Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | 30 | 1 |
Tytuł artykułu

Mice lines divergently selected for body mass show significant differences in spatial learning

Warianty tytułu
PL
Linie myszy poddane selekcji w kierunku wysokiej i niskiej masy ciała różnią się znamienie w uczeniu przestrzennym
Języki publikacji
EN
Abstrakty
EN
The present study was aimed to investigate the influence of multigenerational selection in the direction of low or high body weight on spatial learning and memory in mice. Light and heavy lines of rodents were selected from an outbred stock constructed from inbred strains; A/St, BN/a, BALB/c and C57BL/6J. Male mice selected at weaning for the low (L, n=13) or high (H, n=16) body weight for 94 generations have been evaluated for behavioral performance and cognition in the modified Morris water maze task. The unselected control line (Con, n=15) was run in parallel. Presented results lead to the conclusion that selection of mice for high and low body weight over 94 generations resulted in a significant differentiation in learning abilities. Our findings suggest improvement of learning of the hidden platform position in heavy line of mice.
PL
Celem badania jest ocena wpływu wielopokoleniowej selekcji w kierunku niskiej lub wysokiej masy ciała na procesy uczenia się i pamięci przestrzennej u myszy. Obie linie gryzoni uzyskano w wyniku wielopokoleniowej selekcji z niekrewniaczej wsobnej hodowli myszy szczepów; A/St, BN/a, BALB/c i C57BL/6J. Zachowanie i funkcje poznawcze analizowano przy pomocy labiryntu wodnego Morrisa u 13 samców z linii lekkiej (L, n = 13) i 16 samców z linii ciężkiej (H, n = 16). Równolegle prowadzono linię kontrolną, z której do badania wybrano 15 samców (Con, n = 15). Prezentowane wyniki prowadzą do wniosku, że wielopokoleniowa selekcja myszy w kierunku wysokiej i niskiej masy ciała prowadzi do istotnego zróżnicowania w zakresie zdolności uczenia się. Nasze wyniki sugerują, że myszy z linii ciężkiej znacznie szybciej uczą się pozycji podwodnej platformy w teście labiryntu wodnego.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
30
Numer
1
Opis fizyczny
p.21-34,fig.,ref.
Twórcy
  • Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
autor
  • Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
  • Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
  • Department of Genetics and Animal Breeding, Agricultural University of Warsaw, Warsaw, Poland
  • Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Warsaw, Poland
  • Centre for PreclinicalResearch and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
Bibliografia
  • ACHAM H., KIKAFUNDA J.K., OLUKA S., MALCE M.K., TYLLESKAR T. 2008. Height, weight, body mass index and learning achievement in Kumi district, East of Uganda. Sci. Res. Essays., 3: 001–008.
  • BENIWAL B.K., HASTINGS I.M., THOMPSON R., HILL W.G. 1992. Estimation of changes in genetic parameters in selected lines of mice using REML with an animal model. 2. Body weight, body composition and litter size. Heredity (Edinb), 69: 361–71.
  • BROWN R.E., WONG A.A. 2007. The influence of visual ability on learning and memory performance in 13 strains of mice. Learn. Mem., 14: 134–44.
  • CHEN Z., ZHANG W. 2013. Integrative analysis using module-guided Random Forests reveals correlated genetic factors related to mouse weight. PLOS Computational Biology, 9: e1002956.
  • CUNNANE S.C., CRAWFORD M.A. 2003. Survival of the fattest: fat babies were the key to evolution of the large human brain. Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 136: 17–26.
  • DEANER R.O., ISLER K., BURKART J., VAN SCHAIK C. 2007. Overall brain size, and not encephalization quotient, best predicts cognitive ability across non-human primates. Brain Behav. Evol., 70: 115–24.
  • EISEN E.J., HAYES J.F., ALLEN C.E., BAKKER H., NAGAI J. 1978. Cellular characteristics of gonadal fat pads, livers and kidneys in two strains of mice selected for rapid growth. Growth, 42: 7–25.
  • EISEN E.J. 1987. Effects of selection for rapid postweaning gain on maturing patterns of fat depots in mice. J. Anim. Sci., 64: 133–147.
  • EISEN E.J., PRASETYO H. 1988. Estimates of genetic parameters and predicted selection responses for growth, fat and lean traits in mice. J. Anim. Sci., 66: 1153–1165.
  • FALCONER D.S. 1953. Selection for large and small size in mice. J. Genet., 51: 470–501.
  • FITZPATRICK J.L., ALMBRO M., GONZALEZ-VOYER A., HAMADA S., PENNINGTON C., SCANLAN J., KOLM N. 2012. Sexual selection uncouples the evolution of brain and body size in pinnipeds. J. Evol. Biol., 25: 1321–1330.
  • FOWLER R.E. 1962. The efficiency of food utilization, digestibility of foodstuffs and energy expenditure of mice selected for large or small body size. Genet. Res., 3: 51–68.
  • GUNSTAD J., PAUL R.H., COHEN R.A., TATE D.F., SPITZNAGEL M.B., GORDON E. 2007. Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Compr. Psychiatry, 48: 57–61.
  • HASTINGS I.M., HILL W.G. 1990. Analysis of lines of mice selected for fat content. 2. Correlated responses in the activities of enzymes involved in lipogenesis. Genet. Res., 55: 55–61.
  • HASTINGS I.M., YANG J.Y., HILL W.G. 1991. Analysis of lines of mice selected on fat content. 4. Correlated responses in growth and reproduction. Genet. Res., 58: 253–259.
  • HOLMES I.S., HASTINGS I.M. 1995. Behavioural changes as a correlated response to selection. Genet. Res., 66: 27–33.
  • JACOBS L.F., GAULIN S.J., SHERRY D.F., HOFFMAN G.E. 1990. Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proc. Natl. Acad. Sci. USA, 87: 6349–6352.
  • JOU M.Y., LÖNNERDAL B., GRIFFIN I.J. 2013. Effects of early postnatal growth restriction and subsequent catch-up growth on body composition, insulin sensitivity, and behavior in neonatal rats. Pediatr. Res., 73: 596–601.
  • KEIGHTLEY P.D., HILL W.G. 1989. Quantitative genetic variability maintained by mutation-stabilizing selection balance: sampling variation and response to subsequent directional selection. Genet. Res., 54: 45–57.
  • KOMATSU T., CHIBA T., YAMAZA H., YAMASHITA K., SHIMADA A., HOSHIYAMA Y., HENMI T., OHTANI H., HIGAMI Y., DE CABO R., INGRAM D.K., SHIMOKAWA I. 2008. Manipulation of caloric content but not diet composition, attenuates the deficit in learning and memory of senescence-accelerated mouse strain P8. Exp. Gerontol., 43: 339–346.
  • LARZUL C., GONDRET F., COMBES S., DE ROCHAMBEAU H. 2005. Divergent selection on 63-day body weight in the rabbit: response on growth, carcass and muscle traits. Genet. Sel. Evol., 37: 105–122.
  • LIU G., DUNNINGTON E.A., SIEGEL P.B. 1994. Responses to long-term divergent selection for eight-week body weight in chickens. Poult. Sci., 73: 1642–1650.
  • LLOYD T. 1984. Food restriction increases life span of hypertensive animals. Life Sci., 34: 401–407.
  • MARTINEZ V., BÜNGER L., HILL W.G. 2000. Analysis of response to 20 generations of selection for body composition in mice: fit to infinitesimal model assumptions. Genet. Sel. Evol., 32: 3–21.
  • MASORO E.J. 2000. Caloric restriction and aging: an update. Exp. Gerontol., 35: 299–305.
  • MORENO-LÓPEZ L., SORIANO-MAS C., DELGADO-RICO E., RIO-VALLE J.S., VERDEJO-GARCÍA A. 2012. Brain structural correlates of reward sensitivity and impulsivity in adolescents with normal and excess weight. PLoS One, 7: e49185.
  • NGUYEN P.V., DUFFY S.N., YOUNG J.Z. 2000. Differential maintenance and frequency-dependent tuning of LTP at hippocampal synapses of specific strains of inbred mice. J. Neurophysiol., 84: 2484–2493.
  • NILSSON L.G., NILSSON E. 2009. Overweight and cognition. Scand. J. Psychol., 50: 660–667.
  • PADEH B., SOLLER M. 1976. Genetic and environmental correlations between brain weight and maze learning in inbred strains of mice and their F1 hybrids. Behav. Genet., 6: 31–41.
  • READER S.M., LALAND K.N. 2002. Social intelligence, innovation, and enhanced brain size in primates. Proc. Natl. Acad. Sci. USA, 99: 4436–4441.
  • REID K., NISHIKAWA S., BARTLETT P.F., MURPHY M. 1995. Steel factor directs melanocyte development in vitro through selective regulation of the number of c-kit+ progenitors. Dev. Biol., 169: 568–579.
  • ROTH G., DICKE U. 2005. Evolution of the brain and intelligence. Trends. Cogn. Sci., 9: 250–257.
  • SALIMOV R.M., MARKINA N.V., PEREPELKINA O.V., POLETAEVA I. 2004. Exploratory behavior of F2 crosses of mouse lines selected for different brain weight: a multivariate analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 28: 583–589.
  • TAKAHASHI R., KOMIYA Y., GOTO S. 2006. Effect of dietary restriction on learning and memory impairment and histologic alterations of brain stem in senescence-accelerated mouse (SAM) P8 strain. Ann. N. Y. Acad. Sci., 1067: 388–393.
  • WALTHER K., BIRDSILL A.C., GLISKY E.L., RYAN L. 2010. Structural brain differences and cognitive functioning related to body mass index in older females. Hum. Brain Mapp., 31: 1052–1064.
  • WARD A.M., SYDDALL H.E., WOOD P.J., CHROUSOS G.P., PHILLIPS D.I. 2004. Fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis: low birth weight and central HPA regulation. J. Clin. Endocrinol. Metab., 89: 1227–1233.
  • WEINDRUCH R. 1996. The retardation of aging by caloric restriction: studies in rodents and primates. Toxicol. Pathol., 24: 742–745.
  • WIDY-TYSZKIEWICZ E., SCHEEL-KRÜGER J., CHRISTENSEN A.V. 1993. Spatial navigation learning in spontaneously hypertensive, renal hypertensive and normotensive Wistar rats. Behav. Brain Res., 54: 179–785.
  • WIRTH-DZIECIOŁOWSKA E., CZUMIŃSKA K., REKLEWSKA B., KATKIEWICZ M. 1996. Life time reproduction performance and functional changes in reproductive organs of mice selected divergently for body weight. Animal Sci. Papers and Reports, 14: 187–198.
  • WIRTH-DZIECIOŁOWSKA E., CZUMIŃSKA K. 2000. Longevity and aging of mice from lines divergently selected for body weight for over 90 generations. Biogerontology, 1: 171–178.
  • WIRTH-DZIECIOŁOWSKA E., LIPSKA A., WESIERSKA M. 2005. Selection for body weight induces differences in exploratory behavior and learning in mice. Acta Neurobiol. Exp. (Wars), 65: 243–253.
  • WITELSON S.F., BERESH H., KIGAR D.L. 2006. Intelligence and brain size in 100 postmortem brains: sex, lateralization and age factors. Brain, 129: 386–398.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-5a814f16-9cbe-42af-99df-9bd4477913e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.