Warianty tytułu
Języki publikacji
Abstrakty
Mitogen-activated protein kinases (MAPKs) have been shown to act as key regulators of stress responses in model plant and crop species. So far, however, the MAPK family has not been systematically studied in barley. Herein, we identified 16 HvMAPKs (Hv—Hordeum vulgare) based on computational analysis of barley transcriptomics and genomics databases. HvMAPKs contain all canonical MAPK domains, except for HvMPK2, which lacks a MAPK domain signature. In addition, five HvMAPKs harbor TEY and ten HvMAPKs harbor TDY dual phosphorylation motif in the activation loop. Interestingly, HvMPK2 contains a MEY instead of TEY phosphorylation motif. We classified HvMAPKs into four major plant MAPK clades based on phylogeny reconstruction and anchored all HvMAPK genes to five out of seven barley chromosomes. Furthermore, we inoculated seedlings of susceptible barley line L94 and its isolines L94-Rph3 and L94-Rph7 with rust fungus Puccinia hordei and analyzed the expression of 16 HvMAPK genes using qRT-PCR at 1–4.5 days post inoculation. In total, six HvMAPK genes exhibited significantly altered expression by P. hordei infection. The expression of HvMPK5, HvMPK6, HvMPK7 and HvMPK12 (set one genes) was strongly induced especially during effector-triggered immunity (ETI), whereas the expression of HvMPK2 and HvMPK17 (set two genes) was specifically downregulated during ETI. Yet the expression of HvMPK8 was also specifically but weakly downregulated during ETI. Overall, the expression patterns suggest that set one genes positively regulate ETI in barley–P. hordei pathosystem, whereas set two genes negatively regulate ETI and/or programmed cell death in this pathosystem.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
Article: 254 [16 p.], fig.,ref.
Twórcy
autor
- Department of Cell Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
autor
- Laboratory of Plant Breeding, Wageningen University & Research centre, 6700 AJ, Wageningen, The Netherlands
autor
- Laboratory of Plant Breeding, Wageningen University & Research centre, 6700 AJ, Wageningen, The Netherlands
autor
- Department of Cell Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
autor
- Department of Cell Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Slechtitelu 27, 783 71, Olomouc, Czech Republic
Bibliografia
- Abass M, Morris PC (2013) The Hordeum vulgare signalling protein MAP kinase 4 is a regulator of biotic and abiotic stress responses. J Plant Physiol 170:1353–1359
- Asai T, Tena G, Plotnikova J, Willmann MR et al (2002) MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415:977–983
- Berriri S, Garcia AV, Frei dit N, Rozhon W et al (2012) Constitutively active mitogen-activated protein kinase versions reveal functions of Arabidopsis MPK4 in pathogen defense signaling. Plant Cell 24:4281–4293
- Brodersen P, Petersen M, Bjørn Nielsen H, Zhu S et al (2006) Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 47:532–546
- Brooks WS, Griffey CA, Steffenson BJ, Vivar HE (2000) Genes governing resistance to Puccinia hordei in thirteen spring barley accessions. Phytopathology 90:1131–1136
- Chang L, Karin M (2001) Mammalian MAP kinase signaling cascades. Nature 410:37–40
- Chen X, Hackett CA, Niks RE, Hedley PE et al (2010) An eQTL analysis of partial resistance to Puccinia hordei in Barley. PloS One. doi:10.1371/journal.pone.0008598
- Chen L, Hu W, Tan S, Wang M et al (2012) Genome-wide identification and analysis of MAPK and MAPKK gene families in Brachypodium distachyon. PLoS One. doi:10.1371/journal. pone.0046744
- Cheong YH, Moon BC, Kim JK, Kim CY (2003) BWMK1, a rice mitogen-activated protein kinase, locates in the nucleus and mediates pathogenesis-related gene expression by activation of a transcription factor. Plant Physiol 132:1961–1972
- Colcombet J, Hirt H (2008) Arabidopsis MAPKs: a complex signalling network involved in multiple biological processes. Biochem J 413:217–226
- del Pozo O, Pedley KF, Martin GB (2004) MAPKKKa is a positive regulator of cell death associated with both plant immunity and disease. EMBO J 23:3072–3082
- Dodds PN, Rathjen JP (2010) Plant immunity: towards an integrated view of plant-pathogen interactions. Nat Rev Genet 11:539–548
- Eckey C, Korell M, Leib K, Biedenkopf D et al (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 55:1–15
- Eitas KT, Dangl JL (2010) NB-LRR proteins: pairs, pieces, perception, partners and pathways. Curr Opin Plant Biol 13(4):472–477
- Ekengren SK, Liu Y, Schiff M, Dinesh-Kumar SP, Martin GB (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resistance in tomato. Plant J 36:905–917
- Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
- Gao M, Liu J, Bi D, Zhang Z et al (2008) MEKK1, MKK1/MKK2 and MPK4 function together in a mitogen-activated protein kinase cascade to regulate innate immunity in plants. Cell Res 18:1190–1198
- He C, Fong SHT, Yang D, Wang GL (1999) BWMK1, a novel MAP kinase induced by fungal infection and mechanical wounding in rice. Mol Plant Microbe Interact 12:1064–1073
- Huang X, Madan A (1999) CAP3: a DNA sequence assembly program. Genome Res 9:868–877
- Ichimura K, Shinozaki K, Tena G, Sheen J et al (2002) Mitogen activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci 7:301–308
- Ichimura K, Casais C, Peck SC, Shinozaki K, Shirasu K (2006) MEKK1 is required for MPK4 activation and regulates tissuespecific and temperature-dependent cell death in Arabidopsis. J Biol Chem 281:36969–36976
- Jones JDG, Dangl JL (2007) The plant immune system. Nature 444:323–329
- Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4
- Keshet Y, Seger R (2010) The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. In: Seger R (ed) MAP kinase signaling protocols, 2nd edn. Humana Press, New York, pp 3–38
- Knetsch MLW, Wang M, Snaar-Jagalska BE, Heimovaara-Dijkstra S (1996) Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8:1061–1067
- Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23:1289–1291
- Křenek P, Smékalová V (2014) Quantification of stress-induced mitogen-activated protein kinase expressional dynamic using reverse transcription quantitative real-time PCR. Method Mol Biol 1171:13–25
- Lian WW, Tang YM, Gao SQ, Zhang Z, Zhao X, Zhao CP (2012) Phylogenetic analysis and expression patterns of the MAPK gene family in wheat (Triticum aestivum L.). J Integr Agric 11:1227–1235
- Liu Q, Xue Q (2006) Computational identification and phylogenetic analysis of the MAPK gene family in Oryza sativa. Plant Physiol Bioch 45:6–14
- Liu Y, Zhang D, Wang L, Li D (2013) Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep 31:1446–1460
- Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT Method. Methods 25:402–408
- Mathre DE (1997) Compendium of barley diseases. American Phytopathological Society, St Paul
- Matsumoto T, Tanaka T, Sakai H, Amano N et al (2011) Comprehensive sequence analysis of 24,783 barley full-length cDNAs derived from 12 clone libraries. Plant Physiol 156:20–28
- Mayer KFX, Martis M, Hedley PE, Šimková H et al (2011) Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell 23:1249–1263
- Mayer KFX, Waugh R, Langridge P, Close TJ et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716
- Mayrose M, Bonshtien A, Sessa G (2004) LeMPK3 is a mitogenactivated protein kinase with dual specificity induced during tomato defense and wounding responses. J Biol Chem 279:14819–14827
- Melech-Bonfil S, Sessa G (2010) Tomato MAPKKKe is a positive regulator of cell-death signaling networks associated with plant immunity. Plant J 64:379–391
- Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266
- Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H (2015) Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genom 16:58
- Morrison DK (2012) MAP kinase pathways. Cold Spring Harb Perspect Biol 4:a011254
- Mrízová K, Holásková E, Öz MT, Jiskrová E, Frébort I, Galuszka P (2013) Transgenic barley: a prospective tool for biotechnology and agriculture. Biotech Adv 32:137–157
- Nakagami H, Pitzschke A, Hirt H (2005) Emerging MAP kinase pathways in plant stress signalling. Trends Plant Sci 10:339–346
- Nakagami H, Soukupova H, Schikora A, Zarsky V, Hirt H (2006) A mitogen-activated protein kinase kinase kinase mediates reactive oxygen species homeostasis in Arabidopsis. J Biol Chem 281:38697–38704
- Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York
- Niks RE (2014) How specific is non-hypersensitive host and nonhost resistance of barley to rust and mildew fungi? J Integr Agri 13:244–254
- Niks RE, Kuiper HJ (1983) Histology of the relation between minor and major genes for resistance of barley to leaf rust. Phytopathology 73:55–59
- Niks RE, Rubiales D (1994) Avirulence factors corresponding to barley genes Pa3 and Pa7 which confer resistance against Puccinia hordei in rust fungi other than P. hordei. Physiol Mol Plant Pathol 45:321–331
- Niks RE, Walther U, Jaiser H, Martínez F et al (2000) Resistance against barley leaf rust (Puccinia hordei) in West-European spring barley germplasm. Agronomie 20:769–782
- Qi X, Niks RE, Stam P, Lindhout P (1998) Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96:1205–1215
- Qiu JL, Zhou L, Yun BW, Nielsen HB et al (2008) Arabidopsis mitogen-activated protein kinase kinases MKK1 and MKK2 have overlapping functions in defense signaling mediated by MEKK1, MPK4, and MKS1. Plant Physiol 148:212–222
- Reyna JS, Yang Y (2006) Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea Infection. Mol Plant Microbe Interact 19:530–540
- Rodriguez MC, Petersen M, Mundy J (2010) Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 61:621–649
- Romeis T, Piedras P, Zhang S, Klessig DF et al (1999) Rapid Avr9-and Cf-9–Dependent Activation of MAP Kinases in Tobacco Cell Cultures and Leaves: convergence of Resistance Gene, Elicitor, Wound, and Salicylate Responses. Plant Cell 11:273–287
- Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
- Šamajová O, Plíhal O, Al-Yousif M, Hirt H, Šamaj J (2013a) Improvement of stress tolerance in plants by genetic manipulation of mitogen-activated protein kinases. Biotech Adv 31:118–128
- Šamajová O, Komis G, Šamaj J (2013b) Emerging topics in the cell biology of mitogen-activated protein kinases. Trends Plant Sci 18:140–148
- Shen X, Yuan B, Liu H, Li X, Xu C, Wang S (2010) Opposite functions of a rice mitogen-activated protein kinase during the process of resistance against Xanthomonas oryzae. Plant J 64:86–99
- Shin HY, You MK, Jeung JU, Shin JS (2014) OsMPK3 is a TEY-type rice MAPK in Group C and phosphorylates OsbHLH65, a transcription factor binding to the E-box element. Plant Cell Rep 33:1343–1353
- Smékalová V, Doskočilová A, Komis G, Šamaj J (2014) Crosstalk between secondary messengers, hormones and MAPK modules during abiotic stress signalling in plants. Biotech Adv 32:2–11
- Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7:S10
- Song F, Goodman RM (2002) OsBIMK1, a rice MAP kinase gene involved in disease resistance responses. Planta 215:997–1005
- Song D, Chen J, Song F, Zheng Z (2006) A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses. Plant Biol 8:587–596
- Suarez-Rodriguez MC, Adams-Phillips L, Liu Y, Wang H et al (2007) MEKK1 is required for flg22-induced MPK4 activation in Arabidopsis plants. Plant Physiol 143:661–669
- Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729
- Testerink C, Vennik M, Kijne JW, Wang M, Heimovaara-Dijkstra S (2000) Inactivation of a MAPK-like protein kinase and activation of a MBP kinase in germinating barley embryos. FEBS Lett 484:55–59
- Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115
- Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acidinducible mitogen-activated protein kinase. Plant Cell 15:745–759
- Yang Z, Ma H, Hong H, Yao W et al (2015) Transcriptome-based analysis of mitogen-activated protein kinase cascades in the rice response to Xanthomonas oryzae infection. Rice 8:4
- Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden T (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134
- Yuan B, Shen X, Li X, Xu C, Wang S (2007) Mitogen-activated protein kinase OsMPK6 negatively regulates rice disease resistance to bacterial pathogens. Planta 226:953–960
- Zhang S, Klessig DF (1998) Resistance gene N-mediated de novo synthesis and activation of a tobacco mitogen-activated protein kinase by tobacco mosaic virus infection. Proc Natl Acad Sci USA 95:7433–7438
- Zhang H, Wang S (2013) Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr Opin Plant Biol 16:188–195
- Zhang S, Xu JR (2014) Effectors and Effector Delivery in Magnaporthe oryzae. PLoS Pathog 10(1):e1003826
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-0ef14a32-f071-43e5-b6d0-b559238ee45a