Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | 27 | 2 |
Tytuł artykułu

Accumulation and tolerance of Pb in some bioenergy crops

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Contamination of agricultural soil is a worldwide problem, with heavy metals being a major part of the concern. Bioenergy crop production is also a profi table phytoremediation strategy using biofuel crops for both utilization and remediation of contaminated soil. To investigate lead (Pb) accumulation and tolerance of three different energy crop cultivars, three-week-old healthy seedlings were grown in Hoagland solution supplemented with fi ve different concentrations of Pb 0, 25, 50, 100, and 150 mg/kg. At the end of 30 days, Pb content and translocation, tolerance index, bioconcentration factor, and growth parameters of the plants were evaluated in the study. Results showed that increasing Pb concentrations did not affected the growth and development of Sunburst (Panicum virgatum L.) and Dinçer (Carthamus tinctorius L.) cultivars. The highest Pb contents were also found in roots and shoots of Sunburst and Tarsan-1018 (Helianthus annuus L.) cultivars. Dinçer cultivar has a high ability to transfer Pb from root to shoot when compared to others. These results suggest that these cultivars may be good candidates for remediation of Pb-contaminated areas for use in biofuel production.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
27
Numer
2
Opis fizyczny
p.591-596,ref.
Twórcy
autor
  • Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Turkey
autor
  • Department of Field Crops, Faculty of Agriculture, Van Yuzuncu Yil University, Van, Turkey
autor
  • Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
Bibliografia
  • 1. ELLABBAN O., ABU-RUB H., BLAABJERG F. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews, 39, 748, 2014.
  • 2. ALEMÁN-NAVA G.S., CASIANO-FLORES V.H., CÁRDENAS-CHÁVEZ D.L., DÍAZ-CHAVEZ R., SCARLAT N., MAHLKNECHT J., DALLEMAND J.F., PARRA R. Renewable energy research progress in Mexico: A review. Renewable and Sustainable Energy Reviews, 32, 140, 2014.
  • 3. LIU T., MCCONKEY B., HUFFMAN T., SMITH S., MACGREGOR B., YEMSHANOV D., KULSHRESHTHA S. Potential and impacts of renewable energy production from agricultural biomass in Canada. Applied Energy, 130, 222, 2014.
  • 4. SCARLAT N., DALLEMAND J.F., SKJELHAUGEN O.J., ASPLUND D., NESHEIM L. An overview of the biomass resource potential of Norway for bioenergy use. Renewable and Sustainable Energy Reviews, 15, 3388, 2011.
  • 5. DE WIT M., LONDO M., FAAIJ A. Productivity developments in European agriculture: relations to and opportunities for biomass production. Renewable and Sustainable Energy Reviews, 15, 2397, 2011.
  • 6. YUSAF T., GOH S., BORSERIO J.A. Potential of renewable energy alternatives in Australia. Renewable and Sustainable Energy Reviews, 15, 214, 2011.
  • 7. EKPENIA L.E.N., BENYOUNISA K.Y., NKEM-EKPENIB F., STOKES J., OLABIC A.G. Energy Diversity through Renewable Energy Source (RES) –A Case Study of Biomass. Energy Procedia, 61, 1740, 2014.
  • 8. JIANG Y., LEI M., DUAN L., LONGHURST P. Integrating phytoremediation with biomass valorisation and critical element recovery: A UK contaminated land perspective. Biomass and Bioenergy, 83, 328, 2015.
  • 9. PANDEY V.C., SINGH K., SINGH J.S., KUMAR A., SINGH B., SINGH R.P. Jatropha curcas: a potential biofuel plant for sustainable environmental development. Renewable and Sustainable Energy Reviews, 16, 2870, 2012.
  • 10. YE W.L., KHAN M.A., MCGRATH S.P., ZHAO F.J. Phytoremediation of arsenic contaminated paddy soils with Pteris vittata markedly reduces arsenic uptake by rice. Environmental Pollution, 159, 3739, 2011.
  • 11. PASSATORE L., ROSSETTI S., JUWARKAR A.A., MASSACCI A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. Journal of Hazardous Materials, 278, 189, 2014.
  • 12. FULEKAR M.H., SINGH A., THORAT V., KAUSIK C.P., EAPEN S. Phytoremediation of 137Cs from low level nuclear waste using Catharanthus roseus. Indian Journal of Pure and Applied Physics, 48, 516, 2010.
  • 13. CERNE M., SMODIS B., STROK M. Uptake of radionuclides by a common reed (Phragmites australis (Cav.) Trin. Ex Steud.) grown in the vicinity of the former uranium mine at Zirovski Vrh. Nuclear Engineering and Design, 241, 1282, 2011.
  • 14. GOMES H.I. Phytoremediation for bioenergy: challenges and opportunities, Environmental Technology Reviews, 1, 59, 2012.
  • 15. MOURATO M.P., MOREIRA I.N., LEITÃO I., PINTO F.R., SALES J.R., MARTINS L.L. Effect of Heavy Metals in Plants of the Genus Brassica. International Journal of Molecular Sciences, 16, 17975, 2015.
  • 16. ZEGADA-LIZARAZU W., WULLSCHLEGER S.D., NAIR S.S., MONTI A. Crop physiology. In: Monti A., ed., Switchgrass. Springer, London. 55, 2012.
  • 17. SARKAR M., KUMAR A., TUMULURU J.S., PATIL K.N., BELLMER D.D. Gasification performance of switchgrass pretreated with torrefaction and densification. Applied Energy, 127, 194, 2014.
  • 18. HARDIN C.F., FU C., HISANO H., XIAO X., SHEN H., STEWART JR C.N., PARROT W., DIXON R.A., WANG Z.Y. Standardization of switchgrass sample collection for cell wall and biomass trait analysis. Bioenergy Research, 6, 755, 2013.
  • 19. GRIFFITH A.P., HAQUE M., EPPLIN F.M. Cost to produce and deliver cellulosic feedstock to a biorefinery: switchgrass and forage sorghum. Applied Energy, 127, 44, 2014.
  • 20. CALLES TORREZ V., JOHNSON P.J., BOE A. Infestation rates and tiller morphology effects by the switchgrass moth on six cultivars of switchgrass. Bioenergy Research, 6, 808, 2013.
  • 21. LIU C., LOU L., DENG J., LI D., YUAN S., CAI Q. Morphphysiological responses of two switchgrass (Panicum virgatum L.) cultivars to cadmium stress. Japanese Society of Grassland Science, 62, 92, 2016.
  • 22. BERGLUND D. Sunflower Production. North Dakota State University, Fargo, 2007.
  • 23. DAJUE L., MÜNDEL H.H. Safflower, promoting the conservation and use of underutilized and neglected crops. 7. Institute of Plant Genetics and Crop Plant Research, Gatersleben/International Plant Genetic Resources Institute, Rome, Italy (ISBN92-9043-297-7). 83, 1996.
  • 24. MALAR S., VIKRAM S.S., FAVAS P.J.C., PERUMAL V. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies, 55, 54, 2014.
  • 25. CHEN B.C., LAI H.Y., JUANG K.W. Model evaluation of plant metal content and biomass yield for the phytoextraction of heavy metals by switchgrass. Ecotoxicology and Environmental Safety, 80, 393, 2012.
  • 26. SCHEIRS J., VANDEVYVERE I., WOLLAERT K., BLUST R., DE BRUYN L. Plant- mediated effects of heavy metal pollution on host choice of a grass miner. Environmental Pollution, 143, 138, 2006.
  • 27. DAS P., SAMANTARAY S., ROUT G.R. Studies on Cd toxicity in plants; a review. Environmental Pollution, 98, 29, 1997.
  • 28. ALI N.A., BERNAL M.P., ATER M. Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant and Soil, 239, 103, 2002.
  • 29. MONNI S., SALEMAA M., MILLAR N. The tolerance of Empetrum nigrum to copper and nickel. Environmental Pollution, 109, 221, 2000.
  • 30. EROFEEVA E.A. Hormesis and paradoxical effects of wheat seedling (Triticum aestivum L.) parameters upon exposure to different pollutants in a wide range of doses. Dose-Response, 12, 121, 2014.
  • 31. CAO S., WANG W., ZHAO Y., YANG S., WANG F., ZHANG J., SUN Y.C. Enhancement of Lead Phytoremediation by Perennial Ryegrass (Lolium perenne L.) Using Agent of Streptomyces pactum Act12. Journal of Petroleuum and Environmental Biotechnology, 7, (2), 269, 2016.
  • 32. AMER N., AL CHAMI Z., AL BITAR L., MONDELLI D., DUMONTET S. Evaluation of Atriplex Halimus, Medicago Lupulina and Portulaca Oleracea For Phytoremediation of Ni, Pb, and Zn. International Journal of Phytoremediation, 15 (5), 498, 2013.
  • 33. XION Z.T. Lead accumulation and tolerance in Brassica chinensis L. Grown in sand and liquid culture. Toxicological and Environmental Chemistry, 69, 8, 1999.
  • 34. WANG S., SHI X., SUN H., CHEN Y., PAN H., YANG H., RAFIQ T. Variations in Metal Tolerance and Accumulation in Three Hydroponically Cultivated Varieties of Salix integra Treated with Lead. Plos One, 9 (9), 1, 2014.
  • 35. VERMA S., DUBEY R.S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants, Plant Science, 164, 645, 2003.
  • 36. ZAYED A., GOWTHAMAN S., TERRY N. Phytoaccumulation of trace elements by wetland plants: I. Duckweed. Journal of Environmental Quality, 27, 715, 1998.
  • 37. ODJEGBA V.J., FASIDI I.O. Accumulation of trace elements by Pistia stratiotes: implications for phytoremediation. Ecotoxicology, 13, 637, 2004.
  • 38. ZHAO F.J., LOMBI E., MCGRATH S.P. Assessing the potential for zinc and cadmium phytoremediation with the hyperaccumulator Thlaspi caerulescens. Plant and Soil, 249, 37, 2003.
  • 39. LU L., TIAN S., ZHANG J., YANG X., LABAVITCH J.M., WEBB S.M., LATIMER M., BROWN P.H. Efficient xylem transport and phloem remobilization of Zn in the hyperaccumulator plant species Sedum alfredii. New Phytologist, 198, 721, 2013.
  • 40. BANG J., KAMALA-KANNAN S., LEE K.J., CHO M., KIM C.H., KIM Y.J., BAE J.H., KIM K.H., MYUNG H., OH B.T. Phytoremediation of Heavy Metals in Contaminated Water and Soil Using Miscanthus sp. Goedae-Uksae 1. International Journal of Phytoremediation, 17 (6), 515, 2015.
  • 41. PANDEY V.C., BAJPAI O., SINGH N. Energy crops in sustainable phytoremediation Renewable and Sustainable Energy Reviews, 54, 58, 2016
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-9683be30-f5be-470f-a1a4-003d01196f9a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.