwoju i aktualna sytuacja w rolnictwie województwa podlaskiego. Podlaski Ośrodek Doradztwa Rolniczego w Szepietowie, pp. 68–69.
  • LAGERKVIST C.J., CARLSSON F. VISKE D. 2006. Swedish consumer preferences for animal welfare and biotech. A choice experiment. AgBioForum, 9(1): 51–58.
  • LDB 2015. Livestock population. Local Data Bank. Central Statistical Office, Warsaw, https://bdl.stat.gov.pl/BDL/ dane/podgrup/tablica, access: 27.10.2017.
  • LDB 2016. Consumption of mineral fertilizers per 1 ha of agricultural land according to the new definition. Local Data Bank. Central Statistical Office, Warsaw, https://bdl.stat.gov.pl/BDL/ dane/podgrup/tablica, access: 27.10.2017.
  • LDB 2017. Population by residence (quarterly data). Local Data Bank. Central Statistical Office, Warsaw, https://bdl.stat.gov.pl/BDL/dane/podgrup/tablica, access: 22.01.2018.
  • LITWIŃCZUK Z., GRODZKI H. 2014. Stan hodowli i chowu bydła w Polsce oraz czynniki warunkują-ce rozwój tego sektora. Przegląd Hodowlany, 6: 1–5.
  • MADEJ A. 2015. Rolnictwo województwa podlaskiego po 10 latach w Unii Europejskiej na tle Pol-ski. Zagad. Ekon. Roln., 2(343): 94–111.
  • MASSÉ D.I., TALBOT G., GILBERTY. 2011. On farm biogas production. A method to reduce GHG emissions and develop more sustainable livestock operations. Anim. Feed Sci. Tech., 166–167: 436–445.
  • MCALLISTER T.A., BEAUCHEMIN K.A., MCGINN S.M., HAO X., ROBINSON P.H. 2011. Greenhouse gases in animal agriculture. Finding a balance between food production and emissions. Anim. Feed Sci. Tech., 166–167: 1–6.
  • MISSELBROOK T., DEL PRADO A., CHADWICK D. 2013. Opportunities for reducing environmental emissions from forage-based dairy farms. Agr. Food Sci., 22: 93–107.
  • MONTENEGRO J., BARRANTES E., DILORENZO N. 2016. Methane emissions by beef cattle consuming hay of varying quality in the dry forest ecosystem of Costa Rica. Livest. Sci., 193: 45–50.
  • MORAN D., MACLEOD M., WALL E., EORY V., MCVITTIE A., BARNES A., REES R., TOPP C.F.E., MOXEY A. 2011. Marginal abatement cost curves for UK Agricultural Greenhouse Gas Emissions. J. Agr. Econ., 62(1): 93–118.
  • NAPOLITANO F., GIROLAMI A., BRAGHIERI A. 2010. Consumer liking and willingness to pay for high welfare animal-based products. Trends Food Sci. Tech., 21: 537–543.
  • NAYAK D., SAETNAN E., CHENG K., WANG W., KOSLOWSKI F., CHENGY.F., ZHUW.Y., WANGJ.K., LIUJ.X., MORAN D., YAN X., CARDENAS L., NEWBOLD J., PAN G., LU Y., SMITH P. 2015. Management opportunities to mitigate greenhouse gas emissions from Chinese agriculture. Agr. Ecosyst. Environ., 209: 108–124.
  • NCEM 2016. Poland’s national inventory report 2016. Greenhouse gas inventory for 1988–2014. Institute of Environmental protection – National Research Institute, The National Centre for Emissions Management. Warsaw.
  • NGUYENT.L.T, HERMANSEN J.E., MOGENSEN L. 2012. Environmental costs of meat production: the case of typical EU pork production. J. Clean. Prod., 28: 168–176.
  • NOTARNICOLA B., TASSIELLI G., RENZULLIP.A., CASTELLANI V., SALA S. 2017. Environmental impacts of food consumption in Europe. J. Clean. Prod., 140: 753–765.
  • NOWAK M.M. 2016. Baza surowcowa przemysłu mleczarskiego w ujęciu regionalnym. Rocz. Nauk. Stow. Ekon. Roln. Agrobiz., 18(5): 189–194.
  • O’MARAF.P. 2011. The significance of livestock as a contributor to global greenhouse gas emissions today and in the near future. Anim. Feed Sci. Tech., 166–167: 7– 15.
  • PFCDF 2016. Evaluation and breeding of dairy cattle, data for 2015. Polish Federation of Cattle Breeders and Dairy Farmers, http://www.pfhb.pl/uploads/ckeditor/ attachments/208/wyniki_ oceny_2016_prev_p.pdf, access: 18.12.2017.
  • ROERA.N., JOHANSEN A., BAKKEN A.K., DAUGSTAD K., FYSTRO G., STRØMMANA.H. 2013. Environmental impacts of combined milk and meat production in Norway according to a life cycle assessment with expanded system boundaries. Livest. Sci., 155: 384–396.
  • SMITH P. 2012. Agricultural greenhouse gas mitigation potential globally, in Europe and in the UK: what have we learnt in the last 20 years. Glob. Change Biol., 18: 35–43.
  • SO 2015a. Environmental protection and forestry of Podlaskie Voivodeship in 2014. Statistical Information and Elaborations, Year XI. Statistical Office in Białystok, Białystok.
  • SO 2015b. Agriculture in Podlaskie Voivodeship. Statistical Information and Elaborations, Year XI. Statistical Office in Białystok, Białystok.
  • SO 2016. Agriculture in Podlaskie Voivodeship. Statistical Information and Elaborations, Year XII. Statistical Office in Białystok, Białystok.
  • SOLAZZO R., DONATI M., TOMASI L., ARFINI A. 2016. How effective is greening policy in reducing GHG emissions from agriculture? Evidence from Italy. Sci. Total Environ., 573: 1115–1124.
  • SOMMERS.G., PETERSEN S.O., MØLLERH.B. 2004. Algorithms for calculating methane and nitro-us oxide emissions from manure management. Nutr. Cycl. Agroecosys., 69: 143–154.
  • SUNY.K., YANX.G., BANZ.B., YANGH.M., HEGARTYR.S., ZHAOY.M. 2017. The effect of cysteami-ne hydrochloride and nitrate supplementation on in-vitro and in-vivo methane production and productivity of cattle. Anim. Feed Sci. Tech., 232: 49–56.
  • TRAJER M., KOSSAKOWSKA J. 2013. Tendencje zmian w pogłowiu trzody chlewnej w Polsce. In-fo POLSUS. Ogólnopolski Biuletyn dla Hodowców i Producentów Trzody Chlewnej, 16: 7–11.
  • TURNERA.J., JACOBD.J., WECH, K.J., MAASAKKERSJ.D., LUNDGREN E., ANDREWSA.E., BI-RAUDS.C., BOESCH H., BOWMANK.W., DEUTSCHERN.M., DUBEYM.K., GRIFFITHD.W.T., HASE F., KUZE A., NOTHOLT J., OHYAMA H., PARKER R., PAYNEV.H., SUSSMANN R., SWEENEY C., VELAZCOV.A., WARNEKE T., WENNBERGP.O., WUNCH D. 2015. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data. Atmos. Chem. Phys., 15: 7049–7069.
  • WANG J., CARDENASL.M., MISSELBROOKT.H., GILHESPY S. 2011. Development and application of a detailed inventory framework for estimating nitrous oxide and methane emissions from agriculture. Atmos. Environ., 45: 1454–1463.
  • WYSOCKA-CZUBASZEK A., CZUBASZEK R., ROJ-ROJEWSKI S., BANASZUK P. 2018. Methane and nitrous oxide emissions from agriculture on a regional scale. J. Ecol. Eng., 19(3): 206–217.
  • YU J., PENGA S., CHANG J., CIAIS P., DUMAS P., LIN X., PIAO S. 2018. Inventory of methane emissions from livestock in China from 1980 to 2013. Atmos. Environ., 184: 69–76.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-b321591d-6fe3-440e-847d-d0f77b1778b3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.