Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 71 | 01 |
Tytuł artykułu

Immunoreactivity to galanin in the small intestine of wild boar

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Galanin is a 29/30-amino acid peptide with a wide array of biological activities. At a central level, galanin mediates feeding behavior, nociception, learning and co-transmission. The presence of galanin has been found in the enteric nervous system (ENS) of the stomach, small intestine and large intestine. Although in the ENS of humans, domestic animals and laboratory animals, the presence of galanin-ergic neurons and their chemical coding have been studied, the occurrence and biochemical profile of galanin-ergic neurons in ENS of wildlife animals is still obscure. The aim of the present study was using immunohistochemical methods to evaluate whether and to what extend galanin is expressed in enteric neurons and nerve fibers supplying distinct regions of the wild boar small intestine (duodenum, jejunum, ileum). Double immunohistochemical stainings were applied in order to study the co-localization of galanin with vasoactive intestinal polypeptide (VIP), neuropeptide Y (NPY) and nitric oxide synthase (NOS) in enteric neurons and nerve fibers innervating the wild boar small intestine. Depending on the region of the wild boar small intestine, the expression of galanin was found in 5-10% of myenteric neurons and in 45-65% of submucous neurons. In all three segments of the small intestine, moderately numerous/numerous galanin-immunoreactive (IR) nerve fibers were found between neurons of myenteric and submucous ganglia, smooth muscle circular layer and between gland and villi of the mucosa. In the longitudinal smooth muscle layer of the jejunum and ileum (but not duodenum) the presence of single galanin-IR nerve fibers were found. The presence of single galanin-expressing nerve fibers was localized around duodenal Brunner’s glands, blood vessels of the jejunal submucous layer, as well as in lamina muscularis mucosae of all regions of wild boars small intestines. In all regions of the small intestine, quite numerous galanin-IR submucous neurons (but not myenteric) as well as the smooth muscles-, submucosaand mucosa-supplying galanin-IR nerve fibers co-expressed VIP. In galanin-IR nervous structures of the wild boar duodenum, jejunum and ileum no co-localizations with NOS and NPY have been found.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
71
Numer
01
Opis fizyczny
p.29-35,fig.,ref.
Twórcy
  • Municipal Zoological Garden in Warsaw, Ratuszowa 1/3, 03-461 Warsaw, Poland
  • Department of Animal Anatomy and Histology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-033 Lublin, Poland
Bibliografia
  • 1. Arciszewski M. B., Ekblad E.: Effects of vasoactive intestinal peptide and galanin on survival of cultured porcine myenteric neurons. Regul. Pept. 2005, 125, 185-192.
  • 2. Arciszewski M. B., Zacharko A.: Origin and chemical coding of primary afferent neurones supplying the prostate of the dog. Anat. Histol. Embryol. 2004, 33, 326-333.
  • 3. Bishop A. E., Polak J. M., Bauer F. E., Christofides N. D., Carlei F., Bloom S. R.: Occurrence and distribution of a newly discovered peptide, galanin, in the mammalian enteric nervous system. Gut 1986, 27, 849-857.
  • 4. Botella A., Delvaux M., Fioramonti J., Frexinos J., Bueno L.: Galanin contracts and relaxes guinea pig and canine intestinal smooth muscle cells through distinct receptors. Gastroenterol. 1995, 108, 3-11.
  • 5. Botella A., Delvaux M., Frexinos J., Bueno L.: Comparative effects of galanin on isolated smooth muscle cells from ileum in five mammalian species. Life Sci. 1992, 50, 1253-1261.
  • 6. Brookes S.: Retrograde tracing of enteric neuronal pathways. Neurogastroenterol. Motil. 2001, 13, 1-18.
  • 7. Brown D. R., Hildebrand K. R., Parsons A. M., Soldani G.: Effects of galanin on smooth muscle and mucosa of porcine jejunum. Peptides 1990, 11, 497-500.
  • 8. Domoto T., Yang H., Bishop A. E., Polak J. M., Oki M.: Distribution and origin of extrinsic nerve fibers containing calcitonin gene-related peptide, substance P and galanin in the rat upper rectum. Neurosci. Res. 1992, 15, 64-73.
  • 9. Ekblad E., Håkanson R., Sundler F., Wahlestedt C.: Galanin: neuromodulatory and direct contractile effects on smooth muscle preparations. Br. J. Pharmacol. 1985b, 86, 241-246.
  • 10. Ekblad E., Rökaeus A., Håkanson R., Sundler F.: Galanin nerve fibers in the rat gut: distribution, origin and projections. Neurosci. 1985a, 16, 355-363.
  • 11. Ekblad E., Sjuve R., Arner A., Sundler F.: Enteric neuronal plasticity and a reduced number of interstitial cells of Cajal in hypertrophic rat ileum. Gut 1998, 42, 836-844.
  • 12. Fang P. H., Yu M., Ma Y. P., Li J., Sui Y. M., Shi M. Y.: Central nervous system regulation of food intake and energy expenditure: role of galanin-mediated feeding behavior. Neurosci. Bull. 2011, 27, 407-412.
  • 13. Furness J. B.: Types of neurons in the enteric nervous system. J. Auton. Nerv. Syst. 2000, 81, 87-96.
  • 14. Furness J. B., Costa M., Rökaeus A., McDonald T. J., Brooks B.: Galanin- immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons. Cell Tissue Res. 1987, 250, 607-615.
  • 15. Godlewski J., Pidsudko Z.: Characteristic of galaninergic components of the enteric nervous system in the cancer invasion of human large intestine. Ann. Anat. 2012, 194, 368-372.
  • 16. Gonda T., Daniel E. E., McDonald T. J., Fox J. E., Brooks B. D., Oki M.: Distribution and function of enteric GAL-IR nerves in dogs: comparison with VIP. Am. J. Physiol. 1989, 256, G884-G896.
  • 17. Haring H., Tøttrup A.: Motility regulating effects of galanin on smooth muscle of porcine ileum. Regul. Pept. 1991, 34, 251-260.
  • 18. Harling H., Messell T., Poulsen S. S., Rasmussen T. N., Holst J. J.: Galanin and vasoactive intestinal polypeptide: coexistence and corelease from the vascularly perfused pig ileum during distension and chemical stimulation of the mucosa. Digestion 1991, 50, 61-71.
  • 19. Hobson S. A., Bacon A., Elliot-Hunt C. R., Holmes F. E., Kerr N. C., Pope R., Vanderplank P., Wynick D.: Galanin acts as a trophic factor to the central andperipheral nervous systems. EXS 2010, 102, 25-38.
  • 20. Hoyle C. H., Burnstock G.: Galanin-like immunoreactivity in enteric neurons of the human colon. J. Anat. 1989, 166, 23-33.
  • 21. Jungbauer C., Lindig T. M., Schrödl F., Neuhuber W., Brehmer A.: Chemical coding of myenteric neurons with different axonal projection patterns in the porcine ileum. J. Anat. 2006, 209, 733-743.
  • 22. Kaleczyc J., Pidsudko Z., Franke-Radowiecka A., Sienkiewicz W., Majewski M., Łakomy M., Timmermans J. P.: The distribution and chemical coding of neurons in the celiac-superior mesenteric ganglion complex supplying the normal and inflamed ileum in the pig. Pol. J. Vet. Sci. 2004, 7, 199-201.
  • 23. Kaleczyc J., Scheuermann D. W., Pidsudko Z., Majewski M., Łakomy M., Timmermans J. P.: Distribution, immunohistochemical characteristics and nerve pathways of primary sensory neurons supplying the porcine vas deferens. Cell Tissue Res. 2002, 310, 9-17.
  • 24. Keef K. D., Shuttleworth C. W., Xue C., Bayguinov O., Publicover N. G., Sanders K. M.: Relationship between nitric oxide and vasoactive intestinal polypeptide in enteric inhibitory neurotransmission. Neuropharmacology 1994, 33, 1303-1314.
  • 25. King S. C., Slater P., Turnberg L. A.: Autoradiographic localization of binding sites for galanin and VIP in small intestine. Peptides 1989, 10, 313-317.
  • 26. Kofler B., Liu M. L., Jacoby A. S., Shine J., Iismaa T. P.: Molecular cloning and characterisation of the mouse preprogalanin gene. Gene 1996, 182, 71-75
  • 27. Lang R., Kofler B.: The galanin peptide family in inflammation. Neuropeptides 2011, 45, 1-8.
  • 28. Majewski M., Kaleczyc J., Wąsowicz K., Bossowska A., Gonkowski S., Klimaschewski L.: Characterization of afferent and efferent galanin-containing nerve fibres in the porcine ovary. Folia Histochem. Cytobiol. 2002, 40, 261- -268.
  • 29. Melander T., Hökfelt T., Rökaeus A., Fahrenkrug J., Tatemoto K., Mutt V.: Distribution of galanin-like immunoreactivity in the gastro-intestinal tract of several mammalian species. Cell Tissue Res. 1985b, 239, 253-270.
  • 30. Melander T., Staines W. A., Hökfelt T., Rökaeus A., Eckenstein F., Salvaterra P. M., Wainer B. H.: Galanin-like immunoreactivity in cholinergic neurons of the septum-basal forebrain complex projecting to the hippocampus of the rat. Brain Res. 1985a, 360, 130-138.
  • 31. Merighi A., Kar S., Gibson S. J., Ghidella S., Gobetto A., Peirone S. M., Polak J. M.: The immunocytochemical distribution of seven peptides in the spinal cord and dorsal root ganglia of horse and pig. Anat. Embryol. 1990, 181, 271-280.
  • 32. Papka R. E., Newton B. W., McNeill D. L.: Origin of galanin-immunoreactive nerve fibers in the rat paracervical autonomic ganglia and uterine cervix. J. Auton. Nerv. Syst. 1991, 33, 25-33.
  • 33. Pearson G. T.: Structural organization and neuropeptide distributions in the equine enteric nervous system: an immunohistochemical study using wholemount preparations from the small intestine. Cell Tissue Res. 1994, 276, 523-534.
  • 34. Philippe C., Clerc N., Mazet B., Niel J. P.: Immunochemical study of galanin in the cat digestive tract and autonomic ganglia. Peptides 1996, 17, 1331-1335.
  • 35. Pidsudko Z., Kaleczyc J., Majewski M., Łakomy M., Scheuermann D. W., Timmermans J. P.: Differences in the distribution and chemical coding between neurons in the inferior mesenteric ganglion supplying the colon and rectum in the pig. Cell Tissue Res. 2001, 303, 147-158.
  • 36. Pidsudko Z., Kaleczyc J., Wąsowicz K., Sienkiewicz W., Majewski M., Zając W., Łakomy M.: Distribution and chemical coding of intramural neurons in the porcine ileum during proliferative enteropathy. J. Comp. Pathol. 2008, 138, 23-31.
  • 37. Quartu M., Diaz G., Lai M. L., Del Fiacco M.: Immunohistochemical localization of putative peptide neurotransmitters in the human trigeminal sensory system. Ann. N.Y. Acad. Sci. 1992, 657, 469-472.
  • 38. Rökaeus A., Melander T., Hökfelt T., Lundberg J. M., Tatemoto K., Carlquist M., Mutt V.: A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci. Lett. 1984, 47, 161-166.
  • 39. Schmidt W. E., Kratzin H., Eckart K., Drevs D., Mundkowski G., Clemens A., Katsoulis S., Schäfer H., Gallwitz B., Creutzfeldt W.: Isolation and primary structure of pituitary human galanin, a 30-residue nonamidated neuropeptide. Proc. Natl. Acad. Sci. USA 1991, 88, 11435-11439.
  • 40. Sillard R., Rökaeus A., Xu Y., Carlquist M., Bergman T., Jörnvall H., Mutt V.: Variant forms of galanin isolated from porcine brain. Peptides 1992, 13, 1055- -1060.
  • 41. Skobowiat C., Całka J., Wąsowicz K., Majewski M.: Distribution pattern and chemical coding of neurons of the sympathetic chain ganglia supplying the descending colon in the pig. Acta Vet. Hung. 2010, 58, 189-198.
  • 42. Skofitsch G., Jacobowitz D. M.: Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Peptides 1985, 6, 509-546.
  • 43. Soldani G., Belloli C., Ormas P., Coruzzi G., Brown D. R., Beretta C.: Studies on secretomotor effects of galanin on various “in vivo” or “in vitro” preparations.Advances in Exp. Med. Biol. 1991, 298, 219-232.
  • 44. Su H. C., Bishop A. E., Power R. F., Hamada Y., Polak J. M.: Dual intrinsic and extrinsic origins of CGRP- and NPY-immunoreactive nerves of rat gut and pancreas. J. Neurosci. 1987, 7, 2674-2687.
  • 45. Suarez V., Guntinas-Lichius O., Streppel M., Ingorokva S., Grosheva M., Neiss W. F., Angelov D. N., Klimaschewski L.: The axotomy-induced neuropeptides galanin and pituitary adenylate cyclase-activating peptide promote axonal sprouting of primary afferent and cranial motor neurones. Eur. J. Neurosci. 2006, 24, 1555-1564.
  • 46. Sundler F., Ekblad E., Håkanson R.: Projections of enteric peptide-containing neurons in the rat. Arch. Histol. Cytol. 1989, 52 (Suppl), 181-189.
  • 47. Tamura K., Palmer J. M., Winkelmann C. K., Wood J. D.: Mechanism of action of galanin on myenteric neurons. J. Neurophysiol. 1988, 60, 966-979.
  • 48. Tatemoto K., Rökaeus A., Jörnvall H., McDonald T. J., Mutt V.: Galanin – a novel biologically active peptide from porcine intestine. FEBS Lett. 1983,164, 124-128.
  • 49. Timmermans J. P., Barbiers M., Scheuermann D. W., Stach W., Adriaensen D., Mayer B., De Groodt-Lasseel M. H.: Distribution pattern, neurochemical features and projections of nitrergic neurons in the pig small intestine. Ann. Anat. 1994, 176, 515-525.
  • 50. Uemura S., Pompolo S., Furness J. B.: Colocalization of neuropeptide Y with other neurochemical markers in the guinea-pig small intestine. Arch. Histol. Cytol. 1995, 58, 523-536.
  • 51. Vittoria A., Costagliola A., Carrese E., Mayer B., Cecio A.: Nitric oxide- containing neurons in the bovine gut, with special reference to their relationship with VIP and galanin. Arch. Histol. Cytol. 2000, 63, 357-368.
  • 52. Wang S., Hashemi T., Fried S., Clemmons A. L., Hawes B. E.: Differential intracellular signaling of the GalR1 and GalR2 galanin receptor subtypes. Biochemistry 1998, 37, 6711-6717.
  • 53. Wang Y. F., Mao Y. K., McDonald T. J., Daniel E. E.: Distribution of galanin- immunoreactive nerves in the canine gastrointestinal tract. Peptides 1995, 16, 237-247.
  • 54. Wendland J. R., Schmidt K. H., Koltzenburg M., Petersen M.: No overlap of sensitivity to capsaicin and expression of galanin in rat dorsal root ganglion neurons after axotomy. Exp. Brain Res. 2003, 153, 1-6.
  • 55. Yoon Y. S., Hwang I. K., Lee I. S., Suh J. G., Shin J. W., Kang T. C., Oh Y. S., Won M. H.: Galanin-immunoreactive cells and their relation to calcitonin gene-related peptide-, substance P- and somatostatin-immunoreactive cells in rat lumbar dorsal root ganglia. Anat. Histol. Embryol. 2003, 32, 110-115.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-8af013b3-c782-4e36-bbc8-8131dc245fad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.