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Preliminaries

In classical definitions of conformal mappings one usually assumes
suitable regularity of the mappings. In the twenties several authors studied
the question whether regularity assumptions (in ths two-dimensionalcase)
are actually necessary. The answer is given by the Menshov—Looman
theorem. We shall state the conclusion of this theorem (in a version valid.for
an arbitrary dimension) and we shall consider it as the definition of con-
formal mappings.

DEerFINITION 0.1. A homeomorphism f of a domain Q — R" is called
conformal if for any x,€Q the following holds:

max | f(x)—f(xo)l

(0.1) lim sup x=xal=r =1,
e I milll 1S (x)—f (xo)l
x-xgl=r

Geometriéally this means that f takes infinitesimal spheres into infinitesimal
spheres. :
This definition can be generalized as follows.

DEFINITION 0.2 (Gehring’s metric definition [8]). A homeomorphism f of
a domain Q < R" is said to be K-quasiconformal (1 < K < ) in Q if

max  [f(x)—f(xo)|

(0.2) lim sup Z=*ol=r < K for all x,eQ.
o Lmin 110 =1 Cxol
x—xo =r

. Inequality (0.2) is an analytical characterization of the fact that
infinitesimal spheres are mapped into such infinitesimal ellipsoids that the
ratio of the biggest and the smallest semiaxes is bounded by the constant K.

Studies of fundamental problems of the theory of quasiconformal map-
pings in the plane have proved to be strictly related to the theory of elliptic
systems of partial differential equations, which can be considered as gen-
eralizations of the Cauchy-Riemann system (defining conformal mappings).
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Studies in non-linear hydrodynamics, due mainly to M. A. Lavrentiev
[14], [15], have led to systems of equations of the form

ai
(pl(£3x’f) =0

J

ai
?> (é’x’f) =0

0.3) (i,j=1,2.

J

These solutions f = f(x) which are homeomorphisms are quasiconformal. As
an effect of these studies (esspecially the studies of linear cases of (0.3), e.g. the
Beltrami equation) one has obtained answers to several problems concerning
quasiconformal mappings and differential equations.

There have been efforts to find similar linear systems for quasiconformal
mappings in higher dimensions. These efforts, however, have failed. Even in
the class of non-linear systems there is no natural subclass having, for
instance, local homeomorphic solutions (being quasiconformal) unless we
make some assumptions on integrability of these systems. Some results (for
example Liouville’s theorem discussed below) suggest that there is no bound-
ary value problem which can be correctly posed for any system of differ-
ential equations admitting conformal mappings in several dimensions.
Recently some relations have been found between quasiconformal mappings
in several dimensions and differential equations. They are not as clear as in
the two-dimensional case, but certainly not less important for a further
development of the theory of quasiconformal mappings. These studies have
their origin in the papers of L. Ahlfors [1], J. G. ReSetniak [19], [21], B.
Bojarski and T. Iwaniec [5], and others. We should like to point out some
much more difficult problems which have arisen. One of the main reasons for
the difficulties is the fact that equations for many-dimensional quasicon-
formal mappings are not linear and not always uniformly elliptic, and
systems of equations are overdetermined. Therefore one almost immediately
encounters fundamental problems, such as existence of solutions or regularity
of generalized solutions. Such problems appear in the present paper. Each of
the results requires special methods, often not sufficiently developed by the
general theory of differential equations.

The systems of differential equations that we shall make use of shauld
be considered as analogoues of Beltrami’s equations for quasiconformal
mappings between two-dimensional domains. We shall derive them from the
geometric interpretation of the definition of quasiconformal mappings.

Let us remark (F. Gehring [9]) that generalized first derivatives of a-
quasiconformal mapping of a domain in R" are locally integrable with the
nth power, and inequality (0.2) can be transformed into a condition on these
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derivatives. This observation has led us to a more general concept of
quasiregular mappings.

DerNiTioN 0.3. A mapping f: Q@ -, f = (f1(x), f*(x), ..., f"(x)), x
= (Xy, X3, --., X,), Of a2 domain Q < R" into Q' < R" is called quasi-
regular if the following conditions are satisfied:

(@) fe W, . (Q); W, ..(D) is the Sobolev space of vector-valued func-
tions defined on Q2 whose first generalized partial derivatives exist in L, (£2).

(b) For almost all xe(2,

(04) IDf (x)I" < n"2 R J(x),
. o of o
where Df(x) is the Jacobi matrix of f, ) = Df, J,(x) is its jacobian; K—
j

is a constant, related to the constant K. For every matrix A = (4;;) we
denote by |A| its norm: '

Al = (X 14,1°)"2.
i

Remark. For every nxn-matrix A we have |4|" > n"?det A and the
equality holds if and only if A is a multiple of an orthogonal matrix. Thus in
fundamental inequality (0.4) the case K = 1 implies that (0.4) becomes an
equality and f is conformal. .

A quasiregular one-to-one mapping in Q is called quasiconformal; the
terms K-quasiregular in Q or K-quasiconformal are also used.

The case of mappings of two-dimensional domains is especially interest-
ing because of its connection with functions of a complex variable. In this
case a mapping f is regarded as a function of a complex variable z
= x,+ix,; we introduce the operators

O (o SN A

ox, 0x, Ox, 0x,

and the fundamental inequality (0.4) takes the form

(0.5) < qOl), 4@ < 7'§+— <1

Thus we can consider the theory of K-quasiconformal or K-quasiregular
mappings as a study of solutions of differential inequality (0.5) with
a parameter K. For K = 1 we get the Cauchy-Riemann system

(0.6) | fi=0.

The geometric interpretation of (0.4) is of fundamental importance in under-
standing several basic constructions in the theory of quasiconformal map-

pings.
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Let f: Q50 bea ‘map. Consider the tangent mapping
0.7) T2 - ’I} Q';

some necessary regularity assumptions will be described later. This is a linear
" mapping between spaces tangent to  at x, and to Q' at f(x,). In the
natural bases of T, Q and Ty, €', the map is given by the Jacobi matrix

Df(xo). If x, varies over Q, then Df(x,) defines a morphism of the tangent
bundles

(xg)

Q0 % TQ.

We shall now define infinitesimal ellipsoids. An infinitesimal ellipsoid
&(xo) at x,€Q is a family {&,(xo)} of ellipsoids in T, Q, cefitred at 0e T, Q
and such that each of them can be obtained from any other by a similarity
transformation of T, Q. The ellipsoids of this family are parametrized by a
parameter h > O; for h we may take for instance the length of their shortest
axis. Let p be the ratio of the length of the longest axis of an ellipsoid
&,(xo) to the length of the shortest one. Thus the ratio measures the
flatness of ellipsoids from {&,(xo)}.

An infinitesimal ellipsoid {&,(x¢)} can be described by a quadratic
equation

(G(xq)¢, &) = ph?,

where £e T, Q <, is the scalar product in T., £, and G(x,) is a positive
symmetric matrlx such that det G(x,) = 1. The matrix G(x,) is called the
characteristic of the infinitesimal ellipsoid {&)(x,)}. The distribution of charac-
teristics in € is a matrix-valued function 23x — G(x).

We want to relate infinitesimal ellipsoids with mappings. Suppose (as
above) that f: Q — ' is a mapping, xo€Q, and Df: T, Q — Tp,, Q2 is its
tangent mapping. Suppose that Df preserves orientation. Consider an infini-
tesimal ellipsoid at x, with characteristic G(x,) and an infinitesimal ellipsoid
at fo = f(xo)ef2’ with characteristic H(f;). We may ask when Df transforms
one infinitesimal ellipsoid into another. This means that

D* f (xo) H (fo) Df (xo) = J(x0)*'" G (xo),

where D* f(x,) is the transposed matrix to Df(x,).

Generalizing the above situation, suppose that there are given two
distributions of characteristics G(x, f), H(x, f), defined on the product
Q2x€. Thus G(x, f) and H(x, f) are matrix-valued functions defined on
Qx & and satisfying the following conditions:

(i) G and H are real, positive, symmetric n x n-matrices, i.e.
VIE < Gylx, NEE < nlel?,
vin> < Hy(x, Nn'n’ < pinl®.
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(i) det G(x, f) = det H(x,f) =

(iii) Entries of the matrices G and H are measurable and uniformly
bounded on 2xQ'.

Then f transforms the infinitesimal ellipsoid at x with the characteristic

G(x,f) into the infinitesimal ellipsoid at f = f(x) with the charactcrlstlc
H(x, f) if and only if

(0.8) D*f(x) H(x,f) Df (x) = J; ()" G(x, f).

When H(x,, fo) = G(xo, fo) = E — the identity matrix, then f is conformal
at xo.

The case G = G(x), H =H(f) includes the problem of conformal
equivalence of Riemannian spaces Q; and ,,, where Q; (resp. ) denotes a
manifold with the scalar product on T (resp. on T€') defined by G (resp. H).

Relation (0.8) is a system of non-linear homogeneous equations for the
vector-function f = (f', f?, ..., f™. The number of independent equations
is (n—1)(n+2)/2: For n> 2 the system is overdetermined. For n =2 the
system reduces to the quasilinear system

(09) £:G) = 91N L@ +9:z, NG,
where -
G, —-G,,+2iGy, H, -H,,+2iH,,
4 =Gn+Gzz+H11+sz, 2= —le+G22+H11+sz.
Conditions (i), (i1), (iit) imply that q, and ¢, uniformly satisfy the estimate

g, (z, N +1g2(z, /) < qo < 1.

This estimate is called uniform ellipticity (in the terminology of the theory of
systems of partial differential equations of the first order) [3].

If H(x,f) = E and G = G(x), then the function f = f(z), z = x, +ix,
satisfies almost everywhere Beltrami’s equation

(0.10) L= a@f, 191 < g < 1.
The system
(0.11) D* f(x) Df (x) = Jf(x)Z/".G(x)

may be regarded as an analogue of Beltrami’s equation for quasiregular
mappings of n-dimensional domains. The existence of a solution of (0.11)
may be interpreted in geometric language as a conformal equivalence of the
Riemannian space {}; and a domain in R".

Conditions for the existence of a local homeomorphism f = f(x) satisfy-
ing (0.11) are given by the theorem of Weyl-Schouten.

We shall denote the class of solutions of (0.8) by A(G, H) in honour of
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M. A. Lavrentiev, who was the first to consider natural influences of partial
differential equations upon quasiconformal mappings.

By generalized solution of (0.8) we shall mean a vector-function f
belonging to the Sobolev space W, (Q) and satisfying (0.8) almost every-
where in Q. The set of all generalized solutions of (0.8) will be denoted by
A**(G,H), k=0,1,2,...,0 <« < 1, if the characteristics G and H
belong to C***(Qx Q).

We shall analyse system (0.8) with a variety of different smoothness
conditions for the characteristics G(x, f) and H(x, f).

In the case of system (0.10) there is a known theorem of B. V. Sabat
which says that if the coefficient g, = g,(z) is of the class C***(Q), 0 < x
<1,k =0,1,..., then any solution f = f (z) of system (0.10) is of the class
C****1(@Q). For x = 0 this theotem is not true.

ExampLE (B. V. Sabat [22]). The quasiconformal mapping
f(@) = z(1-1n|z)?),

which is defined in some neighbourhood of z, = 0, has the continuous
_ characteristic q, (z) = f3/f;, 4. (zo) = 0 but f'is not of the class C'; moreover

o @ _
m =

z2—+0 |Z|

In the present paper we shall prove regularity theorems in higher
dimensions, ie. A***(G, H) = C****1(Q) (Theorem 8.2).

In principle it can be said that (in the two-dimensional case) the
strongest and most general theorems on quasiconformal mappings (in par-
ticular existence theorems) have been obtained by using the analytic ap-
proach, i.e. by using properties of Beltrami’s equations and its generalizations,
as for instance A-system

(0.12) f:@) = h(z, £, 1),

where h(z, f, {) is a Lipschitz function with respect to (:

Ih(z. £, L) —h(z SOl S qolls—=Cl, h(z,£,0)0 =0, g0 < 1.

Such systems were studied in papers by B. Bojarski and T. Iwaniec [6], [4],
{11]; they contain so-called strong elliptic systems in the geometric sense, the
last have been studied by M. Lavrentlev [14], [15]). We shall quote the
following fundamental theorem:

THEOREM 0.1. Let f be a K-quasiregular mapping defined on Q — R".
Then for any compact subset Q, of Q there is a constant Cq_ such that

(0.13) [f(x))=f(x )l < Coplxy —x,of".



Preliminaries 11

This theorem was proved in its full generality by F. Gehring with the
best possible exponent a = 1/K" 1,

According to our definition, a quasiregular mapping is given by a
function in the Sobolev class W} .(€2). Recall Sobolev’s imbedding theorem:
if feW, (), then feCi.(R), where a = 1—n/p. Inequality (0.4) implies
feWh (), see [7], so we get (0.13) with some exponent a > 0.
Unfortunately, it is not proved yet that

fE P‘{,lxn- 1kn—1-1)10c (Q);

this result would imply « = 1/K""!, ie. F. Gehring theorem. -

The theorem stating that any quasiconformal mapping is of the class
W'..(Q), p > n, is much stronger than Theorem 0.1.

To end these preliminaries, we shall discuss some topics in quasicon-
formal mappings related to the study of the non-linear system (0.8). For n
= 3 the solutions of (0.8) are of a very special nature. This fact was observed
for the first time by Liouville (in the middle of the nineteenth century) in the
special case of G = H = E - the identity matrix, i.e. for conformal map-
pings. He proved his famous theorem which says that any C? conformal map-
ping in R", n > 3, is a Mobius transformation. This means that all C3-con-
formal mappings are generated by rotations, inversions and similarity map-
pings. Over one hundred years later F. Gehring [8] and J. ReSetniak [20]
proved Liouville’s theorem without any regularity assumptions (i.e. the as-
sumption that the mapping feC? is not necessary; see also [26]).

Again, their proofs were based on very deep results on generalized sol-
utions of non-linear equations of the second order or of equations with
measurable coefficients. As we proved in [12], [5], the third derivatives of
the classical solutions of (0.8) can be expressed as functions of their first
and second derivatives. Namely, we have the formulae

63 fl or®
(0.14) m = Fl'Jk (X,f, aLxﬂ, grad Jf(X)),
i 0X;

a, B, i, j, k, Il =1,...,n,

‘ : .. @ . .
where Fj; is algebraic in 3{7,grad J;(x). The proof of this fact is

obtained by using only the formal structure of (0.8). A further study of (0.14)
leads in particular to the following uniqueness theorem; two solutions of
(0.8) which take the same value at a given point x, together with their first
and second derivatives coincide in a neighbourhood of x,.

This fact was first proved in [5] under strong regularity assumptions;
the results of this papers are further extended to arbitrary generalized
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solutions of (0.8) whose characteristics are of the class C}(2x ). Thus
system (0.8) has the basic property of ordinary differential equations: its
solution is determined by its Cauchy data of order < 2 at any point. This is
a proper generalization of the classical theorem of Liouville.

From system (0.8) oné can derive a certain number of other quasilinear
equations of the second order. The are important in the study of several
‘local and global properties of (0.8) (regularity of the solutions). To give
an idea how these equations are formed let us note that the function
v(x) = J,(x)""2/?" satisfies linear equations of the function second order;
the coefficients of this equation are given by simple universal formulae
involving coefficients of the metric tensor G(x)

(0.15) G (x) v,,l.,,j—GU ) (x)v,, +((n—2)/4(n—1)) R(x) v = 0,

where I7;(x) are the Christoffel symbols and R(x) is the scalar curvature (see
[5]). It can also be written in the weak form

o2 ch""+ B(pG‘fI":j+ n—-2
5x,- axj 5x, 4(”- l)

(0.16) ¢R)~vdx =0

2

for every test function ¢eCg (£).

Equation (0.16) is uniformly elliptic and, in consequence, the function
v(x) has rather special properties, and so it is a convenient tool for
a discussion of properties of the Jacobian of a quasiconformal
mapping.

The presented proof of regularity Theorem 8.2 requires several new
ideas. Some lemmas used in the proof and concerning nonlinear partial
differential equations give extensions of earlier results, for example some of
the results of O. A. Ladyzenskaya and N. Uraltseva [13]. The real difficulty
is to prove that the Jacobian J,(x) is bounded. It follows from very strong
versions of the results of A. Elcart-G. Meyers [7] on the L -estimates
(p > n) of first partial derivatives of quasiregular- mappings.

At the begining of the paper we derive some equations of the second
order satisfied by mappings from the class A(G, H) with measurable charac-
teristics. Next we discuss some classes of quasiregular mappings assuming
higher regularity of characteristics, culminating in the case A***(G, H), k
> 1,0 < x < 1, where we prove the inclusion 4***(G, H) c C**'1**(Q).
Also an integral version of Holder’s condition for the first derivatives of a
mapping fe A*(G, H), (0 < a < 1) will be given (see Theorem 4.1 and
Theorem 4.2). '

The author would like to thank to Professor B. Bojarski for many
valuable discussions during the preparation of this paper.
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1. Auxiliary results

Before discussing the regularity theorem, we give a series of fundamental
properties of system (0.8) and its solutions.

Let x,eQ be a differentiability point of a mapping f satisfying system
(0.8) and such that J (x,) # 0. On the basis of the theory of quasiregular
mappings we know that. either the set of such points is dense in Q or f is
constant.

Let fo = f(xo). The tangent map Df(xo): T,,Q — T, ' transforms the
family of ellipsoids:

{€e T, 2; {G(xo, fo) ¢, &> = const}
into the family of ellipsoids '

{neT;,Q'; (H(xo, fo)n,n> = const},
where n = Df(xo)¢. _

ProrosiTION 1.1 System (0.8) can be reduced by linear rransformations of
the variables x and f to the case where G and H are equal to the identity
‘matrix at a given point (xq, fo)ERx L. ‘

The proposition allows to assume (in studying the local behaviour of the

mapping f) without loss of generality that G(x,, fo) = H(x,, f;) = E.
Let us introduce a coefficient -

(L.1) q(x,f) =1G(x, f)—E|+|H(x, f)— E|.

A map f is conformal at a point x, if q(x,, fo) = 0. In general, the coefficient
q(x, f(x)) measures the deviation from conformality of f at the point xe Q.

There is a continuous relation between- sup g(x, f) and the constant K.
. axe -
Moreover, K =1 if and only if q(x, f)=0.

Suppose that the characteristics G and H are continuous matrix-valued
functions on Q2xQ'. In view of Proposition 1.1, the mapping f can be
expressed as a composition of linear maps and a map, whose constant K is
arbitrarily close to 1 in a sufficiently small neighbourhood of a given point
Xq€£2.

According to Theorem 1 we obtain .

THEOREM 1.1. Suppose that the characteristics G and H of f are continuous
on QxQ . Let a be a positive number less than 1. Then for every compact
subset 2° = Q there exists a constant Co(a) such that

(1.2) If(e)=f () < Coo@)Ixy—x,I*  for  x, x,€2°.

A well-known fact of the theory of n-dimensional quasiregular mappings
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with n > 3 states that any non-constant K-quasiregular mapping is a local
homeomorphism if K is sufficiently close to 1. This result is due to O. Martio
[16] and V. M. Goldstein [10]. Now by Proposition 1.1 we observe that any
mapping f with continuous characteristics is either a local homeomorphsm
or a constant map.

This does not exclude that the Jacobian of f can vanish at some points
of Q. Furthermore one can show that the inverse map x = f~!(y) satisfies a
system of the same type as the map f, namely

D*x(y)G(x, y) Dx(y) = J,(»)*"H(x, y).

2. The second order equations

We collect here some partial differential equations which are satisfied by
general solutions of (0.8). In what follows we extend some results of
J. G. ReSetniak [21] on the subject.

We begin from the 2-dimensional case. As is well known, the compo-
nents /' and f2? of a conformal mapping f = (f!,f?) satisfy the Laplace
equation div (grad f'(x)) = 0, ! = 1,2. In general, as we shall show later,
the components /!, f2? of a solution of the Beltrami system satisfy uniformly
elliptic equations

(2.1) div{G '(x)grad f'(x)} =0, [=1,2.

Since actually f = (f!, f?) need not be twice differentiable, we understand
(2.1). as the integral equality

[ <G™'(x) grad f'(x), grad ¢(x)>dx = 0

satisfied by all smooth test functions ¢ with compact support in .

Equations of type (2.1) are particular cases of equations in higher
dimensions, which we are going to derive now. First we recall the following
preparatory lemma (compare Ch. Morrey [17], p. 122 and J. G. ReSet-
niak [21]).

LEMMA 2.1. Suppose that f: Q — R" is of the class W, .(R), where
Q < R". Then, for every constant vector ve R" the following identity holds:

(2.2) div {J;(x) D™ f(x)v} = 0.

We should mention that (2.2) is understood in the distributional sense.

Remark. Let S be a field on 2, and suppose that S is differentiable at
x. The divergence div S(x) of § at x is the vector with the property

(v divS(x)) = div{S*(x)v}



2. The second order equations 15

for every constant vector v, or equivalently

) "0S;;(x)
d S i = _U_‘
[divS(x)] ,; ax,
Identity (2.2) means that

div {J,(x)(D*f)"'(x)} = 0.

Proof. Obviously, it is sufficient to verify the lemma for infinitely
differentiable mappings. Let us observe that the left-hand side of (2.2) is a
polynomial in the variables f} f,,’:ﬁJt , 1<i,j, a,B,y <n, while in the
space of these variables the manifold defined by det(fi) = 0 is nowhere
dense. Therefore, we can assume that the Jacobian J,(x) does not vanish at
the point x to be examined.

In a neighbourhood of x, say D, fis a diffefomorphic mapping. Let ¢ be
any smooth function with compact support contained in the neighbourhood.
We can express ¢ by ¢(x) = ¢(f(x)), where yeCg(f(D)). From the

obvious identity

[ <o, grady(f)ydf = 0

£(D)
by changing variables

[ (v, grady (f(x))) J;(x)dx = 0.
D

On the other hand, one can express the vector function grad y by means of
grad ¢(x) as follows:

grado(x) = D*f(x)grady or grady = (D*f(x))” ' grad o(x).

Introducing this into the last identity, we obtain
Sj; (v, (D' f(x))*grad @ (x)) - J,(x)dx = 0.
Hence
s__[)(J,(x)D".‘f(x)v, grad o (x)>dx = 0.

This is a weak form_of (2.2). The result is proved. If f is a solution of (0.8),
then J,D™'f = JI"~2"G~1(D*f)H, and we see that every column of the
matrix J"~ "G~ (D* f)H is a solenoidal vector field or, in other terms,
that, for every constant vector ve R", f is a weak solution of the quasilinear
second order system

(2.3) div{J,(x)"" "G~ (x, f)D* f(x) H(x, f)v} = 0.
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Fixing any point (x,, f,)€Q2 x Q and choosing v = H !(x,, fo)€', where ¢’ is
the Ith basic vector of R", we  obtain the following equation for the ith
component f' of the map f.

(24) div{J "G Y(x, f)[grad f1(x)+
+D* f(x)(H (x, [)H ' (xo, fo)—E)€']} = 0.

For H = E it reduces to .the case considered by J. G. ReSetniak [21], i.e. for
system (0.11) we have

~

(2.5) div{J{-2"G '(x)grad f'(x)} =0, I=1,2,...,n.
i

Notice that the second term in the parenthesis of (2.4) in a neighbourhood of
(xo, fo) for H(x, f) continuous at (x,, fo) is majorated by a quantity arbi-
trarily sma]l with respect to grad f*(x). This remark will play an important
role in some perturbation arguments in studying the regularity problem of
solutions. The ,,principal term” in (2.4) contains differentials of the compo-
nents f'(x) for i # [, only in the Jacobian J /(x).

We notice, however, that for every index I, the Jacobi determinant J,(x)
can be expressed, up to ,zero order” terms, as a function of grad f*(x).

In fact, if H denotes the (i, [) entry of the inverse matrix H™!, then
system (0.8) implies the relation

(G~ 'grad f'(x), grad fi(x)) = JF"H", i,1=1,2,...,n,

which, for i = I permits to express J, in terms of grad f‘(x). Inserting the
obtained formula for J,(x) into (2.4) we get the equations

. {((G™! grad f' grad f*)
20 av {( H(x, /)
+JfD“f(H"(xo,fo)—H-*(x,f))e’} ~ 0o

(n—2)2
) G™'(x, f) grad f'(x) +

for [ =1,2,..., n,

which is a system with the unknowns f'(x) essentially ,separated” in the
highest order terms. In the case (0.11), ie. H = const G = G(x), this reduces
to the following single equation for every component u = f'(x)

27 div {(G™'gradu, gradu)"~?2G~ ' (x)gradu(x)} = 0.

In particular for the component u = f'(x) of a conformal mapping f, that is
when G(x) = E, we obtain the equation '

(2.8) div {|Vul"~2-Vu} = 0.
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The above two equations can be considered as Euler equations for the
integral functionals

[IPurds  for (28),
and ° .
[ <G~ (x)Pu, Pud”?dx for (2.7).
o

Solutions of a single equation of this type, as for example (2.7) or (2.8), were
investigated from a variety of view points by J. Serrin [24], A. Elcrat and
N. G. Meyers [7], O. A. Ladyzenskaya and N. N. Uraltseva [13], and
others. Although the equations (2.6) or (2.7) are not equivalent to our basic
system (0.8) or (0.11), they yield some properties of quasiregular- mappings.
As it was proved by J. Serrin [24], every solution of equation (2.7) with
measurable coefficients satisfies Holder’s condition. A more general -rcsglt has
been obtained by A. Elcrat and N. G. Meyers [7], who proved that there
exists a number p > n such that solutions of (2.7) belong to the Sobolev
space W,l1,0(€).

The regularity problem for a single equation of type (2.8) has been
investigated by N. N. Uraltseva and O. A. LadyzenEkaya in [13].. Unfor-
tunately, it is not clear how to extend their proofs to degenerated elliptic
systems of type (2.6).

In the next sections we shall give complete proofs of regularity of the
generalized solutions f = f(x) of system (2.6). In the process we shall have to
use some additional properties of the map f, which result from the general
theory of quasiconformal mappings. Therefore we shall prove only the
regularity of f satisfying our basic system (0.8). For this purpose we now
rewrite system (2.4) in a more suitable form. First we observe that the
function J,(x)*" can be expressed as a homogeneous quadratic polynomial
with respect to the variables Df. From (0.8) we get

Tr(D* fH(x, f) Df)
TrG(x, f) '

Let us suppose for a moment that the former system (0.8) is sufficiently close
to the system for conformal mappings, i.e. that the number supgq(x, f) is
sufficiently small. The matrices G(x, f) and H(x, f) are of the form

(29) G(x’f) = E+g(x)f) and H(x’f) = E+h(x,f),
where

. Jf (X)Z/" =

g, N +1hGx, N < alx, ).

Inserting the resulting formula for J,(x) into (2.4) and then using relations
(2.9), we obtain a system of the following general form:

(2.10)  div {|Df}*"2 grad f‘(?«u‘,({, £,Df)} =0, 1=1,2,..,n
8

’)
X4
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The vectors a'(x, f, Df), | =1, 2,...,n, may be interpreted as a pertur-
bation of the system

(2.11) div{|Df|" %gradf'(x)} =0, I=1,2,...,n,

which appears in the case of conformal mappings, i.e. when G = H = E.
The vector-functions a'(x, f, &/) are positively homogeneous of order
n—1 with respect to & eR™, ie.

a(x,f,ted) = t" tal(x,f, ) for t
and they satisfy the inequalities

@' (x, f, &) <const q(x, f)l.«|""*,

v

0,

(2.12)
dd'(x, f, )

S n—z.
3t const g(x, f)||

L

Moreover, the vector functions da'(x,f, o) belong to the same class of
smoothness with respect to the variables (x, f) as the characteristics G(x, f),
and H(x, f), and they are infinitely smooth on the unit sphere with respect
to the variables o&/eS" 1.

If the characteristics G and H are continuous, then the coefficient q(x, f)
may by arbitrarily small if we consider system (2.10) in a sufficiently
small neighbourhood of the point (x,,f)eQxQ’, where G(x,,fo)
= H(x,, fo) = E. Correct boundary value problems do not exist for the
overdetermined system (0.8). They are specific for the second order system of
type (2.10). As a confirmation of this hypothesis we prove the following
proposition: .

ProOPOSITION 2.1. Suppose that the vector functions f and g are of the class
W} (Q) and f—ge W(R) (W(Q) is the closure of CF(Q) in W(R)).

Suppose also that f and g satisfy the systems
: div{|Df|""*grad f' () +d'(x, Df)} = 0,

(l) div{|Dg|"~ 2grad g'(x)+a'(x, Dg)} = 0.

Here we assume that the vector-functions a'(x, /) are ,positivzely homogeneous

of order n—1 and of the class C! with respect to </ €R" . Moreover, we

assume that

da'(x, /)

If € is sufficiently small, then f = g.
Proof. It is easy to see that the functions

' (x, d)|+' 1| < el

IDfI"2grad f'(x)+a'(x, Df) and  |Dgl" *gradg'(x)+d'(x, Dg)



2. The second order equations 19

belong to the space L,,-1)uc(R). Since ¢@(x) = f(x)—g(x)e W,,’ (£2) and.
1/n+(n—1)/n = 1, the weak form of (i) may be written as the following
system of integral identities:

| <IDfI""*grad f'(x)+a'(x, Df), grad ¢'(x)> dx = 0,
Q

J (1Dgl" * gradg'(x)+a'(x, D), grad '(x)) dx = 0.
Q2 .

Summing with respect to the index ! = 1, 2, ..., n and subtracting both
integrals, we get

!)(IDfl"‘ZDf—ngl"‘zDg, Df—Dg) dx
= i {a(x, Dg)—a(x, Df), Df—Dg) dx.

' . [a*(x, )
Here a(x, &) denotes the matrix |- P . We have used the symbol

(A, B for the scalar product of matrices, ie <(F,%B)
~
To the first integral of the last equality we apply the following lemma:
LemMMa 2.1. The inequality
(2.13) (A" 2k —|BI" 2B, A —B) 2 (A" > +|BI""?) |4 — B

holds (n = 2).
Proof This follows from the fact that

(11"~ —|BI"~ %) (|#|* — |8 = 0
The difference a(x, Dg)—a(x, Df) can be estimated in the following way:

la(x, Dg)—a(x, Df) = U‘% a(x, tDf +(1—1) Dg)dr
0

da’ (x .2)
< |Df—Dyg| ’dr
Z o,

0

1
< const -¢|Df—Dg| | [z|Df]+(1 —1)| Dg|]" 2dz
0

< const&(|Df|" 2 +|Dgl"~ %) |Df—Dg| .
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Finally we obtain the inequality
| (1 —conste)(IDf|" 2 +|Dg|"~ %) |Df— Dg|*dx < 0.
o

The number (1 —const-¢) is positive if we assume ¢ to be sufficiently small.
Hence Df = Dg almost everywhere in @, that is, f = g. The result follows.

3. Some properties of Sobolev and Besov spaces

In this section we list the fundamental properties of functions from
Sobolev and Besov spaces, which we shall need Iater.

Let f be a function of the space L,(R"), 1 < p < . Let us put w,(h)
= |If(x+HB)—f(0l, for heR". .

LemMa 3.1. The function f belongs to the Sobolev space W' (R"), 1 < p
< o, iff fe L,(R") and w,(h) = O(h|]). The norm

ILf (x+h)—f (Xl
|A|
is equivalent to the standard norm of the space W‘,1 (R").
For the proof see [25].

Remark. It is easy to formulate corresponding results for an arbitrary
domain Q < R". We leave their formulation and proof to the reader.

LEMMA 3.2 (Sobc‘)lev’s embedding lemma, see [13]). Assume n > 2,-
1 < p < 2n/(n—2), uc W} (Q); then the following inequality holds :
2(n—1)
n—2

3.1 /1, +sup
h#0

(3:2) ”“”Lp(m < (mes Q,)'/7* /"~ 1/2||grad Ul

where

Qo = {xeQ; u(x) # 0}.
In particular, we get Wyl () © Ljp(n- 2).10c (82).
Lemma (3.2) can be extended to the case of Besov spaces.
DEerFINITiION 3.1, Assume that 0 < @ <1, 1 < p < oo. We define
a norm on the Besov space Bj(R") by the formula

1LfGx+h) —f(x)Il,
||? '

= [} fll,+su
I/lgy = 111+ sup

A function f is said to be of class B5(R") iff the norm ||f || o 1s finite.
(‘]
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LEMMA 3.3 (embedding lemma of Besov—Nikolski [25]). The inclusion
By (R) = BgZ(R") holds if
6,26,>0, 1<p <p,<oo, 6 -n/p =808,-n/p,.
Now we summarize Lemmata 3.2 and 3.3 as follows:
LeMMA'34. Let Q be an open subset of R", n > 2, fe L,(Q) and assume
that the inequality

3.3)

dx < C,o

J e+ h)=f (x)]2
: |h|20

00
is satisfied for every compact subset Q° < Q and each sufficiently small non-
zero vector heR". (We say that feB2'™(R).)
If 0<@ <1, then feL,c(R) for every pe[2,2+460/(n—26)); if
0 = 1, then f€Ljyn-2y0 (Q).
Proof. The case § = 1 is a simple consequence of Sobolev’s embedding
lemma. To prove the case 0 < 8 <1 we consider the function n(x)

= @(x)f(x), where ¢ is an arbitrary smooth function with compact support
contained in Q. Clearly ne L,(R") and the following inequality holds:

j 7 G+ B — ()2
IhIZB

sup

dx < o0,
h#£0
R? '

that is, 7€ B2(R"). By the lemma of Besov and Nikolski, we can write
neBy(R") for every # <0 and 0-n/2 =0-n/p, ie. for p=2+
+4(0—-0)/(n—2(60—0)). In particular, we have neL,(R"). Since ¢ was
chosen arbitrarily, fe L, ,.(€2). Finally, when &' runs over the interval (0, ),
p runs over (2, 46/(n—26)). This ends the proof of the lemma.

4. Classes A*(G, H), 0 < o < 1

Assume that for some 0 < « < 1 the characteristics G(x,f) and
H(x, f) (in a product domain Qx£) satisfy the Holder condition with
exponent a. In the study of local behaviour of the solution f(x) we may
assume, without loss of generality, that G(x,, fo) = H(xe,f0) = E (fo
= f(xo)) for a given point x,eQ. Equations (2.10) are satisfied in some
neighbourhood of x,. In this case the vector functions a'(x, f, .«¢) satisfy the
inequality .

41)  ld'(x,f, L)—d'(y, g, H) < const(x—y[*+|f—g/)|LI""*.
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We fix an arbitrary but sufficiently small non-zero vector he R*. Then the
vector function g(x) = f(x+ h) defined in a neighbourhood of x, satisfies the
equations

(42) div{|Dg|" 2gradg'(x)+b'(x,g9,Dg9)} =0, I=1,2,...,n,
where b'(x, g, Dg) = a'(x+h, g, Dg). This is obtained from equation (2.10)

by a translation of the argument x by h. Substracting the weak forms of
equations (2.10) and (4.2), we get the equality

| IDfI""2Ff'~|Dg""Vg', Vy'>dx = [ <b'-d', Vn')dx,
Q ' Q2

which is satisfied for every test function n'e W,!(Q) with sufficiently small
support, containing X, in its interior. Here V denotes the gradient operation.

Putting n'(x) = ¢"(x)(f'(x)—g'(x)), where peCg (), ¢ > 0, into the
last equality, we obtain

43) [ o"DfI"2Vf'—|Dg|"" Vg, Vf'—Vg'ydx
2
< const { 0" Vol |Df 1"~ 2 ¥f'~|Dgl"~ 2 Pa'ltf'—g'ldx+
0
+const [ @" "1 |Pg| - |b'—d|- | f'—g'|dx+
2 :

+const [ ¢"- [b'—d!| - |Vf'—Vg'|dx.
2

We sum over | both sides of (4.3). In the sequel we do not write the symbol
of summation if the indices are repeated. We will use an easy lemma.

LEmMA 4.1. The inequality

(4.4) IDfI"~2¥f'~|Dg|"~*¥g'| < C,(DfI""*+|Dg|"~?)| Df—Dg|

holds with some constant C, depending only on dimension n.
From (4.3), (44) and (2.13) we get

4.5 4§ o"(DfI""2+|Dg|"~ ?)|Df— Dg|* dx
9]
< const | ¢"" 1|V o|(IDf|"” 2+ |Dg|"~?)|Df - Dg| | f— gl dx +
0
+const | ¢"|b'—a'||Vf'—Vg'ldx+
]

+const | ¢" 1 |Ve||b'—d||f'—g'ldx.
2
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Now it remains to estimate the difference b'—a'. For this purpose we apply
property (2.12) and assumption (4.1). We conclude that

b'—a'| < |a'(x+h, g, Dg)—d'(x, f, Dg)l +|a'(x, [, Dg)—d'(x, f, Df)
< const (|h*+|f—gI*) |Dg|"~* +
+const-q(x, f) (Df|"~2+{Dg|"~?) |Df — Dy .
Putting this into (4.5), we can write '
4.6) | @"(Df1""2+|Dg|"" ) |Df — Dg|*dx < const (I, +1,+I3+1,+1s),
2

where
"' \Wol (Df1""2+|Dgl"~*) |Df—Dg| | f—g| dx,

I = I @
2
I, = | ¢"(h*+|f—gl*) IDg|"~ ' |Df— Dyl dx,
2
Iy = | @" ' Vol |f—gl (IDfI"" 2 +|Dg|""?) IDf - Dgl q(x, f) dx,
2
I, = [ " Vol |f—gl (h*+|f—gI") |Dg|"™ ! dx,
2
Is = [ 9"(DfI""*+1Dg|"~?) |Df — Dg|* q(x, f)dx.
2
We estimate the first three integrals by using the elementary inequality

1
ab < ga’?+— b?
4-¢

for every ¢ > 0. The number ¢ will be chosen later. To the integral I, we
apply the inequality ab < a®>+b? The integral I, is left unchanged:

I, < ¢ ¢"(Df1"" % +|Dg|"" ?) |Df — Dg|* dx +
n
1 R ) ,,_
+5I<p" 2[Vel|* (IDf1"~%+|Dg|"" 2) | T—gl* dx,
0
I, < & [ ¢"(IDfI"" 2+|Dg|"" %) IDf — Dg|* dx
Q
1
+2- | 0"1Dgl" (hF+11—gl") dx,
£ o
I, < ¢ | ¢"(Df|" %+|Dg|""?) |Df — Dg|* dx +
) .
1 . . e
+E [o" 2IVol2q*(x, f) (D"~ 2+|Dg|"~ %) | f—g|* dx,
) .
I, < [ @" 2 |Vol*(IDf|" 2+|Dg|"" %) | f—g|* dx+
: (9]

+[ ¢"IDgl" (1" +1f~gl") dx.
Q
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Hence
L+ +I+1,+]1,
< | (Be+q(x, f)) o"(IDf|" % +|Dg|""?) |Df— Dg|* dx +
2

+C, [ 0" *[Vol*(IDf|"" 2 +|Dgi""?) | f—gl*dx +
Q

+C, [ ¢"|Dgl"(H* +1f—gl)* dx.
Q

If we choose ¢ sufficiently small, then the coefficient 3¢+gq(x,f) which
appears in the first integral will be arbitrarily small in a sufficiently small
neighbourhood of (xq, fo) €2 x Q'. Instead of restricting our considerations to
some neighbourhood of x, it is better to assume that the support of ¢(x) is
small.

Now inequality (4.6) implies

@47) [ @"(DfI""2+|Dg""?) | Df - Dg|? dx
N
< const | @" 2 |Vo|? (Df|" 2+|Dg|""?) | f—gl?dx+
N

+const | ¢" |Dg|" (h*+|f—gI*)* dx.
2

Let 6 be an arbitrary number belonging to the interval (0, @). We divide
both sides of (4.7) by |h|*’. The quotient | f—g|*/|h|° is uniformly bounded (see
Theorem 1.1). Therefore we obtain the inequality
|Df (x+ h)— Df (x)}>
Ihlze
< const (¢, 2, 6, |IDf]|, bcm) ,

dx

@8) Jcp"(x)(|Df(x)l""+|Df(x+h)|"‘2)

Q

which is satisfied for every smooth function ¢ > 0 with sufficiently small
support containing the point x, in its interior and for any sufficiently small
non-zero vector heR". From inequality (4.8) one can obtain some mfor-
mation about Df.

Let @ = @(«/): R” — R be an arbitrary positively homogeneous form
of degree v > 1, ie. (1) = t*d () for t > 0, of class C}(S™!) (when
restricted to the wunit sphere). We consider the function u(x)
= &(Df(x)). The difference p(x+h)—p(x) may be estimated as follows:

49)  |u(x+h)—p(x)
1

J% ®(tDf (x +h)+(1 —1) Df (x))dx

0

N
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1

< |Df (x+h)—Df (x)|

< const |Df (x + h)— Df (x)| j [tDf (x+h)+(1—1) Df (x)|* ' dz
: )

< const (|Df (x+h) +|Df (X))~ " |Df (x+ h)—Df (x)|.

Here we have used the inequality

< const ||,

adu

which automatically follows from the conditions imposed on &. Let us
consider the case v = n/2. We have

| (x+ h)— p(x)|?

R
Q
2
< const f¢"(x)(|bf<x+h)|"-2+|Df(x)|"'2) e

(9]
< const (¢, Q, 93 IlDflleloc(Q))'

Since 6 can be chosen arbitrarily close to «, Lemma 3.4 gives u € L, . () for
2 € q < 24+4a/(n—2x). In particular, setting u(x) = [Df(x)"? or u(x)
J;(x), we obtain the following result:

THEOREM 4.1. Every mapping fe A*(G, H), 0 < a < 1, belongs to the
space W,!..(Q) for every n <p < n?/(n—2a).The square root of the Jacobian

VJs(x) belongs to the Besov space B%"°(Q) for every 0 < 0 < a.

Remark. The existence of a number p > n such that fe W) () was
known earlier for every quasiregular mapping f with a characteristic not
neccessary continuous. This result is due to B. Bojarski [3] for a two-
dimensional mapping, F. W. Gehring [9] and A. Elcrat, G. Meyers [7] in
higher dimensions. Unfortunately, their methods do not allow us to obtain
the exact value p = p(K, n) as a function of the dilatation K and the
dimension n. From the Sobolev embedding theorem we get the estimate

n 1

" p(K, n S gt

because, as is well known, the number 1/K"~! coincides with the Holder
exponent for K-quasiconformal mappings. Some examples permit us to
expect that 1 —n/p(K, n) = 1/K"~ 1. If this were true, then the number p in
Theorem 4.1 could be chosen arbitrarily. Fortunately, we do not need this
_hypotbhesis: the inequality for p in the theorem is sufficient for our purpose.
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The following theorem gives a little more information about the Jacobian
J ().

Tueorem 4.2. If fe A*(G, H), 0 < a < 1, then the Jacobian J;(x) and
all homogeneous n-forms of Df belong to the Besov space By (2) for
every 0 <0 <aand 1 <s < n/(n—a). This means that

lhlso

dx < C,,

Q0

for sufficiently small he R"\{0}, where Q° is an arbitrary compact subset of
Q and C, is a constant independent of h.

Proof. Inequality (49) for v = n takes the form
| (x+h)—p(x) < const(IDf (x +h) +|Df (x))" " 1Df (x +h)— Df (x)|.
Let u denote the Jacobian J,(x). Then
lu(x+h)— p(x)f
< const {(IDf (x + h)| +|Df(x)}) ™~ /2 |Df (x + h)— Df (x)|}*
x {(IDf (e + )l + | Df ()2

We divide both sides of the above inequality by |h|® .Next we use Young’s
inequality 5

—S |b|2/2—s.

S
b < - 2/s
a 3 |al*” + 5

Finally we get

[ (x+h)— pu(x)

@4.11) T

< const(IDf (x + )| +|Df ()72 +

-2 |Df (x+h)— Df (x)|?
Ihlzo

Since s < n/(n—a), we have ns/(2—s) < n?/(n—2x) and according to The-

orem 4.1 the function (IDf(x+h)+|Df(x)*/®~9 is integrable on Q° c Q.

Integrating both sides of inequality (4.11) over the compact subset 2° c Q

we obtain our theorem.

+const (|Df (x + h)| +|Df (x)|

5. The case of Lipschitz characteristics

In this section we study the case where a = 1. We shall first show that
(4.8) also holds for 6 = 1. For this purpose let us observe that Theorem 4.1
implies f € W (R) for every n < p < n*/(n—2) = n+2+4/(n—2). In other
words, if the characteristics of f are Lipschitz continuous, then

(5.1) few, 210c(€2).
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The estimation (4.8) for 6 = 1 cannot be obtained by using the same
arguments, because the quotient |f—g|/|h| is not known to be bounded yet.
We shall use another approach to the problem. Dividing both sides of (4.7)
by |h|?,we easily obtain the inequality

IDf(x + k) — Df (x)|*

T dx

fw"(lDf(x +h)|"" 2+ |Df (x)|*~ 2).

I/ (x+B—f)?

TE dx+

< const j "7l (IDf (x+ k™2 +|Df ()~

Q

+ const f¢"|Df(x+h)|" (1 +

Q

| f e +h)—f ()] \?
TE ) dx.

Now we use Young’s inequalities

n—2

2 n -2
ab < — g~ P+=|b"*; ab < —
n n

an/(n+2)+ b(n+2)/2.
n+2l | n+2I |

We obtain an upper bound of the right side terms by the following integrals:

const er"lprI (lbf(x+h)i"+wf(x)|"+

2

Lf(x+h)—f(x)"
" ) dx

and

- e - n+2
const J(pn (l+|Df(x+h)'n+2+|f(x+|"l’l)|”+_c(x)l )dx

(7]

As we know, fe W, ;,.(2); then, by Lemma 3.1, we get

|Df (x + b)—-Df (x)|?
|t

(5.2) fw"(X) (IDf(x+hI"™ 2 +|Df (x)|"~?) dx

2
< const (‘P ,'99 ”Df“L,,+ Z,bc(n)).

Now we prove the following preparatory lemma, analogous to Theorem 4.2:

LEMMA 5.1. Let & (x,f, ): Qx xR > R be a positivelg homo-
geneous form of degree v, n/2 < v < n+1, with respect to o/ € R" and of
class Lipsch (2 x Q' x R"z). Then the function p(x)= ®(x, f(x), Df(x)) belongs
10 Wi 2300+ 1)10c (Q) for every f with Lipschitz continuous characteristics.
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Proof. By the Rademacher-Stepanov theorem, @ is differentiable al-
most everywhere [23]. We first write

1
d
ux+h—p(al = ‘ J = B(ex+(1 =D (x+h), F(x)+
0

+(1=1)f (x+h), ©Df (x)+(1 —7) Df (x+ h)) dx|.

The obvious estimates |D,®(x,f, o) +|D; P (x, f, ) < const |«/|" and
"IDy®(x, f, )| < const|Z|""! give

Ju(x-+h)—w(x) < const [ (1D, @1JHl+
0
+1D; @1 fx+ )= (0} +D,, @] IDf (x+ b) — Df (x)]} d

< const j' {ItDf (xX)+ (1 —7) Df (x+h)* (bl +|f (x + B)—f (x)])} d +
0

+4-const } |tDf (x)+(1 —7) Df (x+ h)|*~ *|Df (x + h)— Df (x)| d .
0

It is easy to see that the last inequality implies

| (x + h) — p(x)|
|h|

< const (IDf (x)| +IDf (x+ h)|)“(1 AR ') (x)l) N

|l

v-1 1Pf (x+B)—Df (x)|

+const (|Df (x)| +|Df (x + h)|) Al

To estimate the first term we apply the inequality

v 1
ab S lal(v+l)/v+ Iblv+1
v+1 v+1

and for the second one the inequality

n+2 2v—n
ab < ——|q|3vt2/0+2) p|(2v+22v=—n
= 2v+2' | 2v+2I |

Before using that we decompose the factor (IDf (x+h)|+|Df (x)|)*~* by the
factors (1Df (x) +1Df (x+h)|)"~2'? and (|Df (x)| +IDf (x+ h))**~™/2. This im-
mediately leads to

(x+h)— p(x)

m < const (|Df (x+ ) +|Df (x)))"* 1 +

+|f(x+h)—f(x)l)”“+

+const| 1
( hl



5. The case of Lipschitz characteristics 29

~

+const {(lDf(x)| +|Df (x+ h)l)(Zv—n)ll}(2v+2)/(2v—n) "

z)/lef(x"‘h) Df (x)| }‘2""'2)/(“ 2)
Al

+const {(|Df ()| +1Df (x+ h)l)""

or equivalently

(I# (x+h)—p(x) )‘”'2” v+
||

< const (|Df (x)| +|Df (x+h)l)'* 2+

_ n+2
|f(x+h) f(x)l> +

+const| 1+
( A}

|Df (x+h)—Df (x)|*
|hj? '

+const(|Df ("~ 2 +|Df (x + k)™~ ?)

In view of (5.1), (5.2) and Lemma 3.1 we conclude that all terms of the right
side are integrable on Q° = Q. Thus the lemma is proved.

CoroLLary 5.1. Let f be a mapping with characteristics satisfying the
Lipschitz condition. Then

|Df|"+1 € Wll,loc(Q)’ ‘If(x) € mll+2/n+1.bc(g)’

IDFI"2,  JJr(x) € Waooe(R), Ty fx; € Wi ().

This means that distributional derivatives of the above functions are locally
integrable with exponents 1, 1+1/(n+1), 2, and 1, respectively.

Remark. Actually, as we shall prove in the following the mapping f
with Lipschitz characteristics belongs to the space W} . (€2). Some other
properties of f will also be given.

6. Existence of second partial derivatives
and its consequences

In what follows we assume that the characteristics of f satisfy the
Lipschitz condition.
By Corollary 5.1 one can obtain the following differentiability properties

of f.
LeMMA 6.1. There exist functions f}(x), ,j = 1, 2, ..., n, which coincide
with fo(X) almost everywhere in Q and are such that the partial derivatives
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fiby = 4O
everywhere for Lk,j=1,2,...,n

Proof. Using the fundamental properties of Sobolev spaces, one can
construct a representative f}'(x) of the function fx'j (x) as follows:

Let J fixi be a representative of the class of function J,(x) which has
all first order partial derivatives almost everywhere in Q. This is possible by
Corollary 5.1 (see Ch. Morr ’_LP7] Theorem 3.1.8). Also by Corollary 5.1
there exists a representative J, f, of the class of function J,(x) f,’l (x) (it may
be considered as an (n+ 1)-homogeneous form of Df) admitting differen-
tiation in the classical sense almost everywhere in Q.

On the other hand, we know that the Jacobian J,(x) does not vanish
almost everywhere if f is a non-constant quasiregular mapping. Setting

r———r’
(6.1) )= ——. Lj=1,2,...,n,
. Jf(x)
we observe that the function f] has first order partial derivatives almost
everywhere in Q.
Unfortunately, we are not able at present to say much about functions

5f; (x)

Xk

exist for almost all x € Q. Moreover, fi(x) = f;(x) almost

S () =

Until get some further information about the second order partial derivatives
fik(x), we must use them with great caution.

Let ¢ be an infinitely smooth function with compact support contained
m Q. Let us consider the function J; [¢f"] x;, which, by Lemma 5.1, is an
element of the space W (). Therefore the mtegral

. Ur oS (0]} dx
Xk

Q
is equal to zero. Hence we obtain

(62 0= [ U (@ edrt [ I 1@ Ne]edx = [ U@y, dx+
.02 Q Q2

+ JJf-<pf,idx+‘§1f[¢,,,.+¢x,-fi.+¢,k-f£,]dx-

The last integral is symmetric with respect to indices j and k. By
an approximation method we now prove that the first integral on the right
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side does not change under permutation of j and k. For this purpose
we observe that J;€ Wk, )+ 1110 () (see Corollary (5.1) and ¢f'e W, ,(Q)
(compare with formula (5.1)).

Let (J,(x)) be a sequence of smooth functions converging to J,(x) in the
space W, 2 m+2100c(€), and let (u,(x)) be a sequence of smooth functions
with compact support converging to ¢f' in the space WL ,(£). Since
m+1)/n+2)+1/(n+2) =1,

{!‘(Jf)xk((f)f‘)xj dx = llm _"(‘]n)xk (un)x_'- dX

n—ao

= bm [ (o) @y, dx = T U));(@f )5, dx.
Q Q

Now from (5.2) interchanging the indices j and k, we obtain
!j)an,[j}i—ﬁ"j]dx = 0.

Hence, as J,(x) # 0 a.e. and ¢(x) has been chosen arbitrarily, we conclude
that fi(x) = fuj(x) almost everywhere in Q. This completes the proof.

Now we shall derive other second order equations for the mapping f,
which will be more suitable for the study of the regularity problem.

According to the theorem of Rademacher-Stepanov [23], the coeflicients
of system (0.8), when they satisfy the Lipschitz condition, are differentiable
almost everywhere. Moreover, their derivatives are bounded almost every-
where by the Lipschitz constant. We start with the system

(6.3) D*f(x)H(x, ) Df(x) = IDf (x> G(x,f),
where
- Tr(D*fHDY)
IDf(1? = ———

or equivalently

(6.4) Df(x)G™(x,f)D*f(x) = IDf (N> H™ ' (x, f).
In tensor notation this reads

(6.3) ffHu ff = DI Gy,

(6.4Y LG = DA 1* HY. .

Differentiating (6.3) with respect to x,, we get

a(1Df 1I* Gy
ox,

o0H,

= feHa i+ P Ha i+ RS 57
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Analogously we get the other equations by the permutation of i,j,r
Summing up, we obtain

a(llDfllzG.,) o(IDf1I* Gi) _ d(IDf 1IG,)
ox, Ox; ox;

oH
= YFHa [+ S SIS

aH,,k . OH,,
o, P

1

Now we multiply both sides of the above equation by {G“f'. From (6.4) we
deduce that

Gf'f* = IDfI’H* and G"f'ffHy = [IDfII*é:,

hence

(6.5)

1f’G" [3(||Df||2 .,) a(IDf 11> G,,) a(||Df||2Gr,)]
27" 0x . 0x; 0x

0H 0H
= ||D 2 sk sk sk
|Df| (f,,+ fr a0 g ax)

G RIS
A chain rule of differential calculus leads to the following formulae:
(6.6)  21IDf 11 £5(x)
= (1D1%), £§ )+ DA f () = (IDA 112, G" G, S +

+|IDfII? G* [(Gij)s, +(Gi) 5, — (G 1S +

HIDAI2 G [(Giy) oS+ (Gi) S = (G S 1A +

+IIDf 1> H! (Hg)., ff + IIDf1I? H* (H)e S — G (Ho) S S +

+IIDA 112 [H (Ho) oS + HY (o) o S — H* (Ha) o £ £
According tq formula (2.9) we can express ||Df]|? as follows:
e = AT dse DAY,

ﬂﬂ

where the coefficients aj;(x, f) are of the same class of smoothness as the
characteristics G(x, f) and H(x,f) of the map f. Moreover, we have
aly(xo, fo) = 0. Inserting this into (6.6), we obtain a system of n* linearly
independent equations (in a neighbourhood of (x,, fo)) with unknowns f;(x).

67)  IDAII* =
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Hence one can easily derive
(6.8) DfIf; = IDfIx,f:i’+IDfIxjfr’_lDfIx,f;léi'*'lDfl R,;(x, f, Df, V|Df)).
Here the remainder term &),(x, f, Df, V|Df|) satisfies the following in-
equality: '
(69) |%;(x,f, Df, |DfI,)

< C(Lip. const. of G, H)(Df|+1Df1*+4q(x, f)|Df1)..

The symbol |Df|, denotes grad |Df|. This new notation is more suitable for
further notations.
Finally we present the following lemma.

LeEmMMA 6.2. Let f be a map with characteristics satisfying the Lipschitz
condition. Then almost everywhere

(6.10) | £ ()l < const (Df (x) +|Df () + |IDf (x}s|)-

The equations

(6.11)  div {|Df|"" 2 grad f'} = %y (x, f, Df, IDf1,)|DfI""2,
l=1,2,...,n,

hold almost everywhere in some neighbourhood of x,e€Q.

Proof. Estimate (6.10) is obvious. We transform the left side of (6.11)
using (6.8).

div {|Df|"~ 2 grad f*}
0
= =—(DfI""* ) = IDfI"" 2 fi+(n=2) |IDf1""* |Df |, f¢
= 1DfI"* {IDf 1+, £ +1Df 15, S —nDf1s, £+ Ris(x, f, Df, \Df 1) IDf 1} +

_ n—-3 !
= %% (x, f, Df, IDf1,)|Df|"~2. M 'Df""‘ﬁ

Remark. System (6.11) can be deduced from equations (2.10), but it
requires some information about the vector-functions d'(x, f, Df).

7. Local boundedness of the Jacobian

We continue the study of the case where the characteristics G(x, f) and
H(x, f) satisfy the Lipschitz condition. We first recall some basic facts about
the Sobolev class necessary to prove the local boundedness of the Jacobian

Je(x).
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DEeFINITION 7.1. Let u(x) be a function of the Sobolev space W, (£2), and
let A be a real parameter. Put 4, = {xeQ; u(x) > A}. The function

u*(x) = max {u(x)—4; 0}

will be called a truncation of u(x). The following lemma is well known in the
theory of Sobolev spaces (see Ch. Morrey [17]).

LemMA 7.1. The truncation u*(x) of the function ue W3 (Q) belongs to the
space W3 (). Moreover, grad u*(x) = grad u(x) for almost all xe A, and -
grad u*(x) = O for almost all xe Q\A,;.

We shall use a version of a lemma of Ladyzenskaya—Uraltseva [13]. The
proof will imitate and at the same time simplify their own arguments.

The main theorem of this section is as follows:

THEOREM 7.1. Let f be a non-constant quasiregular mapping with the
Lipschitz continuous characteristics G(x, f) and H(x, f). Then its Jacobian
J(x) satisfies the inequality

(7.1) Coo < J;(x) < Cppo

almost everywhere in Q° for every compact subset Q° = Q, and some positive
constant C .

LeEMMA 7.2. Suppose that the function ue W3, (), u = 0 satisfies the
integral inequality
(72) [ IVul*{*dx < const | (u—2A)*|V{|*dx+const | u®**"[?dx

A; A, Ai.

with any parameter A > 1 and for all smooth functions { with compact support
contained in Q. Then uelL, .. (Q).

Proof of the lemma. Let x,eQ. Consider the ball B(x,, 2R) = B,
with the radius 2R such that

(l) '”u”"Zn(n—Z)(B()) < 1.

(i) mesB, < 1, B; = B(xo, R+R/2) =« By, j=10,1,2,...

(iii) For {eCj (B,) inequality (7.2) holds.

We shall show that u is bounded in Bz = B(0, R).” Indeed, consider
smooth functions {; satisfying the following properties.

(iv) {;eCy(B) G =10,1,2,..), 0'< {j(x) < 1.

(v) {;(x) = 1, for xeB;,, < B;.

(vi) [V{;(x)] < const-2/, with some constant depending upon R and
dimension n, the existence of {; being obvious.

We shall utilize (7.2) with {; and
Ao

b= 2he=35 J=0.1,..,
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where A, = 1 will be chosen later. It is easy to see that 24, > Aj' = Ao and
A’j+l_}'j = 10/2j+l .
Consider the following number sequence

I; = ““—1,'“1.2,,,‘,,_ 2/(4jnBj) < ““"Lz,,,(,,_z,(non <1, j=0,1,2,..
where 4; = A, = {xeQ; u(x) > A;}. Since {;(u—4;.,)e W3 (B;), by the
Sobolev embcddmg Lemma 3.2 we get

Ij+l = IICj(u_;Lj+l)”l..z,l/(,,_z,(/lj,'.lnﬂj+1l

< ||Cj(“—'1j+ l)“Lz,,/(,, — 244 1nBj)

2(n—-
< n— ”V(u )'J+|)C_,”'Z(Al+lﬁnj’

2(n 2(n—1)
“( J+ l) VC]III,z(Aj+ lr‘Bj)+T_-5_ * ”A-J . Vulle(Aj+ l"‘"j’ .

For the second term we use estimate (7.2), getting

2
Ly < comst - =454 ) VL liyay, oy Hoonst ( f  wPTHMER)UE
Now, observe that

|(u—)~j+ 1) VCj' < |(“")~j) VC_,'| +I('1j_)“j+ ) VC}'

< const- 2/ |u— 2, +const 4y,
u2+4/n — uZn/(n~2).“—8/n(n~2) < (u—i,-+,1,-)2""”‘2’ /16 8/n(n—2)

< const (u— A4, D 458D 4 const - AZT if u> 4> 4.
The above inequalities lead to the following estimate:
1,4, < const-2 u— A Ly(dj4 By +CONSE Ao(mes A;, N B)'2+

+const g~ 4" 2)( [ (u—ayre-m)zy

+10
1+2/ A 1/2
+const Ag*%/"- (mesA+1n B)'2.

By the Holder inequality we get
”u_)‘j”l.z(Aj.,,lr\Bj) < ||“*Aj||;2"/(n_z,(4j+lnsj)(meSAjH A B)'"
< I;(mes A;, N B)'".
Since A, < (40)' %", we have _ ‘
I;,, < constl;(mes A;,, N B)'"+const(dp)”#/™"=2. [(»=2 4

+const (Ao)' * /" (mes A;., N B)">.
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To estimate the measure of A;,, N B; we proceed as follows

IJ > ”u_)‘j"l‘z,‘/("_ 2)(Aj+ lth) > "lj'i' 1 —Aj”"'zn/(l!'- 2)(Aj+ 10 Bj)

Ao
— (n—2)/2n
= 2jﬂ(rnesAmeB,) ,
thus

mes (A4;,, N Bj) < 227U+ =2 (3 )= 2n/n=2) [2nlln=2)

Finally we obtain

1,41 < const Ay 2"~ 920+ Ditn=2) l;(u-Z) + const (dg) ¥/~ 2 ’;/(n— 24
+const 270+ Dn=2)(] )= 4/n(n=2) [itn=2)
const 27U+ D/(n=2) 3 ~4/n(n=2) [itn=2)

<
< const 8/ 1 (1) #/mn=2) pin=2),

Now choose 4, sufficiently large so that

Ij+1 < 81""'];"'("_2).

It is easy to see that
gin— 2+ ”Ij+1 < 8(n-2)(j+1)8—jn(8(n—2)j1j)nl(n-2)

= 8772 (8(n- 2)]Ij)n/(n— 2) :

thus by induction one gets 8~ 2/, < 1 (I, < 1). Hence I; tends to zero as
j = o©. We have

“u_loul.z,,/("_z’(:‘onﬂk) < IlqujIILzul(n_ 1)("_'1'”31') = IJ d 0’

so that the measure of 4oN By = {x€Bg; u(x) > 4y} is zero. In other
words, u(x) < A, almost everywhere in B(x,, R). This completes the proof
of the lemma.

Before we start to prove Theorem 7.1.let us make a few remarks. First
we observe that the boundedness from below of the Jacobian is a simple
consequence of the boundedness from above by considering the inverse map
x = f~!(y), which satisfies an equation of the same type as the map f
= f(x). Furthermore, we can consider, without loss of generality, the domain
Q°, sufficiently small, which is a neighbourhood of an arbitrary point of Q,
say X,. Moreover, we may assume that G(xo, f(xo) = H(Xo, f(Xo))
= E—the identity matrix. For simplicity we denote u(x) = |Df (x)I">.

By Corollary 6.1 we know that ue W, (2) and by Sobolev's lemma 3.2
we have u€ Ly,,- ).0{2). Summarizing we see that it is enough to show that
ue Lac.loc (Q) . ‘
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Proof of Theorem 7.1. Let { be a smooth function with sufficiently
small support containing the point x,€ in its interior. Fix an arbitrary
number A > 1. Let us consider the function

@(x) = fi(x)max {1 —2A/u(x); 0} (*(x), wu(x) = |Df(x)"?
(,ji=1,2,...n.

It is easy to check that gelL,.,(Q). Set A; = {xeQ; u(x) > A}. The
following relations are obviously true:

A AV A .
Vo = Vf,‘(l—;){z+ ke f,-'c2+2f,'(1-7)cvc in A,

(7.3)
Vo = 0 almost everywhere in Q\A;.

We start from the equality

(74 [(DFI""2 )y, @xgdx = [ (DA 2 f)ey ey dx, @, B =1,2,..,n,
[p] . o]
which follows from the identity
n—2 ¢t
JODS12 1, 0, dx

n—2 _
= f IDf1"™* {|Df] DS |, @x, +IDf| IDf |y @, ~|Df |, IDS |y @} Sfidx+

Q

+ ;! (IDf "~ 22 Y, (Df |~ 2/2 @)y, dx—
n—2 2 (n—-4y2 ¢l |
——n_ (IDfl )xl] (lDfI f; (p)xa dx,
)

and from the following facts :

The first integral on the right side is symmetric in « and #. The other
integrals are also symmetric. Indeed, the definition of ¢ and Lemma 5.1
imply '

IDfI"" P2 fle Wi (Q);  IDfI™ P2 pe Wi (Q),

IDf 1" € Wi ()5 |DS1" "2 fl o W(Q).

Thus, these functions can be replaced by aproximating smooth ones. So, by a
limiting process, we conclude that the indices « and f can be transposed. In
particular, setting « = j and f = i, we obtain the equality

(7.5) J ARSI 2 f); @5,dx = [ (IDF1"™2 f)g; 0.
Q (7]
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We take into account equations (6.11). Formula (7.5) gives
(7.6) I (Df1""2 fi); 0, dx = | Ri(x,f, Df, lDflx)IDfl"‘zfprdx
A; 4,

We are going to estimate both integrals. Formula (7.3) and Lemma 6.2 imply
the following inequality:

IPo| < const(|Df|?+|Df|,) (2 +const (l )]"lz)lDfl iK1V

\Df

almost everywhere in A; = {xe®; |[Df|"* > A > 1}. Hence, by (6.9) we
have

R.,(x,f, D, IDf1,) @, DS~
< const(|Df > +q(x, f)|Df1,)|DfI" "% x

A

W) 1Df11] IVCI}-

><{(IDf|2+|DfIx)C2+(1—

The chain of inequalities of the type ab < sa®?+b?/4e, where the positive
number ¢ will be .chosen later, leads to the following inequalities:

(7.7) 1R ) oLl IDfIT?
< C(independ. of &)(3e+q(x,f))IDfI"~2|Df12(% +
+C,IDfI"* 22+ C, (DS |2 = A VL)

valid almost everywhere in 4;.
Now we estimate the left side of (7.6). Formula (7.3) implies

DI 1y = | IDS1ff @ dxtin=2) | IDF"> /DS, s, d
A

A; A;

n— 1 A 2
j DA fL g (I—W) ixt

A,

n ( _ I flx
+-= |Df|” 2./;1]; IDf|(n+ 2{/2

A,
[ n—2 ¢l gl A

+2 |Df| f;jf] ( IDfln/z) ng‘

4,

+(n—2) j DI DS . S (1 _

A

(2dx+

IDf',,/z) CZ dx+
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-2
=2 [y *IDf1, S} ey

o
A,

A|Df],,
Df|(n+2)/2

Czdx+

A

+2(n-2) IDfl"_3|Df|xjﬁ'fjl (l -—‘) &, d);‘

|Df 1”2

o/
A,
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By the identity f'f} = |Df||Df |;; one can simplify some of the integrals. In
particular, the fourth and the fifth ‘'ones on the right side are non-negative.

Finally
(78) J.'(IDfln_zj;',).\'j (P"'i dx > j IDflu—Z {( IDfIn/Z)ij;J
7 Ay
n A >
+§|Df|.:,- DS |; W} {fdx+

2 j \Df 1"~ ! | DA, ( | Dfl,,,z) {ydx+

A3
_ A
+2(n-2) ,.[ Df3 i L_t|DfI,,.( | Dfl,,z) (O

Now we apply the following lemma:
Lemma 7.3. The inequality

(7.9) lgrad Df| > |grad |Df]|
holds. Equivalently f. f; i lDfl,,l |Df |, -
Proof. The lemma is a consequence of the following facts:
IDA1 DS 1, = S5 Ji
and
2IDf P (£ £5—IDf 1, 1Df 1) = 2005 S5 s Sis =L £ 05 1)
=Y mA-fH =0
ij,l

Now we return to (7.8)

[ (DfI=2 ), @ dx > [ DfI"2|DfI,, IDf, {* dx—

A, A,

L A
—c J IDf )" (l —W) IIDf11£1170) dx
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for a positive constant C. Using the inequality ab < a2/2C+Cb2/2, we
obtain

[ (DA 2 f)s; 05, dx

CZ C 2
n—2 2r2 - n - % 2 .
=1 fIDfI |Df |5 " dx 5 JlDf,l (1 IDf|"’2) IVC1* dx
Al Al
Comparing the last inequality to (7.7) and (7.6) we conclude that
L [ IDfI""2IDfIZ ¢ dx
4,

< C(independ. of ¢) | (3e+q(x, N)IDfI" ?|Df12 ¢ dx +

4;
+C, _[ IDf|"*2¢*dx+C, _f (IDf "2 — AP |PL)? dx.
A4; A,

The coefficient 3¢ +g(x, f(x)) can be made arbitrarily small on 4, nsupp{ if
we take for { a function with a sufficiently small support containing the point
Xo in its interior and if we choose a sufficiently small number ¢ > 0.
Therefore we get

[ IDf1""2|Df12¢*dx < const | |Df|"*2{%dx+const | (|Df|"?—i)?|V(|*dx.
A; A, 4

This inequality can be expressed in terms of the function u(x) = |Df|"2.
Obviously u?(x) > A2 2 1 in A;, and u€Lypp-210c (@) S Lt amoc (Q)-
Then we have

[ IVul?t*dx < const | w***"(2dx+const | (u—A)*V¢|*dx.

A, A 4,
Finally Lemma (7.2) implies that the function u = |Df|"? has a finite upper
bound in a neighbourhood of the point x,. This concludes the proof of the
theorem.

CoroLLARY 7.1. Any quasiregular map f = f(x) with characteristics
G(x,f), H(x, f) satisfying the Lipschitz condition belongs to the Sobolev class
W71 (R), and inequality (7.1) holds with J(x) replaced by |Df(x)|.

Proof. Quasiregularity of f/ means that |Df (x)|" < constJ,(x). So the
second assertion of Corollary 7.1 immediately follows from inequality (7.1).
In consequence, integral inequality (5.2) has the following simplified form:

w o IDf R =Df ()2
jq, (%) e dx < const(@, 2, DSl , .-
n - .
Now, in view of Lemma 3.1 we deduce that fe W2 (Q).
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8. Smoothness

Smoothness of the map f will be studied via the theory of quasilinear
and linear equations of elliptic type (not systems of equations) by making use
of estimate (7.1). ‘ X

We begin with a simplification of system (2.6), assuming that the
characteristics G (x, f) and H(x, f) are Lipschitz or smooth. For this purpose
we prove a preparatory lemma, similar to Lemma 2.1.

LemMA 8.1. Let f: Q — R" be a map of the class W, () and let v(x) be
an n-vector function of the class C'(Q). Then the identity

(8.1) div{(J, D' f)v} = (J,D"'f, gradv) ae. in Q
holds .

Remark. (8.1) holds also for v being Lipschitz. In particular, if v is
constant, we obtain equation (2.2).

Proof. It can be seen, as in Lemma 2.1, that the vector div {(J, D! f)*}
vanishes almost everywhere. By simple calculations we obtain

div{(J, D7 f)v} = div(J; D' f)*, v)+<J D' f, gradv)
= (J, D7 f, gradv).

This ends the proof.

As a result of the lemma one can write system (2.6) in a more convenient
form

(82) div {( G~ . NVFL Vi )‘"'2”2. G (x, f) Vf'}

H"(x, f)
= (Jy(x)D7'f(x), grad (H™*(x, f)—H™ ' (%o, fo) €}
for each | = 1,2, ..., n. This system may by viewed in two ways.

First it can be considered as a single quasilinear equation (for u
= fl(x)€ Wi (2)) of the form

d
(8.3) —a;(x, gradu) = a(x),
dx;
where the ellipticity condition
oa;(x, .
vie < 2P e oy
op;

on a solution u = u(x), p = Vu holds for £eR" and some positive con-
stants v, u. Moreover, we have

da;(x, grad u(x))
au\J ’

a (X) € Laa.loc (Q) .
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Using the results of Ladyzenskaya and Uraltseva [13] (see Theorem 6.1,
p. 330), we conclude that ue C! **(Q) for some ¢ > 0 depending only on v/p.

THeorReM 8.1. Every non-constant quasiregular mapping with Lipschitz
characteristics is a local diffeomorphism of the class C'*(Q) for some ¢ > 0
and of the class W3,.(Q).

We come now to our main Smoothness result. _

THEOREM 8.2. Every quasiregular mapping ‘f with the characteristics
G(x,f) and H(x,f) of the class C***(2xQ), k > 1,0 < a < 1 is of the
class C****1(Q).

Before starting the proof let us present the second interpretation of
system (8.2). It can be treated as a linear uniformly elliptic equation (for u
= fl(x)e C'**(Q)) of the form

84) S(x, [, Dfyuye; = o'(x,f,Df), 1=1,2,...n,
where </;(x, f, Df) and o'(x, f, Df) are infinitely smooth with respect to

J
the variables Df e R"*\{0} and of the class C***~! with respect to (x, f)e

Qx Q. The coefficients |, are given by the formulae

Y G (x, ) f S\ w2012
at'y(x, £, Df) = (“{’ ) 9

H"(x,f)
Y G*(x,f)G*(x, /) f 1}
x [G"(x.f)+(n—2) 2
Y G*(x, Nf S
af

Hence we obtain the ellipticity condition
vig? < i(x, f, D)EE < plg? for feR

with some positive constants v and u.
We shall use the following well known classical fact about the regularity
of solutions of linear elliptic equations:

LemMMa 8.2. Let ue W2, () N Ly () satisfies the elliptic equation
(8'5) Zaij(x)ux,-xj = a(x)
ij

with coeﬂiciems. a;(x) and a(x) of the cluss C"**(), r 2 0, « > 0. Then
ueC*2**(Q).

For the proof see [13], p. 235-Theorem 12.1.

The proof of Theorem 8.2 is by induction with respect to k. First

we consider the case k = 1, that is, the case where the characteristics
G(x,f) and H(x, f) are of the class C!**(Q2 x Q). In view of Theorem 8.1,
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the mapping f is of the class W2, .(2) ~ C'*¢() with some positive constant
¢. Then the coefficients &}(x) = of;(x,f(x),Df(x)) and ()
= o/'(x, f(x), Df(x)) of equation (8.4) are of the class C™"*?(Q). Lemma
8.2 gives ue C2+™r@a(0) Now we revert to equation (8.4). Repeating the
argument given above, we conclude that the coefficients o;(x) and =/'(x)
actually belorg to the class C*(£2). Again using Lemma 8.2 we, correct the
estimation of smoothness of u up to the statement that ue C***(Q). This
estimation is the best possible for the case k = 1. We assume at the moment
that our theorem holds for some k > 1 and consider the case of the
characteristics G(x, f), H(x, f) of the class C**!**(Q). The induction hy-
pothesis implies that feC**!**(Q). Then the coefficients s} (x) and o' (x)
of system (8.4) are of the class C***(Q). Finally Lemma 8.2 implies that
fl(x) = u(x)eC**2**(Q). The result follows.
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