Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | 36 | 06 |
Tytuł artykułu

Changes in the composition of phenolic compounds and antioxidant properties of grapevine roots and leaves (Vitis vinifera L.) under continuous of long-term drought stress

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Grapevine seedlings Vitis vinifera L. were grown in a greenhouse under optimum conditions (soil moisture ca 70 %) and under drought stress (soil moisture ca 30 %). Drought stress caused reduction in total phenolic compounds in grapevine leaves and roots, where were identified tree phenolic acids: caffeic acid, p-coumaric acid and ferulic acid. All acids found in leaves and roots occurred in the ester-bound form. Only caffeic acid in leaves appeared in the free and ester-bound form. Caffeic acid was present in the highest concentrations. The content of ferulic acid was the lowest in both tissues. The levels of all phenolic acids in leaves and roots decreased significantly under the drought stress. All the extracts from grapevine leaves and roots had antioxidative properties, but the antiradical activity of the extracts obtained from roots subjected to drought stress was lower to the control. The results of the analysis revealed that long-term drought stress caused a decrease in selected elements of secondary metabolism in such a different plant tissues that are the leaves and roots of the grapevine.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
36
Numer
06
Opis fizyczny
p.1491-1499,fig.,ref.
Twórcy
autor
  • Department of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn. M. Oczapowskiego St. 1 A, 10-957 Olsztyn-Kortowo, Poland
autor
  • Division of Food Science, Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, Poland
autor
  • Department of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn. M. Oczapowskiego St. 1 A, 10-957 Olsztyn-Kortowo, Poland
Bibliografia
  • Allakhverdiev SI, Kreslavski VD, Klimov VV, Los DA, Carpentier R, Mohanty P (2008) Heat stress: an overview of molecular responses in photosynthesis. Photosynth Res 98:541–550
  • Alonso AM, Guillen DA, Barroso CG, Puertas B, Garcia A (2002) Determination of antioxidant activity of wine by products and its correlation with polyphenolic content. J Agric Food Chem 50:5832–5836
  • Amarowicz R, Weidner S (2001) Content of phenolic acids in rye caryopses determined using DAD-HPLC method. Czech J Food Sci 19:201–205
  • Amarowicz R, Weidner S (2009) Biological activity of grapevine phenolic compounds. In: Roubelakis-Angelakis KA (ed) Grapevine molecular physiology and biotechnology, 2nd edn. Springer, New York, pp 389–405. doi:10.1007/978-90-481-2305-6_14
  • Amarowicz R, Naczk M, Zadernowski R, Shahid F (2000) Antioxid ant activity of condensed tannins of beach pea, canola hulls, evening primrose, and fababeans. J Food Lipids 7:199–211
  • Amarowicz R, Pegg RB, Rahimi-Moghaddam P, Barl B, Weil JA (2004) Free-radical scavenging capacity and antioxidant activity of selected plant species from the Canadian prairies. Food Chem 84:551–562
  • Amarowicz R, Weidner S, Wojtowicz I, Karmać M, Kosińska A, Rybarczyk A (2010) Influence of low-temperature stress on changes in the composition of grapevine leaf phenolic compounds and their antioxidant properties. Funct Plant Sci Biotechnol 4:90–96
  • Aroca R, Irigoyen J, Sanchez-Diaz M (2003) Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117:540–549
  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396
  • Benzie FF, Strain JJ (1999) Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol 299:15–23
  • Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115
  • Bohenert HJ, Nelson DE, Jensen RG (1995) Adaptation to environmental stresses. Plant Cell 7:1099–1111
  • Bray EA (2009) Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J Exp Bot 55(407):2331–2341
  • Caillet S, Salmieri S, Lacriox M (2006) Evaluation of free radical-scavenging properties of commercial grape phenol extracts by a fast colorimetric method. Food Chem 95:1–8
  • Caldwell MM, Bornman JF, Ballaré CL, Flint SD, Kulandaivelu G (2007) Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors. Pchotochem Photobiol Sci 6:252–266
  • Cattivelli L, Rizza F, Badeck F-W, Mazzucotelli E, Mastrangelo AM, Francia E, Marè C, Tondelli A, Stanca AT (2008) Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105:1–14
  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384
  • Chung IM, Kim JJ, Lim JD, Yu CY, Kim SH, Hahn SJ (2006) Comparison of resveratrol, SOD activity, phenolic compounds and free amino acid in Rehmannia glutinose under temperature and water stress. Environ Exp Bot 56:44–53
  • Cooper-Driver GA, Bhattacharya M (1998) Role of phenolics in plant evolution. Phytochemistry 49:1165–1174
  • Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7:1085–1097
  • Dodd AN, Jakobsen MK, Baker AJ, Telezerow A, Hos SW, Laplaze L, Barrot L, Poething RS, Haselhoff J, Webb AAR (2006) Time of day modulates low-temperature Ca²⁺ signals in Arabidopsis. Plant J 48:962–973
  • Dumont E, Bahraman N, Goulase E, Valot B, Sellier H, Hilbert JL, Vuylsteker C, Lejeune-Henaut I, Delbreil B (2011) A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci 180:86–98
  • Elavarthi S, Martin B (2010) Spectrophotometric assays for antioxidant enzymes in plants. Methods Mol Biol 639:273–281
  • Farooq M, Kobayashi N, Wahid A, Ito O, Basra SMA (2009) Strategies for producing more rice with less water. Adv Agron 101:352–388
  • Franca SC, Roberto PG, Marins MA, Puga RD, Rodriguez A, Pereira JO (2001) Biosynthesis of secondary metabolites in sugarcane. Gen Mol Biol 24:243–250
  • Gilmour SJ, Sebolt AM, Salazar MP, Everard JD, Thomashow MF (2000) Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation. Plant Physiol 124:1854–1865
  • Gumul D, Korus J, Achremowicz B (2007) The influence of extrusion on the content of polyphenols and antioxidant/antiradical activity of rye grains (Secale cereal L.). Acta Sci Pol 6:103–111
  • Huang D, Ou B, Prior DL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53(6):1841–1856
  • Janas KM, Cvikrova M, Pałągiewicz A, Szafrańska K, Posmyk MM (2002) Constitutive elevated accumulation of phenylpropanoids in soybean roots at low temperature. Plant Sci 163:369–373
  • Jwa N-S, Agrawal GK, Tomogami S, Yonekura M, Han O, Iwahashi H, Rakwal R (2006) Role of defence/stress-related marker genes, proteins, and secondary metabolites in defining rice self defence mechanisms. Plant Physiol Biochem 44:261–273
  • Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evolution and model data analysis of UV-B light, drought and cold stress responses. Plant J 50:347–363
  • Kranner I, Beckett RP, Wornik S, Zorn M, Pfeifhofer HW (2002) Revival of a resurrection plant correlates with its antioxidant status. Plant J 31:13–24
  • Kranner I, Minibayeva FV, Backett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673
  • Larcher W (1995) Gas exchange in plants. In: Larcher W (ed) Physiological plant ecology, 3rd edn. Springer, Berlin, pp 74–128
  • Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY (2009) Chilling stress-induced proteomic changes in rice roots. J Plant Physiol 166:1–11
  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410
  • Murata N, Allakhverdiev SI, Nishiyama Y (2012) The mechanism of photoinhibition in vivo: re-evaluation of the roles of catalase, atocopherol, non-photochemical quenching, and electron transport. Biochim Biophys Acta 1817(8):1127–1133
  • Naczk M, Shahidi F (1989) The effect of methanol–ammonia–water treatment on the content of phenolic acids of canola. Food Chem 31:159–164
  • Nascimento NC, Fett-Neto F (2010) Plant secondary metabolism and challenges in modifying its operation: an overview. Methods Mol Biol 643:1–13
  • Negro C, Tommasi L, Miceli A (2003) Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour Technol 87:41–44
  • Oszmański J (1995) Polyphenols as antioxidants in food. Przem Spoz 3:94–96 (in Polish)
  • Passioura J (2007) The drought environment: physical, biological and agricultural perspectives. J Exp Bot 58:113–117
  • Posmyk MM, Bailly C, Szafrańska K, Jasan KM, Corbineau F (2005) Antioxidant enzymes and isoflavonoids in chilled soybean [Glycine max (L.) Merr.] seedlings. J Plant Physiol 162:403–412
  • Rosicka-Kaczmarek J (2004) Polifenole jako naturalne antyoksydanty w żywności. Przeg Piek Cuk 6:12–16
  • Rudikowskaya EG, Fedorova GA, Dudareva LV, Makarova LE, Rudokovskij AV (2008) Effect of growth temperature on the composition of phenols in pea roots. Russ J Plant Physiol 55:712–715
  • Smirnof N (1993) Plant resistance to environmental stress. Curr Opin Biotechnol 9:214–219
  • Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19: 257–268
  • Szafrańska K, Posmyk M, Janas KM (2002) Activity of phenylalanine ammonia lyase and soluble phenols content in two cultivars of soybean differing in sensitivity to low-temperature stress. Postępy Nauk Rolniczych 481:223–228 (in Polish)
  • Szwajgier D, Pielecki J, Targoński Z (2005) Antioxidant activities of cinnamic and benzoic acid derivatives. Acta Sci Pol Technol Aliment 4(2):129–142
  • Weidner S, Amarowicz R, Karmać M, Frączek E (2000) Changes in endogenous phenolic acids during development of Secale cereal caryopses and after dehydration treatment of unripe rye grains. Plant Physiol Biochem 38:595–602
  • Weidner S, Karamać M, Amarowicz R, Szypulska E, Golgowska A (2007) Changes in composition of phenolic compounds and antioxidant properties of Vitis amurensis seeds germinated under osmotic stress. Acta Physiol Plant 29:238–290
  • Weidner S, Karolak M, Karamać M, Kosińska A, Amarowicz R (2009a) Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera) under drought stress followed by regeneration. Acta Soc Bot Pol 78:97–103
  • Weidner S, Kordala E, Brosowska-Arendt W, Karamać M, Kosińska A, Amarowicz R (2009b) Phenolic compounds and properties of antioxidants in grapevine roots followed by recovery. Acta Soc Bot Pol 78:279–286
  • Weidner S, Brosowska-Arendt W, Szczechura W, Karamać M, Kosińska A, Amarowicz R (2011) Effect of osmotic stress and post-stress recovery on the content of phenolics and properties of antioxidants in germinating seeds of grapevine Vitis californica. Acta Soc Bot Pol 80:11–19
  • Wróbel M, Karmać M, Amarowicz R, Frączek E, Weidner S (2005) Metabolism of phenolic compounds in Vitis riparia seeds during stratification and during germination under optimal and low temperature stress conditions. Acta Physiol Plant 27(3A): 313–320
  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142: 1065–1074
  • Xu C, Zang Y, Cao L, Lu J (2010) Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chem 119:1557–1565
  • Yen GC, Chen HY (1995) Antioxidant activity of various tea extracts in relation to their antimutagenicity. J Agric Food Chem 43: 27–32
  • Zadernowski R, Kozłowska H (1983) Phenolic acids in soybean and rape seed flours. Lebensm Wiss Technol 16:110–114
  • Zainol MK, Abd-Hamid A, Yusof S, Muse R (2003) Antioxidative activity and total phenolic compounds of leaf, root and petiole of four accessions of Centella asiatica (L.) Urban. Food Chem 81:575–581
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-4477e119-1047-4422-befe-157095d7df37
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.