5.4133 [**2**58]

DISSERTATIONES MATHEMATICAE

(ROZPRAWY MATEMATYCZNE)

KOMITET REDAKCYJNY

BOGDAN BOJARSKI redaktor ANDRZEJ BIAŁYNICKI-BIRULA, ZBIGNIEW CIESIELSKI, JERZY ŁOŚ, ZBIGNIEW SEMADENI

CCLVIII

MAREK JARNICKI

A method of holomorphic retractions and pseudoinverse matrices in the theory of continuation of δ -tempered functions

WARSZAWA 1987 PAŃSTWOWE WYDAWNICTWO NAUKOWE

PRINTED IN POLAND

Copyright by PWN - Polish Scientific Publishers, Warszawa 1987

ISBN 83-01-07374-8 ISSN 0012-3862

9.03.

CONTENTS

§ 1.	Introduction '	5
§ 2.	Basic properties of δ -tempered holomorphic functions	8
§ 3.	Holomorphic continuation and holomorphic retractions	0
§4.	Continuation from regular neighbourhoods	2
§ 5.	Continuation from δ -regular submanifolds; Main Theorem	5
§ 6.	Holomorphic retractions and pseudoinverse matrices; proof of Main Theorem 3	9
Ref	erences	9

,			

§1. Introduction

In the paper we investigate some problems of the theory of continuation of holomorphic functions with restricted growth.

Let X be a complex analytic space countable at infinity and let M be an analytic submanifold of X (dim $M < \dim X$). Let $\mathcal{O}(X)$ (resp. $\mathcal{O}(M)$) denote the space of all holomorphic functions on X (resp. on M).

One can pose the following general continuation problem:

Given $f \in \mathcal{O}(M)$, does f admit an extension $\hat{f} \in \mathcal{O}(X)$ such that the growth of \hat{f} on X is in some sense similar to the growth of f on M?

One of the most useful definitions of the growth of holomorphic functions is by estimates of the form $\delta^k |f| \leq c$, where δ is a given function; more precisely:

Let $\delta \colon X \to (0, +\infty)$ be a bounded function. For $k \ge 0$ let $\mathcal{O}^{(k)}(X, \delta)$ (resp. $\mathcal{O}^{(k)}(M, \delta)$) denote the vector space of all functions f holomorphic on X (resp. on M) such that the function $\delta^k f$ is bounded. The space $\mathcal{O}^{(k)}(X, \delta)$ (resp. $\mathcal{O}^{(k)}(M, \delta)$) has the natural structure of a normed space with the norm given by the formula: $f \to \|\delta^k f\|_{\infty}$, where $\|\cdot\|_{\infty}$ denotes the supremum norm. Put $\mathcal{O}(X, \delta) = \bigcup_{k \ge 0} \mathcal{O}^{(k)}(X, \delta)$ and analogously $\mathcal{O}(M, \delta) = \bigcup_{k \ge 0} \mathcal{O}^{(k)}(M, \delta)$. $\mathcal{O}(X, \delta)$ (resp. $\mathcal{O}(M, \delta)$) is a complex algebra with a unit element (cf. § 2).

Let $R = R_M^X$ denote the restriction operator

$$\mathcal{O}(X) \ni f \to f|_{M} \in \mathcal{O}(M)$$
.

Note that R maps $\mathcal{O}^{(k)}(X,\delta)$ continuously into $\mathcal{O}^{(k)}(M,\delta)$, $k \ge 0$.

Now our problem of continuation of holomorphic functions with restricted growth may be formulated as follows:

Given a triple (X, M, δ) , when is

(C)
$$\mathscr{O}(M,\delta) = R_M^{\chi}(\mathscr{O}(X,\delta))$$

satisfied?

Many classical problems concerning holomorphic continuation (or interpolation) with controlled growth may easily be translated into this language. For example:

Let $X = \mathbb{C}^n$ and let M be an analytic subset of \mathbb{C}^n . We ask whether every function $f \in \mathcal{C}^n(M)$ with polynomial growth on M extends to a polynomial

mial \hat{f} of *n*-complex variables. Take $\delta = \delta_0 = (1 + ||z||^2)^{-1/2}$. By the Liouville theorem, the space $\mathcal{O}^{(k)}(\mathbb{C}^n, \delta_0)$ is identical with the space of all polynomials of degree $\leq [k]$, and so the above question may be equivalently formulated as follows:

When does the triple (C^n, M, δ_0) satisfy (C)?

Similarly, putting $\delta = e^{-||z||^2}$, we get a problem of continuation of functions with exponential growth (see §3).

Taking into considerations the algebraical and topological structures of $\mathcal{O}(X, \delta)$ and $\mathcal{O}(M, \delta)$, one may consider some stronger versions of (C), for instance:

(H) There exists an algebra homomorphism

$$T: \mathcal{O}(M, \delta) \to \mathcal{O}(X, \delta)$$

such that $R \circ T = id$.

(L) $\exists \sigma \geqslant 0$: $\forall \eta > 1$ $\exists c = c(\eta) > 0$: $\forall k \geqslant 0$: there exists a linear continuous extension operator

$$L_k: \mathcal{O}^{(k)}(M, \delta) \to \mathcal{O}^{(k+\sigma)}(X, \delta)$$

such that $||L_k|| \leq c\eta^k$.

The simplest case is that in which X is a domain of holomorphy in \mathbb{C}^n —in this case, for some special triples (X, M, δ) , problem (C) was studied, for instance, in [1], [2], [21], [22].

On the other hand, the most interesting case is that in which X is a Stein domain spread over C^n —in particular, by the passage to the envelope of holomorphy, this permits us to study (C) for all open sets in C^n . In the case of Stein domains over C^n , some results related to (C), (H), (L) were proved by the author in [1], [12], [13], [14]. In a more general context, the problems (C), (H), (L) will be studied in the present paper.

The main result of the paper is the following:

THEOREM 5.7. Let X be a Stein domain over \mathbb{C}^n , let M be an analytic submanifold of X and let δ be a regular weight function on X (see Def. 2.11; if X is a domain of holomorphy in \mathbb{C}^n , then we can take, for instance, $\delta = \delta_X = \min \{\varrho_X, \delta_0\}$, where ϱ_X denotes the distance to the boundary of X). Assume that there exists a $G \in [\mathcal{O}(X, \delta)]^m$ such that

$$M\subset G^{-1}(0),$$

$$\operatorname{rank}(d_x G) = \operatorname{codim}_x M = : r(x), \quad x \in M,$$

$$||(d_x G) \wedge \dots \wedge (d_x G)|| \ge b\delta^{\beta}(x), \quad x \in M \quad (b > 0, \beta \ge 0 \text{ constants}).$$

Then (X, M, δ) satisfies (L).

The above result is a simultaneous generalization of some results of [1], [2], [11], [13], [21], [22] (for details see § 5).

The paper is organized as follows:

§2 is of preparatory nature. We collect in it some basic properties of algebras of type $\mathcal{O}(X, \delta)$. Most of the results presented in that section are taken from [3], [8], [9], [10] and [14].

Some general remarks relating to (C), (H) and (L) are presented in § 3. The main result of that section is a characterization of the solvability of (H) contained in Corol. 3.9. Namely we have proved that if X is a Stein domain, δ is a regular weight function and M is determined by functions from $\mathcal{O}(X,\delta)$, then each bounded homomorphic extension operator (as in (H)) is given by the formula $Tf = f \circ \pi$, $f \in \mathcal{O}(M,\delta)$, where $\pi: X \to M$ is a suitably chosen holomorphic retraction. Note that the existence of a holomorphic retraction $\pi: X \to M$ implies that the analytic subset M must be a submanifold (cf. Remark 3.10). In the second part of § 3 we present some examples which illustrate the relations between the classical theory of interpolation for holomorphic functions and (C). These examples are also studied in § 5. § 3 is based on [5], [11], [12], [13], [14], [15], [19] and [20].

In § 4 a generalized version of Nullstellensatz for holomorphic functions with restricted growth on Riemann domains is presented (Th. 4.1). As a consequence of this result we get the fundamental theorem on holomorphic continuation from some special ("regular") neighbourhoods of M (Th. 4.3). Theorem 4.3 is a particular case of Th. 1 from [11]. In the case where $X \in \text{top } C^n$ analogous results were proved in [2] and [16].

The main result of the paper (Th. 5.7) is formulated in § 5. In the same section we also present some of well-known results, which are special cases of Th. 5.7. The proof of Th. 5.7. is given in § 6.

The proof is based on a method of holomorphic retractions implied by Lemma 3.11. By Lemma 3.11, a triple (X, M, δ) satisfies (L) if one can find a neighbourhood U of M and a holomorphic retraction $\pi: U \to M$ such that for every holomorphic function f with controlled growth on U (specified in the lemma) there exists a holomorphic function \hat{f} with controlled growth on X with $\hat{f} = f$ on M. In the case $X \in \text{top } C^n$, an analogous method was used in [2]. Our approach to the construction of holomorphic retractions is different from that in [2]. The main concept is based on a method of pseudoinverse matrices (cf. Lemmas 6.2, 6.3). The idea of the method is taken from [23]. This method of proof permits us to make it elementary.

Most of the results presented in this paper were announced in the preprint [15].

The author wishes to express his deep gratitude to Professor J. Siciak for his suggestions, which were helpful in the improvement of an earlier version of this paper.

§ 2. Basic properties of δ -tempered holomorphic functions

Let X be a complex analytic space countable at infinity and let $\delta: X \mapsto (0, +\infty)$ be a fixed function. For $k \ge 0$ let

$$\mathcal{O}^{(k)}(X, \delta) := \{ f \in \mathcal{O}(X) : \exists c = c(f) \ge 0 : \delta^k | f | \le c \}$$

= the space of all δ -tempered holomorphic functions on X of degree $\leq k$.

Put

$$\mathcal{O}(X,\,\delta):=\bigcup_{k\,\geq\,0}\,\mathcal{O}^{(k)}(X,\,\delta)$$

= the set of all δ -tempered holomorphic functions on X.

- 2.1. It can be seen that:
- (a) The space $\mathcal{O}^{(k)}(X,\delta)$ endowed with the norm

(*)
$$\mathcal{O}^{(k)}(X, \delta) \ni f \to ||\delta^k f||_{\infty} \in \mathbf{R}_+$$

is a complex normed space.

- (b) $\mathcal{O}^{(0)}(X, \delta) = H^{\infty}(X) =$ the Banach algebra of all bounded holomorphic functions on X.
 - (c) $\mathcal{O}^{(k)}(X, \delta) \cdot \mathcal{O}^{(k')}(X, \delta) \subset \mathcal{O}^{(k+k')}(X, \delta), \quad k, k' \ge 0.$
 - (d) If δ is bounded, then

$$\mathcal{O}^{(k)}(X, \delta) \subset \mathcal{O}^{(k')}(X, \delta), \quad k \leq k'.$$

In particular, if δ is bounded then $\mathcal{O}(X, \delta)$ is a complex algebra with a unit element and

$$\mathscr{O}(X,\,\delta) = \bigcup_{k\in\mathbb{N}} \mathscr{O}^{(k)}(X,\,\delta).$$

(e) If $1/\delta$ is locally bounded (e.g., δ is lower semi-continuous) then for every compact $K \subset X$:

$$\sup_{K} |f| \leq [\sup_{K} (1/\delta)]^{k} ||\delta^{k} f||_{\infty}, \quad f \in \mathcal{O}^{(k)}(X, \delta).$$

Consequently, if $1/\delta$ is locally bounded then the topology induced by the norm (*) is stronger than the topology of uniform convergence on compact subsets of X; in particular, $\mathcal{O}^{(k)}(X, \delta)$ is a complex Banach space.

- 2.2. Note that:
- (a) If δ is unbounded then $\mathcal{O}(X, \delta)$ need not be a vector space and (**) need not be true. For example:
- Let X = C, $\delta = |e^g|$, where $g \in \mathcal{O}(C)$ is such that $g(-n) = -\ln n$, $g(n) = \ln n$, $n \in \mathbb{N}$. For $k \ge 0$, let $f_k := e^{-kg}$. Obviously $f_k \in \mathcal{O}^{(k)}(C, \delta)$, $k \ge 0$, but $f_1 + f_2 \notin \mathcal{O}(C, \delta)$ and $f_{1/2} \notin \mathcal{O}(C, \delta)$.

(b) If $1/\delta$ is not locally bounded then the space $\mathcal{O}^{(k)}(X, \delta)$ need not be complete (k > 0). For example:

Let $X = \{x + iy \in C : 0 < x, y < 1\}$. By the Runge approximation theorem one can construct a sequence $(f_n)_{n=1}^{\infty}$ of complex polynomials and a bounded *non-holomorphic* function $f_0 : X \to C$ such that:

$$\forall z \in X \ \exists \ n(z): \ \forall \ n \geqslant n(z): \ |f_n(z) - f_0(z)| \leqslant 1/n \quad \text{(see [18], p. 382)}.$$

Put $\delta := \inf\{1, (\sqrt{n}|f_n - f_0|)^{-1}, n \in N\}$. It can be seen that $\delta \colon X \to (0, 1]$ and $\|\delta(f_n - f_0)\|_{\infty} \leq 1/\sqrt{n}, n \geq 1$. Thus $(f_n|_X)_{n=1}^{\infty}$ is a Cauchy sequence in $\mathcal{O}^{(1)}(X, \delta)$ which has no limit in this space.

2.3 (cf. [8], Prop. 1). Assume that dim $\mathcal{O}(X) = \infty$. If $1/\delta$ is locally bounded then $\mathcal{O}^{(k)}(X, \delta)$ is of the first Baire category in $\mathcal{O}(X)$ in the topology of uniform convergence on compact subsets of X. Consequently, if δ is bounded then, in view of (***), $\mathcal{O}(X, \delta)$ is of the first Baire category in $\mathcal{O}(X)$.

Let X_1, X_2 be two complex analytic spaces countable at infinity and let δ_j : $X_i \to (0, +\infty)$ be a bounded function, j = 1, 2.

2.4. A linear mapping

$$L: \mathcal{O}(X_1, \delta_1) \to \mathcal{O}(X_2, \delta_2)$$

is said to be bounded if for every $k_1 \ge 0$ there exists a $k_2 \ge 0$ such that the operator $L|_{\mathscr{O}^{(k_1)}(X,\delta)}$ maps continuously $\mathscr{O}^{(k_1)}(X_1,\delta_1)$ into $\mathscr{O}^{(k_2)}(X_2,\delta_2)$.

A linear isomorphism $L: \mathcal{O}(X_1, \delta_1) \to \mathcal{O}(X_2, \delta_2)$ is called a bounded isomorphism if the operators L and L^{-1} are bounded (cf. [3], §§ 2.1, 2.2).

Bounded algebra homomorphisms play the role of morphisms in the category of algebras of type $\mathcal{O}(X,\delta)$; if $L\colon \mathcal{O}(X_1,\delta_1)\to \mathcal{O}(X_2,\delta_2)$ is a bounded algebra isomorphism, then the algebras $\mathcal{O}(X_1,\delta_1)$ and $\mathcal{O}(X_2,\delta_2)$ can be identified.

2.5. Observe that if $\varphi: X_2 \to X_1$ is a holomorphic mapping such that

$$\delta_2^{\gamma} \leqslant c\delta_1 \circ \varphi$$
 $(\gamma, c > 0 \text{ constants}),$

then the operator $\varphi^*|_{\mathscr{O}(X_1,\delta_1)}$ is a bounded algebra homomorphism of $\mathscr{O}(X_1,\delta_1)$ into $\mathscr{O}(X_2,\delta_2)$ ($\varphi^*f:=f\circ\varphi$) (see also 3.6).

2.6. We say that two functions δ_1 , δ_2 : $X \to (0, +\infty)$ are equivalent $(\delta_1 \sim \delta_2)$ if there exist constants γ_j , $c_j > 0$, j = 1, 2, such that:

$$\delta_1^{\gamma_1} \leqslant c_1 \, \delta_2, \quad \delta_2^{\gamma_2} \leqslant c_2 \, \delta_1 \quad \text{(cf. [3], § 1.1)}.$$

It is clear that if $\delta_1 \sim \delta_2$ then $\mathcal{O}(X, \delta_1) = \mathcal{O}(X, \delta_2)$, and if, moreover, δ_1 , δ_2 are bounded then the identity mapping is a bounded algebra isomorphism of $\mathcal{O}(X, \delta_1)$ onto $\mathcal{O}(X, \delta_2)$.

More generally:

- **2.7.** If $\varphi: X_2 \to X_1$ is a biholomorphic mapping for which $\delta_1 \circ \varphi \sim \delta_2$, then $\varphi^*|_{\sigma(X_1,\delta_1)}$ is a bounded algebra isomomorphism of $\mathcal{O}(X_1,\delta_1)$ onto $\mathcal{O}(X_2,\delta_2)$ (cf. 2.5, see also 3.8).
- **2.8.** Let $\delta: X \to (0, +\infty)$ be a bounded function. We shall denote by $S(X, \delta)$ the set of all characters on $\mathcal{O}(X, \delta)$, that is, the set of all non-zero linear and multiplicative functionals $\xi: \mathcal{O}(X, \delta) \to C$. Let $S_b(X, \delta)$ denote the set of all bounded characters on $\mathcal{O}(X, \delta)$; a character $\xi: \mathcal{O}(X, \delta) \to C$ is said to be bounded if for every $k \ge 0$ the operator $\xi|_{\mathcal{O}^{(k)}(X, \delta)}$ maps continuously $\mathcal{O}^{(k)}(X, \delta)$ into C. Further, let $E(X, \delta)$ denote the set of all evaluations on $\mathcal{O}(X, \delta)$, that is, the set of all characters of the form

$$\mathcal{O}(X, \delta) \ni f \to f(x) \in C$$
,

where x is a point of X. Note that $E(X, \delta) \subset S_b(X, \delta) \subset S(X, \delta)$.

Now we pass to the case where X is a Riemann domain over C^n .

Let (X, p) be a Riemann domain over C^n countable at infinity, i.e. X is a complex n-dimensional manifold countable at infinity and $p: X \to C^n$ is a local biholomorphism.

We say that (X, p) is finitely sheeted if for every $x \in X$ the stalk $p^{-1}(p(x))$ is a finite set.

A set $C \subset X$ is said to be univalent if the mapping $p|_C$ is injective.

An open set $X \subset \mathbb{C}^n$ will always be identified with the domain (X, id_X) . A domain (X, p) is said to be a *Stein domain* if X is a Stein manifold. We shall frequently write X instead of (X, p).

Let $||z|| = (|z_1|^2 + ... + |z_n|^2)^{1/2}$, $z = (z_1, ..., z_n) \in \mathbb{C}^n$, denote the Euclidean norm in \mathbb{C}^n .

For $x \in X$ and r > 0 let $\hat{B}(x, r) = \hat{B}_X(x, r)$ denote an open univalent neighbourhood of x which is mapped (biholomorphically) by p onto the Euclidean ball $B(p(x), r) \subset C^n$.

Put $\varrho(x) = \varrho_X(x) := \sup\{r > 0: \widehat{B}(x, r) \text{ exists}\} = the$ Euclidean distance to the boundary of X of the point x (if $X \in \text{top } C^n$ then ϱ_X coincides with the standard Euclidean distance to ∂X ; $\varrho_{C^n} \equiv +\infty$).

Let
$$\hat{B}(x) = \hat{B}_{\chi}(x) := \bigcup_{0 < r < \varrho(x)} \hat{B}(x, r) = the maximal "ball" centred at x,$$

 $p_x:=p|_{\hat{B}(x)},$

 $X^*C^n := \{(x, z) \in X \times C^n : ||z|| < \varrho(x)\}$ (note that $(X^*C^n, p \times id_{C^n})$ is a Riemann domain over C^{2n}),

$$x \oplus z := p_x^{-1} (p(x) + z), (x, z) \in X^*C^n.$$

- 2.9. Observe that:
- (a) The mapping

$$\oplus$$
: $X^* C^n \ni (x, z) \to x \oplus z \in X$

is holomorphic.

(b) $|\varrho(x \oplus z) - \varrho(x)| \le ||z||$, $(x, z) \in X^* \mathbb{C}^n$, $x \notin X_{\infty}$, where $X_{\infty} := \{x \in X : \varrho(x) = +\infty\} = the sum of all connected components of <math>X$ which are mapped biholomorphically by p onto \mathbb{C}^n .

Our approach to the theory of δ -tempered holomorphic functions on Riemann domains will be based on Hörmander's L^2 -estimates for the $\bar{\delta}$ -problem (cf. §4) and therefore we have to restrict our considerations to the case where X is Stein and δ satisfies some additional regularity conditions.

Definition 2.10. A function $\delta: X \to (0, 1]$ is said to be a Lipschitz function on $X(\delta \in \mathcal{L}(X))$ if

- $(l_1) \delta \leqslant \varrho,$
- $(l_2) |\delta(x \oplus z) \delta(x)| \leq ||z||, (x, z) \in X^* \mathbb{C}^n.$

Some characterizations of Lipschitz functions will be given below. Now let us only observe that the function $\min \{\varrho, 1\}$ is the maximal Lipschitz function on X (cf. 2.9 (b)).

Let $\lambda = \lambda_X$ denote the Lebesgue measure on X (λ is locally "transported" by p from the space C^n). Let $L^2(X)$ denote the space of all λ -square integrable functions on X and let $\|\cdot\|_2$ denote the norm of $L^2(X)$.

Further, let PSH(X) denote the set of all plurisubharmonic (psh.) functions on X.

For any function $\delta: X \to R_+$ let us consider the following conditions:

$$(\mathbf{w}_1) \ \delta \leqslant \delta_0 \circ p,$$

where $\delta_0(z) = (1+||z||^2)^{-1/2}, z \in \mathbb{C}^n$.

$$(\mathbf{w_2}) \ \exists \alpha_0 \geqslant 0 \colon \ \delta^{\alpha_0} \in L^2(X).$$

 $(w_3) - \log \delta \in PSH(X).$

$$(\mathbf{w_4}) \ \forall \tau > 0: \ \{x \in X: \ \delta(x) > \tau\} \subset \subset X.$$

Definition 2.11. Let $\mathcal{L}_{i_1,\ldots,i_k}(X)$ denote the set of all Lipschitz functions on X which satisfy the conditions $(w_{i_1}),\ldots,(w_{i_k}),\ 1\leqslant i_1<\ldots< i_k\leqslant 4,\ 1\leqslant k\leqslant 4$. Additionally, let

$$\mathscr{L}_{\mathbf{0}}(X) := \mathscr{L}(X),$$

 $\mathcal{L}(X) := \mathcal{L}_1(X) = \text{the set of all weight functions on } X,$

$$\mathcal{W}_r(X) := \mathcal{L}_{1,2,3}(X) = \text{the set of all regular weight functions on } X.$$

In the sequel we shall show that, generally speaking, every space of holomorphic functions with restricted growth on a Riemann (resp. Stein) domain X may be realized as a subspace of an algebra $\mathcal{O}(X,\delta)$ where $\delta \in \mathcal{L}_{1,2,4}(X)$ (resp. $\delta \in \mathcal{L}_{1,2,3,4}(X)$) (see 2.28, 2.29). We shall also show that the passage to the envelope of holomorphy always permits us to reduce the problem to the case where X is Stein (see 2.31).

2.12. Let $\eta: X \to [0,1]$ be such that the set $Y:=\{\eta>0\}$ is open. One can easily prove that the following conditions are equivalent:

(i)
$$\eta \mid_{\mathbf{Y}} \in \mathcal{L}(Y)$$
,

(ii) η satisfies (l_1) and (l_2) on X.

In particular, if $X = \mathbb{C}^n$ then $\eta|_{Y} \in \mathcal{L}(Y)$ iff

$$|\eta(z)-\eta(z')| \leq ||z-z'||, \quad z, z' \in \mathbb{C}^n.$$

This shows that in the case of C^n our definition of Lipschitz functions is equivalent to that in [3], §1.2.

2.13. The function

$$\delta_X := \min \{ \varrho, \, \delta_0 \circ \rho \}$$

is the maximal weight function on X. Observe that $\delta_{cn} = \delta_0$.

Recall that $\mathcal{O}^{(k)}(C^n, \delta_0) =$ the space of all complex polynomials of *n*-complex variables of degree $\leq [k]$ (cf. § 1). By analogy, in the general case functions from $\mathcal{O}^{(k)}(X, \delta_X)$ are called holomorphic functions with polynomial growth on X of degree $\leq k$. Observe that the mapping $p^*|_{\mathcal{O}(C^n, \delta_0)}$ is a bounded algebra monomorphism of $\mathcal{O}(C^n, \delta_0)$ into $\mathcal{O}(X, \delta_X)$ (p^* maps $\mathcal{O}^{(k)}(C^n, \delta_0)$ into $\mathcal{O}^{(k)}(X, \delta_X)$, $k \geq 0$).

For every analytic subset $M \subset X$, functions from $\mathcal{O}^{(k)}(M, \delta_X)$ are called holomorphic functions with polynomial growth on M of degree $\leq k$.

2.14. For every $0 \le i \le 4$:

(a)
$$\delta_1$$
, $\delta_2 \in \mathcal{L}_i(X) \Rightarrow \min \{\delta_1, \delta_2\} \in \mathcal{L}_1(X)$.

(b)
$$\delta_1, \ldots, \delta_m \in \mathcal{L}_i(X) \Rightarrow \frac{1}{m} \delta_1 \cdot \ldots \cdot \delta_m \in \mathcal{L}_i(X)$$
.

(c)
$$\delta \in \mathcal{L}_i(X)$$
, $\alpha \geqslant 1 \Rightarrow \frac{1}{\alpha} \delta^{\alpha} \in \mathcal{L}_i(X)$.

(d) If $\delta_1 \in \mathcal{L}_i(X_1), \ldots, \delta_m \in \mathcal{L}_i(X_m)$ then the function δ given by the formula

$$\delta(x_1, ..., x_m) = \frac{1}{\sqrt{m}} \min \{\delta_1(x_1), ..., \delta_m(x_m)\}, (x_1, ..., x_m) \in X_1 \times ... \times X_m,$$

belongs to $\mathcal{L}_i(X_1 \times \ldots \times X_m)$.

Let Ψ denote the set of all C^1 -functions $\psi: \mathbb{R}_+ \to \mathbb{R}_+$ such that:

- (i) ψ is increasing and convex,
- (ii) $\psi(t) \geqslant t$, $t \in \mathbf{R}_+$,
- (iii) $\psi'(t) e^t \leqslant e^{\psi(t)}, t \in \mathbf{R}_+$.

One can prove (cf. [10], Lemma 7) that:

2.15. For every increasing function $\psi_0: \mathbb{R}_+ \to \mathbb{R}_+$ there exists a \mathbb{C}^{∞} -function $\psi \in \Psi$ such that $\psi \geqslant \psi_0$.

For
$$\delta: X \to (0, 1]$$
 and $\psi \in \Psi$ put

$$\delta_{(\psi)} := e^{-\psi(-\log\delta)}.$$

Note that $\delta_{(\psi)} \le \delta$. One can easily prove (cf. [3], §1.5, [10], the proof of Prop. 2) that:

2.16. $\delta \in \mathcal{L}_i(X)$, $\psi \in \Psi \Rightarrow \delta_{(\psi)} \in \mathcal{L}_i(X)$, i = 0, ..., 4, whence $\delta_{(\psi)}$ has at least the same regularity as δ .

The above result, as well as 2.14, give an insight into the construction of new Lipschitz functions, which satisfy some fixed regularity conditions. Let us consider the following example:

2.17. It is clear that for every $\tau > 0$ there exists a constant $c(\tau) > 0$ such that the function

$$\psi_{\tau}(t) := c(\tau) + e^{\tau t}, \quad t \in \mathbf{R}_+,$$

belongs to Ψ . Note that $\delta_{(\psi_{\tau})}$ is equivalent (in the sense of 2.6) to $e^{-\delta^{-\tau}}$. Put $\delta_{\tau} := (\delta_0)_{(\psi_{\tau})}$ and observe that δ_{τ} is equivalent to $e^{-\parallel z \parallel^{\tau}}$. Hence

$$\bigcap_{\tau>\mu} \mathcal{O}(C^n, \, \delta_\tau) = E_\mu(C^n) = : \text{the algebra of all entire functions}$$
of order $\leqslant \mu \, (\mu \geqslant 0)$.

By analogy, in the general case, if M is an analytic subset of X (including the case where M = X), we put:

$$E_{\mu}(M):=\bigcap_{\tau>\mu}\mathscr{O}\big(M,(\delta_X)_{(\psi_\tau)}\big)=\text{the algebra of all holomorphic}$$
 functions with exponential growth on X of order $\leqslant \mu$

$$=\{f\in\mathcal{O}(M)\colon\,\forall\,\tau>\mu\,\,\exists\,A_{\tau},\,B_{\tau}>0\colon\,|f(x)|\leqslant A_{\tau}e^{B_{\tau}[\delta\chi(x)]^{-\tau}},\,x\in M\}.$$

More generally:

Let $\psi \in \Psi$ be fixed. Then for every Riemann domain X and for every analytic subset M of X the function ψ generates an algebra $\mathcal{O}(M, (\delta_X)_{(\psi)})$ which may be considered as a generalization to M of the algebra $\mathcal{O}(\mathbb{C}^n, (\delta_0)_{(\psi)})$.

Let $\eta: X \to (0, 1]$ be a function satisfying (l_1) and such that $1/\eta$ is locally bounded. Put

$$\tilde{\eta}(x) := \inf \{ \eta(x \oplus z) + ||z|| : ||z|| < \varrho(x) \}, \quad x \in X.$$

The function $\tilde{\eta}$ will be called the *Lipschitz regularization of* η (it may easily be proved that $\tilde{\eta}$ coincides with the formal convolution of η (cf. [9])).

Observe that:

2.18. (a)
$$\tilde{\eta} \leqslant \eta$$
.

- (b) $\tilde{\eta} \in \mathcal{L}(X)$.
- (c) $\tilde{\eta} = \sup \{ \delta \in \mathcal{L}(X) : \delta \leq \eta \}.$

Consequently, we get the following criterion for δ to be a Lipschitz function on X:

- **2.19.** Let $\delta: X \to (0, 1]$ be such that $\delta \leq \varrho$ and $1/\delta$ is locally bounded. Then the following conditions are equivalent:
 - (i) $\delta \in \mathcal{L}(X)$.
 - (ii) $\delta = \tilde{\delta}$.
- (iii) For every univalent set $C \subset X$ for which p(C) is convex the function $\delta \circ (p|_C)^{-1}$ satisfies the standard Lipschitz condition with the constant 1 in p(C) (cf. [9]).
- **2.20** (cf. [9], Th. 3). Let X be a Stein domain and let $\eta: X \to (0, 1]$ be such that $\eta \leq \varrho$ and $-\log \eta \in PSH(X)$. Then $-\log \tilde{\eta} \in PSH(X)$.
- **2.21.** Let $N(X) := \sup \{ \# p^{-1}(p(x)) : x \in X \}$. If $N(X) < +\infty$ (e.g. $X \in \text{top } \mathbb{C}^n$), then for every $\delta \in \mathcal{W}(X)$ and for every $\varepsilon > 0$: $\delta^{n+\varepsilon} \in \mathcal{L}^2(X)$. Consequently, if $N(X) < +\infty$ then $\mathcal{W}(X) = \mathcal{L}_1(X) \subset \mathcal{L}_2(X)$.

Proof. By the Fubini theorem

$$\int\limits_X \delta^{2(n+\varepsilon)} d\lambda_X \leqslant \int\limits_X (\delta_0 \circ p)^{2(n+\varepsilon)} d\lambda_X \leqslant N(X) \int\limits_{\boldsymbol{C}^n} \delta_0^{2(n+\varepsilon)} d\lambda_{\boldsymbol{C}^n} \leqslant N(X) \, c(n) / \varepsilon. \quad \blacksquare$$

Note that if $N(X) = +\infty$ then δ_X need not satisfy (w_2) .

2.22. If X is finitely sheeted (e.g. $N(X) < +\infty$) then $\mathcal{W}(X) = \mathcal{L}_1(X) \subset \mathcal{L}_4(X)$.

Proof. We only need to observe that a closed set K of a finitely sheeted Riemann domain X is compact iff the set p(K) is bounded and $\inf \varrho > 0$ (cf. [4], p. 48, the proof of Th. 8).

Note that if X is not finitely sheeted then ϱ_X need not satisfy (w_4) .

2.23. For every Riemann domain $X: \mathcal{L}_{1,2,4}(X) \neq \emptyset$.

Proof. If $N(X) < +\infty$ then the result follows from 2.21 and 2.22. In the general case, let $\eta_0: X \to (0, 1]$ be an arbitrarily fixed continuous function satisfying (w_4) . Put

$$\eta_1 = (\min \{\eta_0, \delta_X\})^{\tilde{}}.$$

Then η_1 satisfies (w_4) and belongs to $\mathcal{L}_{1,4}(X)$ (cf. 2.18). Now one can choose $\psi \in \Psi$ in such a way that

$$\eta := (\eta_1)_{(\Psi)} \in \mathcal{L}_{1,2,4}(X)$$
 (cf. 2.15 and 2.16).

- **2.24.** It is clear that if X is a Stein domain then $\delta_X \in \mathcal{L}_3(X)$.
- **2.25.** If $\mathcal{L}_{3,4}(X) \neq \emptyset$ then X is a Stein domain.

Proof. For the proof it suffices to observe that if $\delta \in \mathcal{L}_{3,4}(X)$ then $-\log \delta$ is a continuous psh. exhaustion function.

2.26. For every Stein domain $X: \mathcal{L}_{1,2,3,4}(X) \neq \emptyset$.

Proof. If $N(X) < +\infty$ then the result follows from 2.21, 2.22 and 2.24. In the general case the proof is analogous with that of 2.23. It is enough to observe that if X is Stein then the function η_0 may be chosen in such a way that $-\log \eta_0 \in \mathrm{PSH}(X)$ (cf. 2.20).

2.27 (cf. [3], §1.5). Let $\eta \in \mathcal{L}_4(X)$ and let G be a locally bounded family of functions $X \to C$. Then there exists a $\psi \in \Psi$ such that

$$\eta_{(\psi)}|g| \leqslant 1, \quad g \in G.$$

Proof. It suffices to take ψ such that

$$\psi(t) \geqslant \sup_{g \in G} \left\{ \sup_{\mathbf{R}_{e^{-t}}} \left\{ \log^{+} |g| \right\} \right\}, \quad t \in \mathbf{R}_{+},$$

where $K_{\tau} := \{ \eta \geqslant \tau \}, \ \tau > 0 \ (cf. \ 2.15).$

The above result implies the following two important corollaries:

2.28. Let X be a Riemann (resp. Stein) domain, let M be an analytic subset of X (including the case where M=X) and let $F\subset \mathcal{O}(M)$ be a locally bounded family of functions. Then there exists $\delta\in\mathcal{L}_{1,2,4}(X)$ (resp. $\delta\in\mathcal{L}_{1,2,3,4}(X)$) such that

$$F \subset \{f \in \mathcal{O}^{(1)}(X, \delta): \|\delta f\|_{\infty} \leq 1\}.$$

Proof. The result is a consequence of 2.23 (resp. 2.26) and 2.27 with $G := \{f \cup 0_{X \setminus M}: f \in F\}$.

2.29. Let X be a Riemann (resp. Stein) domain, let M be an analytic subset of X and let ϑ : $M \to (0, +\infty)$ be such that $1/\vartheta$ is locally bounded. Then there exists a $\delta \in \mathcal{L}_{1,2,4}(X)$ (resp. $\delta \in \mathcal{L}_{1,2,3,4}(X)$) such that

$$\mathcal{O}^{(k)}(M,\,\vartheta)\subset\mathcal{O}^{(k)}(M,\,\delta)$$

and

$$\|\delta^{k}f\|_{\infty} \leq \|\vartheta^{k}f\|_{\infty}, \quad f \in \mathcal{O}^{(k)}(M, \vartheta), k \geq 0.$$

In particular, if ϑ is also bounded then the identity mapping is a bounded algebra monomorphism of $\mathcal{O}(M,\vartheta)$ into $\mathcal{O}(M,\delta)$.

Proof. The result is a consequence of 2.1 (***) and 2.27 with

$$G := \{ (|f|/||\vartheta^k f||_{\infty})^{1/k} \cup 0_{X \setminus M} \colon k > 0, \ f \in \mathcal{O}^{(k)}(M, \ \delta), \ f \neq 0 \}. \quad \blacksquare$$

Let (\hat{X}, \hat{p}) denote the envelope of holomorphy of (X, p) and let $\varphi \colon X \to \hat{X}$ be the embedding of X into \hat{X} (φ is locally biholomorphic and $\hat{p} \circ \varphi = p$).

Let $\delta: X \to (0, 1]$ be a lower semi-continuous function. Define

$$\hat{\delta}=e^{-\Phi^*},$$

where $\Phi := \sup \{u \in PSH(\hat{X}): u \circ \varphi \leq -\log \delta\}$, Φ^* denotes the upper regularization of Φ . The function $\hat{\delta}$ is called the *plurisubharmonic regularization of* δ (cf. [3], § 4.4).

2.30. (a)
$$\hat{\delta} \leqslant 1$$
,

(b) $\delta \leqslant \hat{\delta} \circ \varphi$,

(c)
$$\hat{\delta}$$
: $\hat{X} \rightarrow (0, 1]$ and $-\log \hat{\delta} \in PSH(\hat{X})$.

Proof. (a), (b) follow directly from the definition of $\hat{\delta}$. We pass to the proof of (c). It is known that for every compact $L \subset \hat{X}$ there exists a compact $K \subset X$ such that

$$L \subset [\varphi(K)]^{\sim}_{\mathrm{PSH}(X)} = \{ \hat{x} \in \hat{X} \colon \forall u \in \mathrm{PSH}(\hat{X}) \colon u(\hat{x}) \leqslant \sup_{K} u \circ \varphi \}.$$

In particular,

$$\sup_{L} \Phi \leqslant \sup_{K} (-\log \delta) < +\infty.$$

This proves that the function Φ is locally upper bounded, whence $-\log \hat{\delta} \in PSH(\hat{X})$ (in particular $\hat{\delta}: X \to (0, 1]$).

Analogously with [3], § 4.4 one can easily prove that:

2.31.
$$\varphi^*(\mathcal{O}^{(k)}(\hat{X}, \hat{\delta})) = \mathcal{O}^{(k)}(X, \delta)$$
 and
$$\|\hat{\delta}^k f\|_{\infty} = \|\delta^k (f \circ \varphi)\|_{\infty}, \quad f \in \mathcal{O}^{(k)}(\hat{X}, \hat{\delta}), k \geqslant 0.$$

In particular, $\phi^*|_{\mathcal{O}(\hat{X},\hat{\delta})}$ is a bounded algebra isomorphism of $\mathcal{O}(\hat{X},\hat{\delta})$ onto $\mathcal{O}(X,\delta)$.

2.32. $\delta \in \mathcal{L}_i(X) \Rightarrow \hat{\delta} \in \mathcal{L}_i(X)$, i = 0, 1. (The author does not know whether the above implication is true for i = 2, 4.)

Proof (cf. [14]). Observe that

$$\varphi(\hat{B}_{\mathbf{x}}(\mathbf{x}, \mathbf{r})) = \hat{B}_{\hat{\mathbf{x}}}(\varphi(\mathbf{x}), \mathbf{r}), \quad 0 < \mathbf{r} < \rho_{\mathbf{x}}(\mathbf{x});$$

hence $\varrho_X \leq \varrho_{\hat{X}} \circ \varphi$ and $\delta_X \leq \delta_{\hat{X}} \circ \varphi$. Obviously $-\log \varrho_{\hat{X}}$, $-\log \delta_{\hat{X}} \in \mathrm{PSH}(\hat{X})$. Consequently, if $\delta \leq \varrho_X$ (resp. $\delta \leq \delta_X$) then $\hat{\delta} \leq \varrho_{\hat{X}}$ (resp. $\hat{\delta}_{\hat{X}} \leq \delta_{\hat{X}}$). It remains to show that if $\delta \in \mathcal{L}(X)$ then $(\hat{\delta}) \geq \hat{\delta}$ (cf. 2.19). In view of 2.20, it is enough to prove that $\delta \leq (\hat{\delta}) \circ \varphi$. Fix $x \in X$. Since $\varphi(x \oplus z) = \varphi(x) \oplus z$, $(x, z) \in X^* C^*$, we get

$$(\hat{\delta})^{\sim}(\varphi(x)) = \min \left\{ \inf \left\{ (\hat{\delta} \circ \varphi)(x \oplus z) + ||z|| : ||z|| < \varrho_{X}(x) \right\}, \\ \inf \left\{ \hat{\delta}(\varphi(x) \oplus z) + ||z|| : \varrho_{X}(x) \leqslant ||z|| < \varrho_{\tilde{X}}(\varphi(x)) \right\} \right\} \\ \geqslant \min \left\{ \tilde{\delta}(x), \varrho_{X}(x) \right\} = \delta(x). \quad \blacksquare$$

2.33. Let X be a Stein domain. Then we can take $\hat{X} = X$, $\varphi = \mathrm{id}_X$. Let $\delta \colon X \to (0, 1]$ be a lower semi-continuous function and let $\hat{\delta}$ denote its plurisubharmonic regularization. We already know that $\mathcal{O}(X, \hat{\delta}) = \mathcal{O}(X, \delta)$ (cf. 2.31). Let M be an analytic subset of X, dim $M \le n-1$. Then obviously $\mathcal{O}^{(k)}(M, \hat{\delta}) \subset \mathcal{O}^{(k)}(M, \delta)$, $k \ge 0$.

Note that in general $\mathcal{O}(M, \hat{\delta})$ need not be equal to $\mathcal{O}(M, \delta)$ (even if X, M, δ are very regular). For example:

Let
$$X = \mathbb{C}^2$$
, $M = \{z_2 = 0\}$. Set

$$\eta(z_1, z_2) = \begin{cases} \delta_0(z_1, z_2) & \text{if } z_2 \neq 0, \\ e^{-|z_1|} & \text{if } z_2 = 0. \end{cases}$$

Note that $\eta \leq \delta_0$ and $1/\eta$ is locally bounded. Let $\delta := \tilde{\eta}$. Then $e^{z_1} \in \mathcal{O}^{(1)}(M, \delta)$. We shall show that $e^{z_1} \notin \mathcal{O}(M, \hat{\delta})$.

Note that

$$\begin{split} \delta(z_1,\,z_2) &\geqslant \min\big\{\delta_0(z_1,\,z_2),\,\inf\big\{e^{-|w_1|} + \sqrt{|z_1-w_1|^2 + |z_2|^2}\colon\,w_1 \in C\big\}\big\},\\ \text{so } \delta(z_1,\,z_2) &= \delta_0(z_1,\,z_2),\,|z_2| \geqslant 1. \text{ Hence, since } -\log\hat{\delta} \in \mathrm{PSH}(X),\\ &-\log\hat{\delta}(z_1,\,0) \leqslant \max_{|z_2|=1}\big\{-\log\hat{\delta}(z_1,\,z_2)\big\} = -\log\delta_0(z_1,\,1), \end{split}$$

so
$$\hat{\delta}(z_1, 0) \ge \delta_0(z_1, 1), z_1 \in C$$
.

Consequently, for every $k \ge 0$:

$$\sup_{M} \{ \hat{\delta}^{k} | e^{z_{1}} | \} \geqslant \sup \{ (2 + x^{2})^{-k/2} e^{x_{1}} | x \in \mathbf{R} \} = + \infty.$$

2.34. In the case where $X \in \text{top } C^n$ the class of weight functions may be extended as follows (cf. [2], [6]):

A function $\eta: X \to (0, +\infty)$ is said to be a generalized weight function on X $(\eta \in \mathcal{W}^g(X))$ if there exist constants $c_0, c_1 > 0, 0 < c_2 < 1, \alpha_1 > 0, \alpha_2 \ge 1$ such that

$$\eta \le c_0 \, \delta_0,$$

$$[x \in X, \ y \in \mathbb{C}^n, \ ||x - y|| \le c_1 \, \eta^{\alpha_1}(x)] \Rightarrow [y \in X, \ \eta(y) \ge c_2 \, \eta^{\alpha_2}(x)].$$

If moreover $-\log \eta \in \mathrm{PSH}(X)$ then we say that η is regular $(\eta \in \mathscr{W}^{\mathfrak{p}}_{r}(X))$.

Note that $\mathscr{W}(X) \notin \mathscr{W}^g(X)$ and $\mathscr{W}_r(X) \notin \mathscr{W}^g_r(X)$, but from the point of view of the theory of δ -tempered functions the classes $\mathscr{W}(X)$ and $\mathscr{W}^g(X)$ are equivalent, namely (cf. [3], §§ 1.4, 4.4) for every $\eta \in \mathscr{W}^g(X)$ (resp. $\eta \in \mathscr{W}^g_r(X)$) there exist constants $c, \gamma > 0$ such that the function $\delta := (c\eta^{\gamma})^{\sim}$ is equivalent to η and belongs to $\mathscr{W}(X)$ (resp. $\mathscr{W}_r(X)$).

We have shown how the study of δ -tempered holomorphic functions on a Riemann domain X may be reduced to the case where X is a Stein domain and δ is a Lipschitz function satisfying some of the conditions $(w_1), \ldots, (w_d)$.

Now we would like to present the special properties of $\mathcal{O}(X, \delta)$ in the case where X and δ are sufficiently regular.

We need some auxiliary notations.

Let $\delta: X \to (0, +\infty)$ be a λ -measurable function. For $k \ge 0$ define

$$H^{(k)}(X,\,\delta)=\{f\in\mathcal{O}(X);\,\delta^kf\in L^2(X)\}$$
2 – Dissertationes Mathematicae CCLVIII

and let

$$H(X, \delta) = \bigcup_{k \geq 0} H^{(k)}(X, \delta).$$

2.35 (cf. 2.1). (a) The space $H^{(k)}(X, \delta)$ with the scalar product

$$(f, g) \to \int_X f \, \bar{g} \delta^{2k} \, d\lambda_X$$

is a complex unitary space $(k \ge 0)$.

(b) If δ is bounded then

$$H^{(k)}(X, \delta) \subset H^{(k')}(X, \delta), \quad k' \geqslant k;$$

in particular, $H(X, \delta)$ is a complex space and

$$H(X, \delta) = \bigcup_{k \in N} H^{(k)}(X, \delta).$$

(c) If $1/\delta$ is locally bounded then for every compact $K \subset X$ there exists a constant c(K) > 0 such that

$$\sup_{k} |f| \leq [c(K)]^{k} ||\delta^{k} f||_{2}, \quad f \in H^{(k)}(X, \delta), \ k \geq 0.$$

Consequently, $H^{(k)}(X, \delta)$ is a complex Hilbert space which topology is stronger than the topology of uniform convergence on compact subsets of X.

- (d) $1 \in H(X, \delta)$ iff δ satisfies (w_2) .
- (e) If $\delta^{\alpha_0} \in L^2(X)$ then

$$\mathcal{O}^{(k)}(X,\,\delta)\subset H^{(k+\alpha_0)}(X,\,\delta)$$

and

$$\|\delta^{k+\alpha_0} f\|_2 \leq \|\delta^{\alpha_0}\|_2 \|\delta^k f\|_{\infty}, \quad f \in \mathcal{O}^{(k)}(X, \delta), \ k \geq 0.$$

2.36. One may also easily prove (cf. [10], Th. I) that if dim $\mathcal{O}(X) = \infty$ and $1/\delta$ is locally bounded then $H^{(k)}(X, \delta)$ is of the first Baire category in $\mathcal{O}(X)$ ($k \ge 0$). Consequently, if δ is bounded then $H(X, \delta)$ is of the first Baire category in $\mathcal{O}(X)$.

2.37 ([3], § 1.3, [8], Prop. 3). If
$$\delta \in \mathcal{L}(X)$$
 then

$$H^{(k)}(X, \delta) \subset \mathcal{O}^{(k+n)}(X, \delta)$$

and

$$\|\delta^{k+n} f\|_{\infty} \le c(n, k) \|\delta^{k} f\|_{2}, \quad f \in H^{(k)}(X, \delta), \ k \ge 0,$$

where $c(n, k) = [\tau_n \max \{\epsilon^n (1-\epsilon)^k : 0 < \epsilon < 1\}]^{-1}, \tau_n = the volume of the unit ball in <math>\mathbb{C}^n$.

In view of 2.35 (e) and 2.37, if $\delta \in \mathcal{L}_2(X)$ then $\mathcal{O}(X, \delta) = H(X, \delta)$ and the structures of $\mathcal{O}(X, \delta)$ and $H(X, \delta)$ are isomorphic.

2.38 ([3], § 1.3, [8], Prop. 2). If
$$\delta \in \mathcal{L}(X)$$
 then $\|\delta^{k+|\nu|}(\partial^{\nu}f)\|_{\infty} \leq \nu! \sqrt{n^{|\nu|}} 2^{k+|\nu|} \|\delta^{k}f\|_{\infty}, \quad f \in \mathcal{C}^{(k)}(X, \delta), k \geq 0, \nu \in \mathbb{Z}_{+}^{n},$

where

$$\frac{\partial f}{\partial p_{j}}(x) := \frac{\partial (f \circ p_{x}^{-1})}{\partial z_{j}} (p(x)), \quad j = 1, \dots, n,$$

$$\partial^{\nu} := \left(\frac{\partial}{\partial p_{1}}\right)^{\nu_{1}} \circ \dots \circ \left(\frac{\partial}{\partial p_{n}}\right)^{\nu_{n}}, \quad \nu = (\nu_{1}, \dots, \nu_{n}) \in \mathbb{Z}_{+}^{n}.$$

Consequently, for every $v \in \mathbb{Z}_+^n$, ∂^v is a bounded linear operator of $\mathcal{O}(X, \delta)$ into $\mathcal{O}(X, \delta)$.

2.39. Let $\delta \in \mathcal{L}(X)$ and let $G = (G_1, ..., G_m): X \to \mathbb{C}^n$ be such that $G_j \in \mathcal{C}^{(k)}(X, \delta), j = 1, ..., m$. Put

$$||G|| := (|G_1|^2 + \ldots + |G_m|^2)^{1/2}$$
 and $||\delta^k G||_{\infty} := \sup_{\mathbf{r}} \{\delta^k ||G||\}.$

Let $d_x^{(s)}G := d_{p(x)}^{(s)}(G \circ p_x^{-1}) =$ the sth differential of G at x $(s \in N)$. $d_x^{(s)}G$ is a homogeneous polynomial of degree s of C^n into C^m .

By the Cauchy inequalities

$$||d_{x}^{(s)}G|| \leq s! \left[\frac{2}{\delta(x)}\right]^{s} \max \{||G(x \oplus z)||: ||z|| = \frac{1}{2}\delta(x)\}$$

$$\leq s! \left[\frac{2}{\delta(x)}\right]^{k+s} ||\delta^{k}G||_{\infty}, \quad x \in X, \ s \in N.$$

In particular,

(2.40)
$$\delta^{k+1} \left\| \frac{\partial G}{\partial p_i} \right\| \leq 2^{k+1} \left\| \delta^k G \right\|_{\infty}, \quad j = 1, \ldots, n.$$

Note that

$$G(x \oplus z) - G(x) = \int_{0}^{1} (d_{x \oplus z}^{(1)} G)(z) dt$$

$$= (d_{x}^{(1)} G)(z) + \int_{0}^{1} (1 - t) (d_{x \oplus z}^{(2)} G)(z) dt, \quad (x, z) \in X^{*} C^{n}.$$

Hence in view of (* *) we get the following two very useful estimates:

$$(2.41) ||G(x \oplus z) - G(x)|| \le \left\lceil \frac{4}{\delta(x)} \right\rceil^{k+1} ||\delta^k G||_{\infty} ||z||, ||z|| \le \frac{1}{2} \delta(x).$$

$$(2.42) \quad ||G(x \oplus z) - G(x)|| \ge ||d_x G(z)|| - 2 \left[\frac{4}{\delta(x)} \right]^{k+2} ||\delta^k G||_{\infty} ||z||^2, \ ||z|| \le \frac{1}{2} \delta(x).$$

- **2.43** ([12], the proof of Lemma 3, [14], 2.3). Let X be a Stein domain, $\delta \in \mathcal{L}_{1,3}(X)$. Then, for every $k \ge 0$, $a \in X$, there exists a $u_a \in \mathcal{C}^{(k+4n)}(X, \delta)$ such that
 - (i) $u_a(a) = 1$,
 - (ii) $u_a(x) = 0$, $x \in p^{-1}(p(x))$, $x \neq a$,
 - (iii) $\|\delta^{k+4n}u_a\|_{\infty} \leq c(n, k)\delta^{k-2n}(a)$, where c(n, k) depends only on n and k. In particular, $\mathcal{O}^{(4n)}(X, \delta)$ separates points in X.
 - **2.44** ([8], Th. 4). Let X be a Stein domain, $\delta \in \mathcal{L}_{1,3}(X)$. Then
- (a) $\mathcal{C}(X,\delta)$ is dense in $\mathcal{C}(X)$ in the topology of uniform convergence on compact subsets of X;
- (b) For every k > 6n there exists an $f \in C^{(k)}(X, \delta)$ such that X is the maximal domain of existence of f.

In particular, in view of 2.31 and 2.32 we get

- **2.45.** For every Riemann domain X and for every $\delta \in \mathcal{W}(X)$:
- (a) If $\mathcal{O}(X)$ separates points then so does $\mathcal{O}^{(4n)}(X, \delta)$;
- (b) $\mathcal{O}(X, \delta)$ is dense in $\mathcal{O}(X)$.
- **2.46** ([14], Th. 2). Let X be a Stein domain, $\delta \in \mathcal{W}_r(X)$. Then $S_b(X, \delta) = E(X, \delta)$. If, moreover, X is finitely sheeted then $S(X, \delta) = S_b(X, \delta) = E(X, \delta)$.

(The author does not know any example of an infinitely sheeted Stein domain and $\delta \in \mathcal{W}(X)$ for which $E(X, \delta) \not\equiv S(X, \delta)$.)

§3. Holomorphic continuation and holomorphic retractions

Let X be a complex analytic space countable at infinity, let M be a closed subspace of X and let $R = R_M^X$ denote the restriction operator

$$\mathcal{O}(X) \ni f \to f|_{M} \in \mathcal{O}(M)$$
.

We shall always assume that every connected component of X intersects M. Let $\delta: X \to (0, +\infty)$ be a fixed bounded function such that $1/\delta$ is locally bounded.

We shall study the following problem of holomorphic continuation. Given X, M, δ , find when

(C)
$$\mathcal{O}(M, \delta) = R_M^X(\mathcal{O}(X, \delta))$$
, i.e., $\forall f \in \mathcal{O}(M, \delta) \exists \hat{f} \in \mathcal{O}(X, \delta)$: $\hat{f}|_M = f$.

The basic problem (C) has many stronger versions – for example:

(C_d) (Continuation with controlled degree)

$$\forall k \; \exists \, \hat{k} \colon \; \mathcal{O}^{(k)}(M, \, \delta) \subset R(\mathcal{O}^{(\hat{k})}(X, \, \delta)).$$

(C_{d,p}) (Continuation with controlled degree and norm)

$$\forall k \; \exists \; \hat{k}, \; \exists \; b > 0 \colon \; \mathcal{O}^{(k)}(M, \; \delta) \subset R\left(\mathcal{O}^{(\hat{k})}(X, \; \delta)\right)$$

and

$$\forall f \in \mathcal{C}^{(k)}(M, \delta) \ \exists \ \hat{f} \in \mathcal{C}^{(k)}(X, \delta) \colon \hat{f}|_{M} = f, \quad \|\delta^{\hat{k}} \hat{f}\|_{\infty} \leqslant b \|\delta^{k} f\|_{\infty}.$$

(C_{dn}) (Linear continuation with controlled degree and norm)

$$\forall k \; \exists \; \hat{k}, \; \exists \; L_k \colon \; \mathcal{O}^{(k)}(M, \; \delta) \to \mathcal{O}^{(\hat{k})}(X, \; \delta) \colon \; L_k \; \text{ is a linear continuous extension operator.}$$

(L) (Linear continuation with uniform estimate of degree and geometrical estimate of norm)

$$\exists \sigma \geqslant 0$$
: $\forall \eta > 1 \ \exists c = c(\eta)$:

$$\forall k \; \exists L_k : \; \mathcal{O}^{(k)}(M, \, \delta) \to \mathcal{O}^{(k+\sigma)}(X, \, \delta) : \; L_k \text{ is a linear continuous}$$
 extension operator with $||L_k|| \leq c\eta^k$.

(L₀) (A limit version of (L))

$$\exists c > 0: \forall k \ \exists L_k: \ \mathcal{C}^{(k)}(M, \delta) \to \mathcal{C}^{(k)}(X, \delta): \ L_k \text{ is a linear continuous extension operator with } ||L_k|| \leq c.$$

(H) (Homomorphic continuation)

 $\exists T: \mathcal{O}(M, \delta) \to \mathcal{O}(X, \delta)$: T is a homomorphic extension operator.

(H_b) (Bounded homomorphic continuation)

 $\exists T: \mathcal{O}(M, \delta) \to \mathcal{O}(X, \delta)$: T is a bounded homomorphic extension operator.

It can be seen that:

$$(L_o) \Rightarrow (L) \Rightarrow (C_{d,n,1}) \Rightarrow (C_{d,n}) \Rightarrow (C_d) \Rightarrow (C)$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Below we shall show (cf. 3.5, 3.9 and 4.5) that if X is a finitely sheeted Stein domain over \mathbb{C}^n (e.g., X is a domain of holomorphy in \mathbb{C}^n), $\delta \in \mathscr{W}_r(X)$ and M is an analytic subset of X determined by functions from $\mathscr{O}(X, \delta)$ then:

$$(L_o) \Rightarrow (L) \Rightarrow (C_{d,n,l}) \Leftrightarrow (C_{d,n}) \Leftrightarrow (C_d) \Leftrightarrow (C)$$

$$(H) \Leftrightarrow (H_b)$$

Let us start with a few general remarks relating to bounded linear operators between algebras of δ -tempered functions.

Let X_1 , X_2 be two complex analytic spaces countable at infinity and let δ_j : $X_j \to (0, +\infty)$ be a bounded function such that $1/\delta_j$ is locally bounded, j = 1, 2. Let L: $\mathcal{O}(X_1, \delta_1) \to \mathcal{O}(X_2, \delta_2)$ be a linear operator.

LEMMA 3.1. The following conditions are equivalent:

- (i) L is bounded.
- (ii) For every $k_1 \ge 0$ and for every $x_2 \in X_2$ the operator

$$\mathcal{O}^{(k_1)}(X_1, \delta_1) \ni f \to (Lf)(x_2) \in C$$

is continuous.

Proof (the method of the proof is taken from [20]). The implication (i) \Rightarrow (ii) is obvious. For the proof of (ii) \Rightarrow (i), let us fix $k_1 \ge 0$ and observe that it is enough to prove that there exist r_1 , $r_2 > 0$ and $k_2 \ge 0$ such that:

(*)
$$[f \in \mathcal{O}^{(k_1)}(X_1, \, \delta_1), \, ||\delta_1^{k_1} f||_{\infty} \leqslant r_1] \Rightarrow [||\delta_2^{k_2}(Lf)||_{\infty} \leqslant r_2].$$

For λ , μ , $\nu \in N$ let

$$C_{\lambda,\mu,\nu} := \{ f \in \mathcal{O}^{(k_1)}(X_1,\,\delta_1) \colon \, \|\delta_1^{k_1} f\|_{\infty} \leqslant \lambda, \, \|\delta_2^{\mu}(Lf)\|_{\infty} \leqslant \nu \}.$$

The set $C_{\lambda,\mu,\nu}$ is absolutely convex and

$$\bigcup_{\lambda,\mu,\nu\in\mathbf{N}}C_{\lambda,\mu,\nu}=\mathcal{O}^{(k_1)}(X_1,\,\delta_1).$$

The space $\mathcal{O}^{(k_1)}(X_1, \delta_1)$ has the Baire property, whence for some λ_0 , μ_0 , $\nu_0 \in \mathbb{N}$, int $\operatorname{cl}(C_{\lambda_0,\mu_0,\nu_0}) \neq \emptyset$ (the interior and the closure are taken in the sense of $\mathcal{O}^{(k_1)}(X_1, \delta_1)$). In consequence there exists an $r_1 > 0$ such that

$$B_{r_1} := \{ f \in \mathcal{O}^{(k_1)}(X_1, \, \delta_1) \colon \| \delta_1^{k_1} f \|_{\infty} \leqslant r_1 \} \subset \mathrm{cl}(C_{\lambda_0, \mu_0, \nu_0}).$$

We shall prove that

$$\|\delta_2^{\mu_0}(Lf)\|_{\infty} \leq 2\nu_0, \quad f \in B_{r_1}(\text{cf. (*)}).$$

Fix $f_0 \in B_{r_1}$. Since

$$\operatorname{cl}(C_{\lambda_0,\mu_0,\nu_0}) \subset C_{\lambda_0,\mu_0,\nu_0} + \frac{1}{2}B_{r_1},$$

there exist sequences $(g_s)_{s=0}^\infty \subset C_{\lambda_0,\mu_0,\nu_0}$ and $(f_s)_{s=1}^\infty \subset B_{r_1}$ such that

$$f_s = g_s + \frac{1}{2} f_{s+1}, \quad s \geqslant 0.$$

Hence

$$f_0 = \left(\sum_{s=0}^t 2^{-s} g_s\right) + 2^{-t-1} f_{t+1}, \quad t \geqslant 1.$$

The sequence $(f_t)_{t=0}^{\infty}$ is bounded in $\mathcal{O}^{(k_1)}(X_1, \delta_1)$, and so the series $\sum_{s=0}^{\infty} 2^{-s} g_s$ is convergent in $\mathcal{O}^{(k_1)}(X_1, \delta_1)$ to f_0 .

On the other hand, since $g_s \in C_{\lambda_0, \mu_0, \nu_0}$, $s \ge 0$, the series $\sum_{s=0}^{\infty} 2^{-s} L g_s$ is absolutely convergent in $\mathcal{O}^{(\mu_0)}(X_2, \delta_2)$ to an element with the norm $\le 2\nu_0$.

In view of (ii)

$$Lf_0 = \sum_{s=0}^{\infty} 2^{-s} L g_s,$$

which finishes the proof.

Lemma 3.2. Assume that L is bounded. Then the following conditions are equivalent:

- (i) L is surjective.
- (ii) $\forall k_2 \; \exists \; k_1 \colon \; \mathcal{O}^{(k_2)}(X_2, \, \delta_2) \subset L(\mathcal{O}^{(k_1)}(X_1, \, \delta_1)).$
- (iii) $\forall k_2 \ \exists k_1, \exists b > 0$: $\mathcal{O}^{(k_2)}(X_2, \delta_2) \subset L(\mathcal{O}^{(k_1)}(X_1, \delta_1))$ and

$$\forall f_2 \in \mathcal{O}^{(k_2)}(X_2, \, \delta_2) \, \exists f_1 \in \mathcal{O}^{(k_1)}(X_1, \, \delta_1) \colon Lf_1 = f_2, \, \|\delta_1^{k_1} f_1\|_{\infty} \leqslant b \, \|\delta_2^{k_2} f_2\|_{\infty}.$$

Proof. The implications (iii) \Rightarrow (ii) \Rightarrow (i) are obvious. The proof of (i) \Rightarrow (iii) is analogous with the proof of Lemma 3.1. Fix k_2 . It suffices to prove that there exist r_1 , $r_2 > 0$, $k_1 \ge 0$ such that

$$B_{r_2} := \{ f_2 \in \mathcal{O}^{(k_2)}(X_2, \, \delta_2) \colon \| \delta_2^{k_2} f_2 \|_{\infty} \leqslant r_2 \} \subset L(B_{r_1}),$$

where

$$B_{r_1} := \{ f_1 \in \mathcal{O}^{(k_1)}(X_1, \, \delta_1) \colon \| \delta_1^{k_1} f_1 \|_{\infty} \leqslant r_1 \}.$$

Let

$$C_{\lambda,\mu,\nu} = \{ f_2 \in \mathcal{O}^{(k_2)}(X_2, \, \delta_2) \colon \| \delta_2^{k_2} f_2 \|_{\infty} \leqslant \lambda, \, \exists \, f_1 \in \mathcal{O}^{(\mu)}(X_1, \, \delta_1) \colon \\ Lf_1 = f_2, \, \| \delta_1^{\mu} f_1 \|_{\infty} \leqslant \nu \}.$$

There exist λ_0 , μ_0 , ν_0 and $r_2 > 0$ such that

$$B_{r_2} \subset \operatorname{cl}(C_{\lambda_0,\mu_0,\nu_0})$$
 (cf. the proof of Lemma 3.1).

Fix $f_0 \in B_{r_2}$. As in Lemma 3.1, one can construct a sequence $(g_s)_{s=0}^{\infty} \subset C_{\lambda_0,\mu_0,\nu_0}$ such that

$$f_0 = \sum_{s=0}^{\infty} 2^{-s} g_s,$$

where the series is convergent in $\mathcal{O}^{(k_2)}(X_2, \delta_2)$.

In view of the definition of $C_{\lambda_0,\mu_0,\nu_0}$ there exists a sequence $(h_i)_{i=0}^{\infty} \subset \mathcal{O}^{(\mu_0)}(X_1, \delta_1)$ such that

$$Lh_s = g_s, \quad s \geqslant 0$$

and the series $\sum_{s=0}^{\infty} 2^{-s} h_s$ is absolutely convergent in $\mathcal{C}^{(\mu_0)}(X_1, \delta_1)$ to an

element \hat{f}_0 with the norm $\leq 2v_0$. Since L is bounded, we get

$$L\hat{f}_0=f_0,$$

which gives the required result with $r_1 = 2v_0$, $k_1 = \mu_0$.

COROLLARY 3.3. The conditions (C), (C_d) and $(C_{d,n})$ are equivalent.

Proof. The result is a consequence of Lemma 3.2 with $X_1 = X$, $X_2 = M$, $\delta_1 = \delta$, $\delta_2 = \delta|_M$, $L = R_M^X$.

We shall need the following lemma on the solvability of a system of linear equations.

LEMMA 3.4. Let E be a normed space, H a Hilbert space, D a linear subspace of H, and let $T_{\alpha} \colon D \to E$, $\alpha \in A$, be a family of linear operators such that

$$S:=\{v\in D\colon T_\alpha v=0,\ \alpha\in A\}$$

is a closed subspace of H.

Assume that

$$\exists c > 0$$
: $\forall u \in E \ \exists v \in D$: $\forall \alpha \in A$: $T_{\alpha}v = u \ and \ ||v||_{H} \leq c ||u||_{E}$.

Then there exists a linear continuous operator

$$L: E \rightarrow D$$

such that

$$T_{\alpha} \circ L = \mathrm{id}, \quad \alpha \in A, \quad and \quad ||L|| \leq 2c.$$

Proof (cf. the proof of Lemma 1 in [11]). Let $P: H \to S$ denote the orthogonal projection. We can put

$$Lu := v - Pv, \quad u \in E,$$

where v = v(u) is an element of D such that $T_{\alpha}v = u$, $\alpha \in A$.

COROLLARY 3.5. Let X be a Riemann domain, $\delta \in \mathcal{L}_2(X)$. Then the conditions (C), (C_d), (C_{d,n}) and (C_{d,n,l}) are equivalent.

Proof. In view of Corol. 3.3, it is enough to prove that $(C_{d,n}) \Rightarrow (C_{d,n,l})$. Fix k and let \hat{k} and b be as in $(C_{d,n})$. In view of 2.35 (e),

$$C^{(\hat{k})}(X,\delta) \subset H^{(\hat{k}+\alpha_0)}(X,\delta)$$

and

$$\|\delta^{\hat{k}+\alpha_0}g\|_2 \leqslant \|\delta^{\alpha_0}\|_2 \|\delta^{\hat{k}}g\|_\infty, \quad g \in \mathcal{C}^{(\hat{k})}(X, \delta).$$

Let $E:=\mathcal{O}^{(k)}(M,\,\delta),\, H:=H^{(k+\alpha_0)}(X,\,\delta),\, D:=\{g\in H\colon g\,|_M\in E\},\, T_\alpha=R_M^X.$ Note that the set $S=\{g\in H\colon g\,|_M=0\}$ is closed (2.35 (c)). Hence, by Lemma 3.4, there exists a linear continuous operator

$$L_k \colon E \to D$$

such that $R \circ L_k = \text{id}$ and $||L_k|| \leqslant 2b ||\delta^{\alpha_0}||_2$.

According to 2.37, L_k may be regarded as an operator into $\mathcal{O}^{(\hat{k}+\alpha_0+n)}(X,\delta)$ with the norm $\leq 2b \|\delta^{\alpha_0}\|_2 c(n, \hat{k}+\alpha_0)$.

LEMMA 3.6. Assume that (X_1, p) is a Stein domain over \mathbb{C}^n , $\delta_1 \in \mathcal{W}_r(X_1)$. Then for every bounded algebra homomorphism

$$T: \mathcal{O}(X_1, \delta_1) \to \mathcal{O}(X_2, \delta_2)$$

with $T1 \equiv 1$ there exists exactly one holomorphic mapping

$$\varphi \colon X_2 \to X_1$$

such that

(**)
$$\delta_2^{\gamma} \leqslant c\delta_1 \circ \varphi \ (\gamma, c > 0 \ constants) \quad and \quad T = \varphi^*|_{\mathfrak{C}(X_1, \delta_1)}.$$

Moreover, if X_1 is finitely sheeted then the same is true for every algebra homomorphism T with $T1 \equiv 1$ (in consequence T has to be bounded).

Note that, in view of 2.5, the above result gives a full characterization of all bounded homomorphisms T with $T1 \equiv 1$.

Proof (the proof is based on the methods of [12]). Fix an algebra homomorphism (resp. bounded algebra homomorphism) T with $T1 \equiv 1$. For $x_2 \in X_2$ let $\xi \colon \mathcal{O}(X_1, \delta_1) \to C$ be given by the formula

$$\xi f = (Tf)(x_2), \quad f \in \mathcal{O}(X_1, \delta_1).$$

Then $\xi \in S(X, \delta)$ (resp. $\xi \in S_b(X, \delta)$). By 2.46, there exists exactly one point $x_1 \in X_1$ such that

$$\xi f = f(x_1), \quad f \in \mathcal{O}(X_1, \delta_1).$$

Put $\varphi(x_2) := x_1$. Then $\varphi: X_2 \to X_1$ and $T = \varphi^*|_{\varphi(X_1, \delta_1)}$. In particular T satisfies condition (ii) of Lemma 3.1, and so T is bounded. It remains to prove (**) and show that φ is holomorphic.

Due to 2.43, there exists a family $(v_a)_{a \in X_1} \subset \mathcal{O}^{(6n+1)}(X_1, \delta_1)$ such that

$$\delta_1(a)\,v_a(a)=1,$$

$$||\delta_1^{6n+1}v_a||_{\infty} \leqslant c(n), \quad a \in X_1,$$

where c(n) depends only on n.

Since T is bounded, there exist γ , c > 0 such that

$$||\delta_2^{\gamma}(v_a\circ\varphi)||_{\infty}\leqslant c, \quad a\in X_1.$$

In particular,

$$\delta_2^{\gamma}(x_2) \left| v_{\varphi(x_2)}(\varphi(x_2)) \right| \leqslant c, \quad x_2 \in X_2,$$

which proves (**).

We pass to the proof that φ is holomorphic. Note that

$$f \circ \varphi \in \mathcal{O}(X_2), \quad f \in \mathcal{O}(X_1, \delta_1);$$

in particular, $p \circ \varphi \in [\mathcal{O}(X_2)]^n$, and so it suffices to show that φ is continuous.

Let $X_2 \ni x_s \to x_0 \in X_2$, $y_s := \varphi(x_s)$, $z_s := p(y_s)$, $s \ge 0$. Observe that $z_s \to z_0$. $1/\delta_2$ is locally bounded, and so there exists an $\varepsilon > 0$ such that

$$\delta_2(x_s) \geqslant \varepsilon, \quad s \geqslant 0;$$

thus

$$\delta_1(y_s) \geqslant \frac{1}{c} \delta_2^{\gamma}(x_s) \geqslant \frac{1}{c} \varepsilon^{\gamma} = : 2r, \quad s \geqslant 0.$$

We may assume that $||z_s - z_0|| < r$, $s \ge 1$. Then there exists a sequence $(w_s)_{s=1}^{\infty} \subset p^{-1}(z_0)$ such that $w_s \in \hat{B}(y_s, r)$, $s \ge 1$.

Now we have two possibilities:

- (a) There exists an s_0 such that $w_s = y_0$, $s \ge s_0$. In this case $y_s \in \hat{B}(y_0)$, $s \ge s_0$, and so $y_s \to y_0$.
- (b) There exists a subsequence $(w_{s_t})_{t=1}^{\infty}$ such that $w_{s_t} \neq y_0$, $t \ge 1$. We may assume that this subsequence coincides with the initial sequence $(w_s)_{s=1}^{\infty}$. In this case, in view of 2.43, there exists a function $f_0 \in \ell^{(4n)}(X_1, \delta_1)$ such that $f_0(w_s) = 0$, $s \ge 1$, $f_0(y_0) = 1$. The function $f_0 \circ \varphi$ is holomorphic; in particular, $f_0(y_s) \to f_0(y_0) = 1$. On the other hand, in view of (2.41),

$$|f_0(y_s)| = |f_0(y_s) - f_0(w_s)| \le \left[\frac{4}{\delta_1(y_s)}\right]^{4n+1} ||\delta_1^{4n} f_0||_{\infty} ||z_s - z_0||$$

$$\le (2/r)^{4n+1} ||\delta_1^{4n} f_0||_{\infty} ||z_s - z_0|| \to 0 \quad \text{as} \quad s \to +\infty,$$

which gives a contradiction.

Remark 3.7. If X_1 is not Stein then the assertion of Lemma 3.6 need not be true. For example:

Let X, \hat{X} , φ , δ , $\hat{\delta}$ be as in 2.31. Assume that $\delta \in \mathcal{W}(X)$ and $\varphi(X) \neq \hat{X}$. Then $(\varphi^*|_{\mathcal{O}(\hat{X},\hat{\delta})})^{-1}$ is a bounded algebra isomorphism of $\mathcal{O}(X,\delta)$ onto $\mathcal{O}(\hat{X},\hat{\delta})$ which is not given by any mapping of \hat{X} into X.

Corollary 3.8. Let X_1 , X_2 be Stein domains, $\delta_j \in \mathcal{W}_r(X_j)$, j=1, 2. Then for every bounded algebra isomorphism $T \colon \mathcal{C}(X_1, \delta_1) \to \mathcal{C}(X_2, \delta_2)$ there exists a biholomorphic mapping $\varphi \colon X_2 \to X_1$ which satisfies (**) (of Lemma 3.6) and is such that $T = \varphi^*|_{\mathcal{C}(X_1, \delta_1)}$.

If X_1 , X_2 are finitely sheeted (e.g., X_1 , X_2 are domains of holomorphy in C^n) then the same is true for every algebra isomorphism of $\mathcal{O}(X_1, \delta_1)$ onto $\mathcal{O}(X_2, \delta_2)$.

COROLLARY 3.9 (A characterization of solvability of (H) and (H_b)). Let X be a Stein domain, $\delta \in \mathscr{W}_r(X)$ and suppose that $M = \bigcap_{f \in F} f^{-1}(0)$, where F is a family of functions from $\mathcal{O}(X, \delta)$ (we always assume that every connected component of X intersects M). Then for every bounded homomorphic extension

operator $T: \mathcal{O}(M, \delta) \to \mathcal{O}(X, \delta)$ there exists exactly one holomorphic retraction $\pi: X \to M$ such that

$$\binom{*}{*}$$
 $\delta^{\gamma} \leq c\delta \circ \pi \ (\gamma, c > 0 \ constants) \quad and \quad T = \pi^*|_{\mathcal{C}(M,\delta)}.$

If X is finitely sheeted then the same is true for every homomorphic extension operator T (which, in consequence, has to be bounded).

Proof. The operator $T \circ R : \mathcal{O}(X, \delta) \to \mathcal{O}(X, \delta)$ is a bounded algebra homomorphism (resp. algebra homomorphism) and $(T \circ R)(1) \equiv 1$. Hence, by Lemma 3.6, there exists exactly one holomorphic mapping $\pi: X \to X$ such that $(*_*)$ holds true and $T \circ R = \pi^*|_{\mathscr{O}(X,\delta)}$. In particular, $f \circ \pi = T(f|_{M})$ = T(0) = 0, $f \in F$, and so $\pi: X \to M$. If $f \in \mathcal{O}(M, \delta)$ then we have $f \circ \pi$ $=(Tf)\circ\pi=(T\circ R)(Tf)=Tf$. Hence $T=\pi^*|_{\alpha(M,\delta)}$. The space $\mathcal{O}(M,\delta)$ separates points and thus π is a retraction.

Remark 3.10. Let X be a complex manifold and let M be an analytic subset of X. It is known that if $\pi: X \to M$ is a holomorphic retraction then M has to be a submanifold (if X is disconnected then connected components of M may have different dimensions). In particular, under the assumptions of Corol. 3.9, if the triple (X, M, δ) satisfies (H_h) then M has to be a submanifold.

The existence of global holomorphic retractions $\pi: X \to M$ with (*,*) as in Corol. 3.9 seems to be very rare (even without the condition (**)). On the other hand, it is known that if M is a submanifold of X then there exists a neighbourhood U of M and a holomorphic retraction $\pi: U \to M$. In the case of problem (L) this leads to the following idea (a different approach was presented, for instance, in [13], [21], [22]):

LEMMA 3.11. Let X be Riemann domain over C^n , let $\delta \in \mathcal{L}_2(X)$. Suppose that there exists a $\sigma_0 \ge 0$ such that for every $0 < \varepsilon < 1$ there exists an open neighbourhood U of M, a holomorphic retraction $\pi: U \to M$ and a constant c > 0 such that

- (i) $\forall x \in U$: $x \in \hat{B}(\pi(x), \varepsilon \delta(\pi(x)))$, (ii) $\forall l \ \forall f \in H^{(l)}(U, \delta) \ \exists \hat{f} \in H^{(l+\sigma_0)}(X, \delta)$:

$$|\hat{f}|_{\mathbf{M}} = f$$
 and $||\delta^{l+\sigma_0} \hat{f}||_2 \leqslant c ||\delta^l f||_2$.

Then the triple (X, M, δ) satisfies (L) with $\sigma = \sigma_0 + \alpha_0 + n$.

Proof. Fix $\eta > 1$ and let $0 < \varepsilon < 1$ be fixed in such a way that $\frac{1+\varepsilon}{1-\varepsilon} \le \eta$. Let U, π , c be associated with ε according to the assumptions.

In view of 2.35 (e), the operator

$$L_k^{(1)}: \mathcal{O}^{(k)}(M, \delta) \ni f \to f \circ \pi \in H^{(k+\alpha_0)}(U, \delta)$$

is well-defined, linear, continuous and has the norm $\leq ||\delta^{\alpha_0}||_2 (1+\epsilon)^k$.

In view of (ii), by Lemma 3.4 (cf. the proof of Corol. 3.5 and 2.37) there exists a linear continuous operator

$$L^{(2)}_{k+\alpha_0}$$
: $H^{(k+\alpha_0)}(U,\delta) \to \mathcal{O}^{(k+\sigma)}(X,\delta)$

such that

$$R_{M}^{\chi} \circ L_{k+\alpha_{0}}^{(2)} = R_{M}^{U} \quad \text{and} \quad ||L_{k+\alpha_{0}}^{(2)}|| \leqslant 2c \left[\tau_{n} \varepsilon^{n} (1-\varepsilon)^{k+\sigma_{0}+\alpha_{0}}\right]^{-1}.$$

Set

$$L_k := L_{k+\alpha_0}^{(2)} \circ L_k^{(1)}.$$

Then L_k : $\mathcal{O}^{(k)}(M, \delta) \to \mathcal{O}^{(k+\sigma)}(X, \delta)$ is a linear continuous extension operator and

$$||L_k|| \leq 2c \left[\tau_n \varepsilon^n (1-\varepsilon)^{\sigma_0 + \alpha_0}\right]^{-1} \left(\frac{1+\varepsilon}{1-\varepsilon}\right)^k \leq c' \eta^k,$$

where c' is independent of k.

For sufficiently regular (X, M, δ) a class of neighbourhoods U satisfying condition (ii) of Lemma 3.11 will be characterized in § 4 (Th. 4.3). The problem of existence of holomorphic retractions $\pi: U \to M$ (as in condition (i)) will be studied in § 6 (Lemma 6.2).

Problem (L) is simpler in the case where M is a graph – more precisely:

3.12. Let (Y, q) be a Riemann domain over C^{n-m} and let $F = (F_1, \ldots, F_m) \in [\ell^{(\alpha)}(Y, \delta_Y)]^m$ $(\alpha \ge 1)$. Put

$$M:=\{(y, F(y)): y\in Y\}\subset Y\times \mathbb{C}^m,$$

M is the graph of F. Let $X \in \text{top}(Y \times \mathbb{C}^m)$, $p := q \times \text{id}_{\mathbb{C}^m}$. Assume that $M \subset X$. We shall shortly say that M is a graph in X.

Put $G_j(y, z) = z_j - F_j(y)$, $(y, z) \in X$, j = 1, ..., m. Obviously $M = \{G = 0\}$. One can easily check that $\delta_X(y, z) \leq \delta_Y(y)$, $(y, z) \in X$. Hence for every $\delta \in \mathscr{W}(X)$: $G := (G_1, ..., G_m) \in [\mathscr{O}^{(\alpha)}(X, \delta)]^m$.

Let (\hat{X}, \hat{p}) be the envelope of holomorphy of (X, p) and let $\varphi: X \to \hat{X}$ denote the embedding.

Fix $\delta \in \mathscr{W}(X)$ and let $\hat{\delta}$ denote its psh. regularization. In view of 2.31, there exist $\hat{G}_1, \ldots, \hat{G}_m \in \mathscr{O}^{(a)}(\hat{X}, \hat{\delta})$ such that $\hat{G}_j \circ \varphi = G_j, j = 1, \ldots, m$. Put $\hat{M} := \{\hat{G} = 0\}$. Clearly $\varphi(M) \subset \hat{M}$. Observe that

$$\frac{\partial G_j}{\partial z_k} = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j, \end{cases} \quad j, k = 1, \dots, m,$$

whence

$$\frac{\partial \hat{G}_j}{\partial \hat{p}_{n-m+k}} = \begin{cases} 1 & \text{if } k = j, \\ 0 & \text{if } k \neq j. \end{cases}$$

In particular, rank $(d_{\hat{x}}\hat{G}) = m$, $\hat{x} \in \hat{X}$, which implies that \hat{M} is an (n-m)-dimensional submanifold of \hat{X} .

We shall prove (cf. 5.8) that if $\hat{\delta} \in \mathcal{W}_r(\hat{X})$ (e.g., $N(\hat{X}) < +\infty$, cf. 2.21) then $(\hat{X}, \hat{M}, \hat{\delta})$ always satisfies (L). Consequently we get:

3.13. If $\hat{\delta} \in \mathcal{W}_{\star}(\hat{X})$ then

$$(X, M, \delta)$$
 satisfies $(C) \Leftrightarrow \varphi^*(\mathcal{O}(\hat{M}, \hat{\delta})) = \mathcal{O}(M, \delta)$.

Remark 3.14. Note that there exist very regular graphs for which condition (C) is not fulfilled. For example: n = 3, m = 2, Y = C, $F_1 = F_2 = 0$, $X = C^3 \setminus A$, where $A = \{z_2 = e^{-z_1}, z_3 = 0\}$. Clearly $M = \{z_2 = z_3 = 0\} \subset X$. Observe that codim A = 2, so $\hat{X} = C^3$, $\varphi = \mathrm{id}_X$. Set $\delta = \delta_X$. Obviously $\hat{M} = M$ and $\hat{\delta} \in \mathcal{W}_r(C^3)$. One can easily prove (on the analogy of 2.33) that $e^{z_1} \in \mathcal{C}(M, \delta) \setminus \mathcal{C}(\hat{M}, \hat{\delta})$. Hence, in view of 3.13, (X, M, δ) does not satisfy (C).

In the case $X = \mathbb{C}^n$ one of the most important problems of the interpolation theory is to characterize those analytic subsets M of \mathbb{C}^n for which $E_{\mu}(M) = R_M^{\mathbb{C}^n}(E_{\mu}(\mathbb{C}^n))$ (cf. 2.17), where $\mu \geqslant 0$ is a fixed number.

The same problem may be formulated in the general case – we say that an analytic subset M of a Riemann domain X is an interpolation set for $E_{\mu}(X)$ if $E_{\mu}(M) = R_{M}^{X}(E_{\mu}(X))$.

In the case X = C the interpolation sets are completely characterized by the following theorem:

- 3.15 ([19]). Let $M = \{z_s: s \in N\} \subset C$, $|z_s| \nearrow +\infty$. Fix $\mu \ge 0$. Then the following conditions are equivalent:
 - (i) M is an interpolation set for $E_{\mu}(C)$.
 - (ii) (a) For every $\tau > \mu$ the series $\sum_{s=1}^{\infty} |z_s|^{-\tau}$ is convergent and
- (b) $1/K' \in E_{\mu}(M)$, where K is the Weierstrass canonical product for $(z_s)_{s=1}^{\infty}$ (cf. [18], p. 220).
 - (iii) There exists a $G \in E_{\mu}(C)$ such that
 - (a') $M = G^{-1}(0)$ and
 - (b') $\forall \tau > \mu \exists b \ge 1$: $|G'(z)| \ge e^{-b(1+|z|^{\tau})}, z \in M$.

Note that the implication (ii) \Rightarrow (iii) is obvious (we can take G := K). The implication (iii) \Rightarrow (ii) is a consequence of standard properties of entire functions of order $\leq \mu$ (cf. [18], pp. 218, 224).

In the case $X = \mathbb{C}^n$, $n \ge 2$, the situation is more complicated: generally speaking, the implication (iii) \Rightarrow (i) remains true but (i) \Rightarrow (iii) does not, namely:

3.16 ([22]). Let M be an (n-1)-dimensional submanifold of C^n . Fix $\mu \ge 0$. Suppose that there exists a $G \in E_{\mu}(C^n)$ such that

$$M=G^{-1}(0),$$

and there exist $\tau > \mu$, $b \ge 1$:

(i) $||d_xG|| \ge e^{-b(1+||x||^t)}, x \in M.$

Then

(ii) for every $m \ge 1$ there exists an $\hat{m} \ge 1$ such that every function $f \in \mathcal{O}(M)$ satisfying

$$|f(x)| \leqslant e^{m(1+||x||^{\tau})}, \quad x \in M,$$

admits an extension to an entire function \hat{f} such that

$$|\widehat{f}(x)| \leqslant e^{\widehat{m}(1+\|x\|^{\tau})}, \quad x \in \mathbb{C}^n.$$

In particular, $\mathcal{O}(M, \delta_{\tau}) = R(\mathcal{O}(C^n, \delta_{\tau}))$. Consequently, if for every $\tau > \mu$ there exists a $b \ge 1$ for which (i) is satisfied, then M is an interpolation set for $E_{\mu}(C^n)$ (this corresponds to the implication (iii) \Rightarrow (i) in 3.15).

On the other hand, there exists a $G \in E_0(\mathbb{C}^2)$ such that for every $\tau > 0$ condition (ii) is fulfilled but there are no $\tau > 0$ for which (i) is true ([22], § 4).

Theorem 3.16 was generalized to the case of Stein domains in [13] (cf. also Corol. 5.10).

We shall end this section with a few remarks relating to problem (L_0) in the case where dim M=0.

LEMMA 3.17. Let X be a Riemann domain, let $M = \{x_s : s \in N\} \subset X$ be a zero-dimensional subset and let $\delta: X \to \{0, 1\}$ be such that $1/\delta$ is locally bounded. Then the following conditions are equivalent:

- (i) (X, M, δ) satisfies (L_0) with a constant c.
- (ii) For every $k \ge 0$ there exists a sequence $(h_i)_{i \in \mathbb{N}} \subset \mathcal{O}^{(k)}(X, \delta)$ such that

(a)
$$h_{\mathbf{r}}(x_{\mathbf{s}}) = \begin{cases} 1 & \text{if } s = t, \\ 0 & \text{if } s \neq t, \end{cases}$$

(b)
$$\delta^k \sum_{t=1}^{\infty} \delta^{-k}(x_t) |h_t| \leq c$$
.

Proof. (ii) \Rightarrow (i); define $L_k f = \sum_{t=1}^{\infty} f(x_t) h_t$, $f \in \mathcal{O}^{(k)}(M, \delta)$. In view of (b)

$$\delta^k \sum_{t=1}^{\infty} |f(x_t) h_t| \leq ||\delta^k f||_{\infty} \delta^k \sum_{t=1}^{\infty} \delta^{-k}(x_t) |h_t| \leq c ||\delta^k f||_{\infty}.$$

Consequently, L_k is a well-defined linear continuous operator of $\mathcal{O}^{(k)}(M, \delta)$ into $\mathcal{O}^{(k)}(X, \delta)$. In view of (a), L_k is an extension operator.

(i) \Rightarrow (ii); let $f_t \in H^{\infty}(M)$ be given by the formula

$$f_t(x_s) = \begin{cases} 1 & \text{if } s = t, \\ 0 & \text{if } s \neq t. \end{cases}$$

Put $h_t := L_k(f_t)$, $t \in N$ (L_k is as in (L_0)). Then obviously (a) is fulfilled, and so it remains to verify (b).

Fix $x^0 \in X$ and let $\Theta_i \in \mathbb{R}$ be such that $e^{i\Theta_i} h_i(x^0) = |h_i(x^0)|$, $t \in \mathbb{N}$. Let $g_m := \sum_{i=1}^m \delta^{-k}(x_i) e^{i\Theta_i} f_i$, $m \in \mathbb{N}$. Then $g_m \in \mathcal{O}^{(k)}(M, \delta)$ and $||\delta^k g_m||_{\infty} \leq 1$, $m \in \mathbb{N}$. Hence we get

$$c \geqslant ||\delta^k(L_k g_m)||_{\infty} \geqslant \delta^k(x^0)|(L_k g_m)(x^0)|$$

$$\geqslant \delta^{k}(x^{0}) \left| \sum_{t=1}^{m} \delta^{-k}(x_{t}) e^{i\Theta_{t}} h_{t}(x^{0}) \right|$$

$$= \delta^{k}(x^{0}) \sum_{t=1}^{m} \delta^{-k}(x_{t}) |h_{t}(x^{0})|, \quad m \in \mathbb{N}. \quad \blacksquare$$

Let us consider the simplest case where $X = D := \{z \in C : |z| < 1\}$, $M = \{z_s : s \in N\} \subset D$. We shall say that M is a universal interpolation sequence (u.i.s.) if $H^{\infty}(M) = R_M^D(H^{\infty}(D))$ (cf. [5]).

3.18 ([5], Thms. 1, 2).

(i) M is a u.i.s. iff there exists a b > 0 such that

$$(+) r_s := \prod_{\substack{t=1\\t\neq s}}^{\infty} \left| \frac{z_s - z_t}{1 - \overline{z}_t z_s} \right| \geqslant b, \quad s \in \mathbb{N}.$$

(ii) If

$$(++) \qquad \qquad \limsup_{s \to +\infty} \frac{1 - |z_{s+1}|}{1 - |z_s|} < 1,$$

then M is a u.i.s.; if $z_s \in (0, 1)$, $s \in \mathbb{N}$, and $z_s > 1$ then (++) is also necessary for M to be a u.i.s.

(iii) Assume that there exist $\lambda < 1$, c > 0 such that

$$(+++) \qquad \prod_{t=1}^{\infty} \left[1 - \left(1 - \left| \frac{z_s - z_t}{1 - \overline{z}_t z_s} \right| \right)^{\lambda} \right] \geqslant c, \quad s \in \mathbb{N}.$$

Then M is a u.i.s. and, moreover, there exist c_1 , $c_2 > 0$, $f_t \in \mathcal{O}(D)$, $t \in N$, such that

$$|f_t(z_t)| \ge c_1, \quad t \in \mathbb{N},$$

$$\sum_{t=1}^{\infty} |f_t(z)| \le c_2, \quad z \in \mathbb{D}.$$

(iv) If (++) is satisfied then (+++) holds true with $\lambda = 1/2$.

Proposition 3.19. Assume that (+++) is satisfied. Let $\psi \in \mathcal{O}(\mathbf{D})$ be such that

$$0 \notin \psi(\mathbf{D}),$$

$$\delta(z) := \psi(|z|) \in (0, 1], \quad z \in \mathbf{D},$$

$$\psi(|z|) \leq |\psi(z)|, \quad z \in \mathbf{D}.$$

Then (D, M, δ) satisfies (L_0) .

Proof (the concept of the proof is taken from [5]). Define

$$P_{s}(z) = \prod_{\substack{t=1\\t\neq s}}^{\infty} e^{i\Theta_{t}} \frac{z-z_{t}}{1-\overline{z}_{t}z}, \quad z \in D, \ s \in N,$$

where $e^{i\theta_t}z_t = -|z_t|$, $t \in \mathbb{N}$. In view of (+), $P_s \in \mathcal{O}(D)$, $|P_s| \leq 1$, $|P_s(z_s)| = r_s$ and $P_s(z_t) = 0$, $t \neq s$. Let c_1 , c_2 , f_t , $t \in \mathbb{N}$, be as in 3.18 (iii). Fix $k \geq 0$ and put

$$g_t(z) := \frac{f_t(z) P_t(z)}{\left[\psi\left(-e^{i\,\boldsymbol{\theta}_t}z\right)\right]^k}, \quad z \in \boldsymbol{D}, t \in \boldsymbol{N}.$$

Obviously $g_t \in \mathcal{O}(\mathbf{D})$, $|g_t(z)| \leq \frac{|f_t(z)|}{|\psi(-e^{i\theta_t}z)|^k} \leq \delta^{-k}(z)|f_t(z)|$, $z \in \mathbf{D}$, $g_t(z_s) = 0$, $s \neq t$, and

$$|g_t(z_t)| = \frac{|f_t(z_t)| r_t}{\psi(|z_t|)} \geqslant c_1 b\delta^{-k}(z_t), \quad t \in \mathbb{N}.$$

Let $h_t := \frac{g_t}{g_t(z_t)}$, $t \in \mathbb{N}$. It is easily seen that the sequence $(h_t)_{t=1}^{\infty}$ satisfies condition (ii) of Lemma 3.17 (with $c = c_2/c_1 b$). Thus the result is a direct consequence of Lemma 3.17.

COROLLARY 3.20. Assume that (+++) is fulfilled. Then

- (i) $(D, M, \delta_{\mathbf{D}})$ satisfies (L_0) .
- (ii) For every $\tau > 0$: (D, M, $\delta_{D,\psi_{\tau}}$) satisfies (L_0) (cf. 2.17).
- (iii) For every $\mu \ge 0$: M is an interpolation set for $E_{\mu}(\mathbf{D})$.

Proof. (i) is a consequence of Prop. 3.19 with $\psi(z) := 1 - z$, $z \in D$. (ii) follows from 3.19 with $\psi(z) = \exp[-c(\tau) - e^{-\tau \log(1-z)}]$, $z \in D$. Finally (iii) is a direct consequence of (ii).

§4. Continuation from regular neighbourhoods

Let X be a Riemann domain over C^n countable at infinity, $\delta \in \mathcal{L}(X)$, $F = (F_1, \ldots, F_N) \in [\mathcal{O}^{(x)}(X, \delta)]^N$, $U \in \text{top } X$. Assume that $F \not\equiv 0$ on any connected component of U.

Define

$$\Delta_{r,s}^{0} = \left\{ u \in L_{(r,s)}^{2}(U, \text{ loc}) : \overline{\partial} u \in L_{(r,s+1)}^{2}(U, \text{ loc}) \right\},
\Delta_{r,s}^{t} = \left\{ u = (u_{I})_{I} : u_{I} \in \Delta_{r,s}^{0}, I = (i_{1}, \dots, i_{t}), 1 \leq i_{1}, \dots, i_{t} \leq N, \right\}$$

the system $(u_I)_I$ is skew-symmetric with respect to I.

For
$$u = (u_I)_I \in \Delta_{r,s}^t$$
 we put $||u|| = (\sum_I |u_I|^2)^{1/2}$. Let $\overline{\partial}: \Delta_{r,s}^t \to \Delta_{r,s+1}^t$

and

$$P\colon\thinspace \varDelta_{r,s}^{t+1}\to \varDelta_{r,s}^t$$

be defined by the formulae

$$(\overline{\partial}u)_I := \overline{\partial}u_I,$$

$$(Pu)_{(i_1,\dots,i_l)} := \sum_{j=1}^N F_j u_{(i_1,\dots,i_l,j)}.$$

Additionally, let $P: \Delta_{r,s}^0 \to 0$ be defined as the zero operator.

Using the same methods as in [6], [17], one can prove the following general version of Nullstellensatz for holomorphic functions with restricted growth on Riemann domains.

THEOREM 4.1. Assume that U is Stein, $-\log \delta \in PSH(U)$ and $\delta \leq \delta_0 \circ p$ on U. Then, for every $k \geq 0$, $0 \leq r$, $s \leq n$, $0 \leq t \leq N-1$, there exists a constant c > 0 (depending only on n, N, r, s, t, κ , $\|\delta^{\kappa} F\|_{\infty}$) such that for every $u_0 \in \Delta_{r,s}^1$ with $Pu_0 = 0$, $\bar{\delta}u_0 = 0$,

$$J = \int_{U} \frac{\|u_0\|^2}{\|F\|^{2(2\mu+1)}} \delta^{2k} d\lambda < +\infty, \quad \mu = \min\{n-s, N-t-1\},$$

there exists a $u \in \Delta_{r,s}^{t+1}$ such that $Pu = u_0, \bar{\partial}u = 0$ and

$$\int\limits_{U}||u||^{2}\delta^{2[k+\mu(2\varkappa+3)]}\,d\lambda\leqslant cJ.$$

In the proof of Th. 4.1 all L^2 -estimates may be deduced from the following generalization of Hörmander's theorem (cf. [8], Th. 2).

4.2. Let X be a Stein domain, let $\delta: X \to (0, 1]$ be such that $-\log \delta \in \mathrm{PSH}(X)$ and $\delta \leqslant \delta_0 \circ p$ (e.g., $\delta \in \mathcal{L}_{1,3}(X)$). Then, for every $k \ge 0$, $0 \le r$, $s \le n$ and for every $\bar{\partial}$ -closed form $u \in L^2_{(r,s+1)}(X, \log)$, there exists a $v \in L^2_{(r,s)}(X, \log)$ such that $\bar{\partial} v = u$ and

$$\int_{\mathbf{Y}} |v|^2 \delta^{2(k+2)} d\lambda \leqslant \int_{\mathbf{Y}} |u|^2 \delta^{2k} d\lambda.$$

Now we are able to present some examples of neighbourhoods U satisfying condition (ii) of Lemma 3.11.

THEOREM 4.3. Let X be a Stein domain over C^n , $\delta \in \mathcal{L}_{1,3}(X)$ and let M be an analytic subset of X for which there exists a $G \in [\mathcal{O}^{(\alpha)}(X,\delta)]^m$ such that $M \subset G^{-1}(0)$. Fix $\theta > 0$, $\gamma \ge 0$ and let $U = U(G,\theta,\gamma,M)$ denote the sum of all connected components of the set $V = V(G,\theta,\gamma) := \{||G|| < \theta \delta^{\gamma}\}$ which intersect M (U will be called a regular neighbourhood of M). Then there exists a constant c > 0 (depending only on n, m, α , $\|\delta^{\alpha}G\|_{\infty}$, θ , γ) such that

$$\forall l \geq 0 \ \forall f \in H^{(l)}(U, \delta) \ \exists \hat{f} \in H^{(l+\sigma_0)}(X, \delta): \ \hat{f}|_{M} = f|_{M} \ and$$

$$\|\delta^{l+\sigma_0}\hat{f}\|_2 \leqslant c \|\delta^l f\|_2,$$

where $\sigma_0 = q(2\alpha + 2\gamma + 3)$, $q := \min\{n, m\}$.

Proof (cf. [11], Th. 1). Let us fix a function $\psi \in C_0^{\infty}(C^m, [0, 1])$ such that $\psi = 1$ on $\bar{B}(0, 1/3)$ and supp $\psi \subset \bar{B}(0, 2/3)$. Define $\chi = \psi\left(\frac{1}{\theta\delta^{\gamma}}G\right)$. Note that χ is locally Lipschitz (cf. 2.19), $\chi = 1$ on $\{||G|| \leq \frac{1}{3}\theta\delta^{\gamma}\}$ and

$$\operatorname{supp} \chi \subset \{\|G\| \leqslant \frac{2}{3}\delta^{\gamma}\} \subset V.$$

Consequently $\bar{\ell}\chi \in L^2_{(0,1)}(X, \text{loc})$, $\sup_{\gamma} (\bar{\ell}\chi) \subset \{\frac{1}{3}\theta\delta^{\gamma} \leq ||G|| \leq \frac{2}{3}\theta\delta^{\gamma}\}$ and, in view of (2.40),

$$\delta^{\alpha+\gamma+1}|\bar{\partial}\chi|\leqslant c_1=c_1(n,\,m,\,\alpha,\,||\delta^\alpha G||_\infty,\theta,\,\gamma).$$

Let us fix $f \in H^{(l)}(U, \delta)$. It suffices to consider the case where $\|\delta^l f\|_2 = 1$. Put $u_0 := \begin{cases} f \, \overline{c} \chi & \text{in } U, \\ 0 & \text{in } X \setminus U. \end{cases}$

Clearly, $u_0 \in L^2_{(0,1)}(X, loc)$, $\bar{\partial} u_0 = 0$ and $supp(u_0) \subset U \cap supp(\bar{\partial}\chi)$. Hence

$$J = \int_{\gamma} \frac{|u_0|^2}{\|G\|^{2(2q-1)}} \delta^{2(l+\alpha+2q\gamma+1)} d\lambda \leqslant c_2 = c_2(n, m, \theta, \gamma, c_1).$$

According to Th. 4.1 (with N=m, F=G, U=X, r=0, s=1, t=0, $k=l+\alpha+2q\gamma+1$) there exist $\bar{\partial}$ -closed forms $u_1,\ldots,u_m\in L^2_{(0,1)}(X,\log)$ such that

$$u_0 = u_1 G_1 + \ldots + u_m G_m$$

and

$$\int_{X} |u_{j}|^{2} \delta^{2(l+\sigma_{0}-\alpha-2)} d\lambda \leqslant c_{3} = c_{3}(n, m, \alpha, ||\delta^{\alpha}G||_{\infty}, c_{2}), \quad j = 1, ..., m.$$

In view of 4.2, there exist functions $v_1, ..., v_m \in L^2(X, loc)$ such that $\overline{\hat{c}}v_j = u_j$ and

$$\int_{X} |v_{j}|^{2} \delta^{2(l+\sigma_{0}-\alpha)} d\lambda \leqslant c_{3}, \quad j=1, \ldots, m.$$

Put

$$\widehat{f} := \begin{cases} f\chi - (v_1 G_1 + \ldots + v_m G_m) & \text{in} & U, \\ -(v_1 G_1 + \ldots + v_m G_m) & \text{in} & X \setminus U. \end{cases}$$

It can be seen that $\hat{f} \in L^2(X, loc)$, $\bar{\partial} \hat{f} = 0$ (so $\hat{f} \in \mathcal{O}(X)$), $\hat{f} = f$ on M and

$$\|\delta^{l+\sigma_0}\hat{f}\|_2 \le c = c(m, \alpha, \|\delta^{\alpha}G\|_{\infty}, c_3).$$

COROLLARY 4.4 (a generalization of Th. 4 from [12]). Let X be a Stein domain over \mathbb{C}^n , $\delta \in \mathcal{W}_r(X)$ ($\delta^{a_0} \in L^2(X)$) and let M be an analytic submanifold of X. Suppose that there exists a holomorphic retraction $\pi\colon X \to M$ such that $p \circ \pi \in [\mathbb{C}^{(\alpha)}(X, \delta)]^n$ ($\alpha \ge 1$). Then (X, M, δ) satisfies (L) with $\sigma = \alpha_0 + 2n\alpha + 6n$.

Proof. Put $G := p - p \circ \pi$. Clearly, $G \in [\mathcal{C}^{(\alpha)}(X, \delta)]^n$ and $M \subset G^{-1}(0)$. Note that

$$x \in U\left(G, \frac{1}{1+\varepsilon}, 1, M\right) \Rightarrow x \in \hat{B}\left(\pi(x), \varepsilon\delta\left(\pi(x)\right)\right).$$

Now it can be seen that the result follows from Lemma 3.11 and Th. 4.3.

COROLLARY 4.5. Let X be a Stein domain, $\delta \in \mathcal{W}_r(X)$ and let M be an analytic submanifold of X determined by functions from $\mathcal{C}(X, \delta)$ (cf. Corol. 3.9). If (X, M, δ) satisfies (H_b) then it satisfies (L).

Proof. The result is a consequence of Corol. 3.9 and Corol. 4.4.

COROLLARY 4.6 (a generalization of Corol. 1 from [11]). Let M be a graph as in 3.12. Assume that X is Stein, $\delta \in \mathcal{W}_r(X)$ ($\delta^{\alpha_0} \in L^2(X)$). Then (X, M, δ) satisfies (L) with $\sigma = \alpha_0 + 2n\alpha + 6n$ (cf. 3.14).

Proof. The mapping $X \ni (y, z) \xrightarrow{\pi} (y, F(y)) \in M$ is a global holomorphic retraction such that $p \circ \pi \in [\mathcal{O}^{(\alpha)}(X, \delta)]^n$. Hence, the result is a consequence of Corol. 4.4.

Remark 4.7. Notice that, under the assumptions of Corol. 4.6, π^* need not map $\mathcal{O}(M, \delta)$ into $\mathcal{O}(X, \delta)$ (see [11]).

§ 5. Continuation from δ -regular submanifolds; Main Theorem

For $1 \le r \le m$ let \mathscr{I}_r^m denote the set of all indices $I = (i_1, \ldots, i_r)$ such that $1 \le i_1 < \ldots < i_r \le m$.

Let $A = [a_{ij}]$ be an $(m \times n)$ -dimensional matrix (with complex entries). For $I \in \mathscr{I}_r^m$, $J \in \mathscr{J}_r^n$ set $A_{I,J} := [a_{i_m,j_v}]_{\mu,\nu=1,\dots,r}$. Put

$$\Delta_r(A) := ||A \wedge \ldots \wedge A|| = \left(\sum_{I,J}' |\det(A_{I,J})|^2\right)^{1/2},$$

where the sum is taken over all $I \in \mathscr{I}_r^m$, $J \in \mathscr{J}_r^n$.

Throughout this section M will be an analytic submanifold of a Riemann domain over C^n countable at infinity. We denote by M_1, \ldots, M_s purely dimensional components of M, $M = M_1 \cup \ldots \cup M_s$. Let $d_j := \dim M_j$, $r_j := n - d_j$, $j = 1, \ldots, s$, and assume that $0 \le d_1 < \ldots < d_s \le n - 1$.

DEFINITION 5.1. Let $\delta: X \to (0, 1]$; we shall say that M is a δ -regular submanifold of X if there exist $m \in \mathbb{N}$, $\alpha \ge 0$, b > 0, $\beta \ge 0$ and $G \in [\mathcal{O}^{(\alpha)}(X, \delta)]^m$ such that

- (a) $M \subset G^{-1}(0)$,
- (b) $rank(d_x G) = r_j, x \in M_j, j = 1, ..., s,$
- (c) $\Delta_{r_j}(d_x G) \ge b\delta^{\beta}(x)$, $x \in M_j$, j = 1, ..., s.

Proposition 5.2. Let M be an algebraic submanifold of C^n . Then M is δ_0 -regular. In consequence, for every $\delta: C^n \to (0, 1]$ with $\delta \leq \delta_0$, M is δ -regular.

Proof. It is known that there exist polynomials G_1, \ldots, G_m such that

$$M = G^{-1}(0)$$
 (where $G := (G_1, ..., G_m)$)

and

$$\operatorname{Ker}(d_x G) = T_x M$$
 (= the tangent space at x), $x \in M$.

Thus it remains to verify condition (c) of Def. 5.1.

Let $G_{j,1}, \ldots, G_{j,m_i}$ be polynomials such that

$$M_j = \{G_{j,1} = \ldots = G_{j,m_j} = 0\}, \quad j = 1, \ldots, s.$$

Fix j $(1 \le j \le s)$. The polynomials

$$G_{j,1}, \ldots, G_{j,m_j}, \quad \det (d_x G)_{I,J}, \quad I \in \mathscr{I}^m_{r_j}, \quad J \in \mathscr{J}^n_{r_j}$$

have no common zeros in C^n ; hence, by the Hilbert Nullstellensatz, there exist polynomials $P_{j,1}, \ldots, P_{j,m_j}, Q_{j,I,J}, I \in \mathscr{I}^m_{r_j}, J \in \mathscr{J}^n_{r_i}$, such that

$$\sum_{t=1}^{m_j} P_{j,t} G_{j,t} + \sum_{I,J} Q_{j,I,J} \det (d_x G)_{I,J} = 1.$$

Set $\beta := \max \{ \deg Q_{j,I,J} : I \in \mathscr{I}^m_{r_j}, J \in \mathscr{J}^n_{r_j}, j = 1, ..., s \}$ and let b > 0 be such that

$$\|\delta_0^{\beta} Q_j\|_{\infty} \le 1/b$$
, where $Q_j := (Q_{i,I,J})_{I,J}, j = 1, ..., s$.

Then, for $x \in M_j$, we get

$$1 = \sum_{I,J} 'Q_{j,I,J}(x) \det(d_x G)_{I,J} \leqslant ||Q_j(x)|| \, \varDelta_{r_j}(d_x G) \leqslant [b\delta_0^{\beta}(x)]^{-1} \varDelta_{r_j}(d_x G). \quad \bullet$$

PROPOSITION 5.3. Let X be a bounded domain of holomorphy in C^n such that \bar{X} has a fundamental system of neighbourhoods which are domains of holomorphy. Let N be an analytic submanifold of an open neighbourhood U of \bar{X} . Put $M:=N\cap X$. Then M is 1-regular. Consequently, for every $\delta:X\to (0,1]$, M is δ -regular.

Proof. We may assume that U is a domain of holomorphy. Let \mathscr{V} denote the sheaf of ideals of the subvariety N. \mathscr{V} is a coherent sheaf (cf. [4], p. 138, Th. 2). This implies that there exist an open neighbourhood U_0 of \bar{X} and functions $G_1, \ldots, G_m \in \mathscr{O}(U_0)$ such that, for every $x \in U_0$, the germs $(G_1)_x, \ldots, (G_m)_x$ generate \mathscr{V}_x (cf. [4], p. 244, Th. 17). Put $G = (G_1, \ldots, G_m)$. It is clear that $N \cap U_0 = G^{-1}(0)$ and $\operatorname{Ker}(d_x G) = T_x N$, $x \in N \cap U_0$. Consequently, since \bar{X} is compact, we get the required result.

PROPOSITION 5.4. Let M be a graph as in 3.12. Then \hat{M} is $\hat{\delta}$ -regular (in \hat{X}).

Proof (the notation is the same as in 3.12). For the proof we only need to observe that $\Delta_m(d_{\hat{x}}\hat{G}) \ge 1$, $\hat{x} \in \hat{X}$.

PROPOSITION 5.5. Let V_j be a δ_j -regular submanifold of X_j , where X_j is a Riemann domain over C^{n_j} , j = 1, ..., t. Put

$$\delta(x_1, ..., x_t) = \min \{\delta_1(x_1), ..., \delta_t(x_t)\}, (x_1, ..., x_t) \in X_1 \times ... \times X_t.$$

Then $V_1 \times \ldots \times V_t$ is a δ -regular submanifold of $X_1 \times \ldots \times X_t$.

Proof. It suffices to consider the case where t=2. Let m_j , α_j , b_j , β_j , G_j be associated with V_j according to Def. 5.1, j=1, 2. Put $n=n_1+n_2$, $m=m_1+m_2$, $\alpha=\max\{\alpha_1,\alpha_2\}$, $b=b_1b_2$, $\beta=\beta_1+\beta_2$ and define

$$G(x_1, x_2) = (G_1(x_1), G_2(x_2)), (x_1, x_2) \in X_1 \times X_2.$$

Clearly, $G \in [\ell^{(a)}(X_1 \times X_2, \delta)]^m$ and $V_1 \times V_2 \subset G^{-1}(0)$. Fix $(x_1^0, x_2^0) \in V_1 \times V_2$. Let $d = \dim_{(x_1^0, x_2^0)}(V_1 \times V_2)$, r = n - d, $d_j = \dim_{x_1^0} V_j$, $r_j = n_j - d_j$, j = 1, 2. Then

$$\operatorname{rank}\,(d_{(x_1^0,\,x_2^0)}\,G)=\operatorname{rank}\,(d_{x_1^0}\,G_1)+\operatorname{rank}\,(d_{x_2^0}\,G_2)=r_1+r_2=r$$

and

$$\begin{split} \varDelta_{\mathbf{r}}(d_{(x_{1}^{0},x_{2}^{0})}G) \geqslant \varDelta_{\mathbf{r}_{1}}(d_{x_{1}^{0}}G_{1}) \cdot \varDelta_{\mathbf{r}_{2}}(d_{x_{2}^{0}}G_{2}) \\ \geqslant b_{1}\,\delta_{1}^{\beta_{1}}(x_{1}^{0})\,b_{2}\,\delta_{2}^{\beta_{2}}(x_{2}^{0}) \geqslant b\delta^{\beta}(x_{1}^{0},\,x_{2}^{0}). \quad \blacksquare \end{split}$$

PROPOSITION 5.6. Let V_1, \ldots, V_t be disjoint δ -regular submanifolds of X and let $m_j, \alpha_j, b_j, \beta_j, G_j$ be associated with V_j according to Def. 5.1, $j=1,\ldots,t$. Suppose that there exist constants $c>0, \gamma\geqslant 0$ such that

$$||G_j(x)|| \geq c\delta^{\gamma}(x), \quad x \in V_1 \cup \ldots \cup V_{j-1} \cup V_{j+1} \cup \ldots \cup V_t, \quad j = 1, \ldots, t.$$

Then $V_1 \cup \ldots \cup V_t$ is a δ -regular submanifold of X.

Proof. We shall show that the submanifolds $V_1 \cup V_2$, V_3 , ..., V_t satisfy all the assumptions of Prop. 5.6 – this will permit us to apply the finite induction over t.

Let $G_j = (G_{j,1}, \ldots, G_{j,m_j}), j = 1, 2,$ and let $c_0 \in (0, 1)$ be such that

$$\max \left\{ |G_{j,\mu}(x)| \colon \mu = 1, \ldots, m_j \right\} \geqslant c_0 \, \delta^{\gamma}(x), \quad x \in (V_1 \cup \ldots \cup V_l) \setminus V_j, \quad j = 1, 2.$$

Put $m = m_1 m_2$, $\alpha = \alpha_1 + \alpha_2$, $b = c_0^n \min\{b_1, b_2\}$, $\beta = n\gamma + \max\{\beta_1, \beta_2\}$. Define $G: X \to C^m$, $G = (G_{\mu,\nu})_{\mu=1,\dots,m_1,\nu=1,\dots,m_2}$, by the formula

$$G_{\mu,\nu}(x) = G_{1,\mu}(x) G_{2,\nu}(x), \quad x \in X.$$

Obviously, $G \in [\mathcal{C}^{(\alpha)}(X, \delta)]^m$ and $V_1 \cup V_2 \subset G^{-1}(0)$. Fix $x^0 \in V_1 \cup V_2$. Let, for instance, $x^0 \in V_1$. Put $r = n - \dim_{x^0} V_1$. Fix $1 \le v_0 \le m_2$ in such a way that $|G_{2,v_0}(x^0)| \ge c_0 \delta^{\gamma}(x^0)$. Note that

$$\frac{\partial G_{\mu,\nu}}{\partial p_{\nu}}(x^{0}) = G_{2,\nu}(x^{0}) \frac{\partial G_{1,\mu}}{\partial p_{\nu}}(x^{0}).$$

Hence

$$\operatorname{rank}(d_{\downarrow 0} G) = \operatorname{rank}(d_{\downarrow 0} G_1) = r$$

and

$$\Delta_{r}(d_{x^{0}}G) \geqslant |G_{2,v_{0}}(x^{0})|^{r} \Delta_{r}(d_{x^{0}}G_{1}) \geqslant [c_{0}\delta^{\gamma}(x^{0})]^{r} b_{1}\delta^{\beta_{1}}(x^{0}) \geqslant b\delta^{\beta}(x^{0});$$

thus $V_1 \cup V_2$ is δ -regular.

Now let $x^0 \in V_3 \cup ... \cup V_t$. There exist $1 \le \mu_0 \le m_1$, $1 \le \nu_0 \le m_2$ such that

$$|G_{1,\mu_0}(x^0)| \geq c_0 \, \delta^{\gamma}(x^0), \quad |G_{2,\nu_0}(x^0)| \leq c_0 \, \delta^{\gamma}(x^0).$$

Consequently,
$$||G(x^0)|| \ge |G_{1,\mu_0}(x^0)|| G_{2,\nu_0}(x^0)| \ge c_0^2 \delta^{2\gamma}(x^0)$$
.

The main result of the paper is the following:

THEOREM 5.7. Let X be a Stein domain over C^n , $\delta \in \mathcal{W}_r(X)$ ($\delta^{\alpha_0} \in L^2(X)$) and let M be a δ -regular submanifold of X. Let m, α , b, β and G be as in Def. 5.1. Then (X, M, δ) satisfies (L) with the constant σ of the form $\sigma = P\alpha_0 + Q\alpha + R\beta + S$, where P, Q, R, S depend polynomially on n, m, d_1, \ldots, d_s (P, Q, R, S, as polynomials of the variables n, m, d_1, \ldots, d_s , are of degree ≤ 3) and P, Q, R, $S \leq 96n^3$ (P, Q, R, S may be effectively calculated!).

The proof of Th. 5.7 will be given in § 6. Th. 5.7 is a simultaneous generalization of some results of [1], [2], [11], [13], [21], [22]; more exactly:

COROLLARY 5.8 (a generalization of Corol. 4.6 and, in consequence, of the results of [1] and [11]). Let M be a graph as in 3.12. If $\hat{\delta} \in \mathcal{W}_{r}(\hat{X})$ then $(\hat{X}, \hat{M}, \hat{\delta})$ satisfies (L).

Proof. The result is a consequence of Prop. 5.4 and Th. 5.7.

COROLLARY 5.9 (a generalization of Corol. 2 from [2]). Let X be a domain of holomorphy in C^n . Let $\delta \in \mathcal{W}^n_{\tau}(X)$ (cf. 2.34) and let M be a δ -regular submanifold of X. Then $\mathcal{O}(M, \delta) = R^{\infty}_{M}(\mathcal{O}(X, \delta))$.

Proof. The result follows from 2.34 and Th. 5.7.

COROLLARY 5.10 (a generalization of Th. 1 from [13] and, in consequence, of [22]). Let X be a Stein domain, $\delta \in \mathcal{W}_r(X)$ and let M be an (n-1)-dimensional submanifold of X such that there exist $\alpha \geq 0$, b > 0, $\beta \geq 0$ and $G \in \mathcal{C}^{(\alpha)}(X, \delta)$ with $M \subset G^{-1}(0)$, $||d_x G|| \geq b\delta^{\beta}(x)$, $x \in M$. Then (X, M, δ) satisfies (L).

COROLLARY 5.11. Let M be an algebraic submanifold of C^n . Then

- (i) (a generalization of Th. 7 from [21]) for every $\delta \in \mathcal{W}_r(\mathbb{C}^n)$ the triple $(\mathbb{C}^n, M, \delta)$ satisfies (L),
 - (ii) M is an interpolation set for every $E_{\mu}(\mathbb{C}^n)$.

Proof. The result is a consequence of Prop. 5.2 and Th. 5.7.

Analogously, Prop. 5.3 and Th. 5.7 imply:

COROLLARY 5.12. Let X, M be as in Prop. 5.3. Then

- (i) (a generalization of Th. 6 from [21]) for every $\delta \in \mathcal{W}_r(X)$ the triple (X, M, δ) satisfies (L),
 - (ii) M is an interpolation set for every $E_{\mu}(X)$.

The following result is a consequence of 3.15, Prop. 5.5 and Th. 5.7:

COROLLARY 5.13. Let V_j be an interpolation set for $E_{\mu}(C)$, j = 1, ..., t. Then $V_1 \times ... \times V_t$ is an interpolation set for $E_{\mu}(C^n)$.

Remark 5.14. Let X be a Riemann (resp. Stein) domain. Note that if $G \in [\mathcal{O}(X)]^m$ is such that $M \subset G^{-1}(0)$ and rank $(d_x G) = r_j$, $x \in M_j$, $j = 1, \ldots, s$, then, in view of 2.27, there exists a $\delta \in \mathcal{L}_{1,2,4}(X)$ (resp. $\delta \in \mathcal{L}_{1,2,3,4}(X)$) such that M is δ -regular.

COROLLARY 5.15. Let X be a Stein domain and let $G \in [\mathcal{O}(X)]^m$ be such that $M \subset G^{-1}(0)$ and rank $(d_x G) = r_j$, $x \in M_j$, j = 1, ..., s. Then for every locally bounded family $F \subset \mathcal{O}(M)$ there exists a locally bounded family $\hat{F} \subset \mathcal{O}(X)$ such that $F = R_M^X(\hat{F})$.

Proof. In view of 2.28 and Remark 5.14, there exists a $\delta \in \mathcal{W}_r(X)$ such that M is δ -regular and $F \subset \{f \in \mathcal{C}^{(1)}(M, \delta): ||\delta f||, \leq 1\}$. In virtue of Th. 5.7, (X, M, δ) satisfies (L). Fix $\eta = 2$ and let c = c(2) and $(L_k)_{k \geq 0}$ be as in (L). Define $\hat{F} = L_1(F)$. Then $F = R(\hat{F})$ and $||\delta^{\sigma+1}\hat{f}||_{\chi} \leq 2c$, $\hat{f} \in \hat{F}$, and so, in view of 2.1 (e), \hat{F} is locally bounded.

§ 6. Holomorphic retractions and pseudoinverse matrices; Proof of Main Theorem

At first we shall show how to reduce the proof of Th. 5.7 to the case where M is purely dimensional.

Lemma 6.1. Under the assumptions of Th. 5.7, there exists a $0 < \theta_0 < 1$ such that the sets

$$\bigcup_{\mathbf{x}\in\mathbf{M}_j} \hat{\mathbf{B}}(\mathbf{x},\,\theta_0\,\delta^{\mathbf{v_0}}(\mathbf{x})), \quad j=1,\,\ldots,\,s,$$

are disjoint, where $\gamma_0 := r_1(\alpha + 1) + \beta + 1$.

Proof. Let $\theta_0 := 2^{-\gamma_0 - 1} \theta_1$, where $\theta_1 \in (0, \frac{1}{2})$. Fix $1 \le j < k \le s$, $x_1 \in M_j$, $x_2 \in M_k$ and suppose that

$$\hat{B}(x_1, \theta_0 \delta^{\gamma_0}(x_1)) \cap \hat{B}(x_2, \theta_0 \delta^{\gamma_0}(x_2)) \neq \emptyset.$$

Then $x_2 = x_1 \oplus z$ and $||z|| < \theta_1 \delta^{\gamma_0}(x_1)$.

The functions $f_{I,J} := \det(d_x G)_{I,J}$, $I \in \mathscr{I}_{r_j}^m$, $J \in \mathscr{J}_{r_j}^n$, are of the class $\mathscr{O}^{(r_j(\alpha+1))}(X, \delta) \subset \mathscr{O}^{(r_1(\alpha+1))}(X, \delta)$ (cf. (2.40)) and, moreover, if $f := (f_{I,J})_{I,J}$ then $\|\delta^{r_1(\alpha+1)}f\|_{\infty} \leq c = c(n, m, d_1, \ldots, d_s, \alpha, \|\delta^{\alpha}G\|_{\infty})$.

In view of (2.41):

$$\begin{split} \varDelta_{r_{j}}(d_{x_{2}}G) &= \|f(x_{2})\| \geq \|f(x_{1})\| - \|f(x_{1} \oplus z) - f(x_{1})\| \\ &\geq \varDelta_{r_{j}}(d_{x_{1}}G) - \left\lceil \frac{4}{\delta(x_{1})} \right\rceil^{r_{1}(\alpha+1)+1} c \, \|z\| \geq \delta^{\beta}(x_{1}) \, \big[b - 4^{r_{1}(\alpha+1)+1} \, c \theta_{1}\big]. \end{split}$$

Hence if $\theta_1 < b \left[4^{r_1(\alpha+1)+1}c\right]^{-1}$ then $\Delta_{r_j}(d_{x_2}G) > 0$, and so $r_k = \operatorname{rank}(d_{x_2}G) > r_j$, which is a contradiction.

In view of the above Lemma (and of Lemma 3.11 and Th. 4.3), for the proof of Th. 5.7 it suffices to prove the following two lemmas:

LEMMA 6.2 (on the existence of holomorphic retractions). Let X be a Riemann domain over C^n , $\delta \in \mathcal{L}(X)$ and let M be an analytic submanifold of X of pure dimension $d \leq n-1$. Assume that $G \in [\mathcal{O}^{(\alpha)}(X, \delta)]^m$ is such that

$$M \subset G^{-1}(0),$$

$$\operatorname{rank}(d_x G) = r = n - d, \quad x \in M.$$

Let $Q: X \to C^{n \times m}$ be a matrix-valued function with entries in $\mathcal{O}^{(\tau)}(X, \delta)$ such that, for every $x \in M$, Q(x) is pseudoinverse to $d_x G$, i.e., $(d_x G) \cdot Q(x) \cdot (d_x G) = d_x G$ and $Q(x) \cdot (d_x G) \cdot Q(x) = Q(x)$. Then, for every $0 < \varepsilon_0 < 1$, $\gamma_0 \ge 1$, there exist $\theta > 0$ and a holomorphic retraction

$$\pi: U \to M$$

where $U = U(G, \theta, \gamma, M)$ (cf. Th. 4.3), $\gamma = \max\{\tau + \gamma_0, 2\alpha + 3\tau + 3\}$, such that

$$x \in U \Rightarrow x \in \widehat{B}(\pi(x), \varepsilon_0 \delta^{\gamma_0}(\pi(x))).$$

LEMMA 6.3 (on the existence of pseudoinverse matrices). Let X be a Stein domain over C^n , $\delta \in \mathcal{W}$, (X) ($\delta^{\alpha_0} \in L^2(X)$) and let M be a δ -regular submanifold of X of pure dimension $d \leq n-1$. Let m, α, b, β, G be as in Def. 5.1. Then there exist $\tau = \tau(n, m, d, \alpha_0, \alpha, \beta)$ and a matrix-valued function

$$O: X \to C^{n \times m}$$

with entries in $\mathcal{O}^{(t)}(X, \delta)$ such that, for every $x \in M$, Q(x) is pseudoinverse to $d_x G$ (see also Prop. 6.20).

Proof of Lemma 6.2. The proof will be divided into six steps.

Step 1. Fix $a, t \ge 1$ such that $\|\delta^{\alpha} G\|_{\infty} \le a$, $\|\delta^{\tau} Q\|_{\infty} \le t$. Let $N: X \to C^{n \times n}$ be a matrix-valued function given by the formula

$$N(x) = Q(x) \cdot (d_x G), \quad x \in X.$$

In view of (2.40), the entries of N belong to $\mathcal{O}^{(\alpha+\tau+1)}(X,\delta)$ and

Note that $\operatorname{Ker} N(x) = \operatorname{Ker} (d_x G), x \in M$, whence

(6.5)
$$\operatorname{rank} N(x) = n - d, \quad x \in M.$$

Observe that

$$(6.6) N(x) \cdot N(x) = N(x), \quad x \in M.$$

Let S: $X \to \mathbb{C}^{n \times n}$ be a matrix-valued function defined by the formula

(6.7)
$$S(x) = I_n - N(x), \quad x \in X.$$

In view of (6.6) we get

(6.8)
$$\operatorname{Ker} S(x) = \operatorname{Im} N(x), \quad x \in M,$$

and by (6.5),

(6.9)
$$\operatorname{rank} S(x) = d, \quad x \in M.$$

Put

$$Y := \{(x, z) \in M \times C^n : S(x)z = 0\},\$$

and note that Y is a closed subset of $X \times \mathbb{C}^n$.

Step 2. Y is an n-dimensional submanifold of $X \times \mathbb{C}^n$.

Proof. The case d=0 is trivial, and so assume that $d \ge 1$. The analyticity of Y is a local property, whence, without loss of generality, we may assume that X is an open neighbourhood of 0 in C^n and $M = \{(x_1, \ldots, x_n) \in X : x_{d+1} = \ldots = x_n = 0\}.$

Fix $x^0 \in M$ and let $S_0(x^0)$ denote a $(d \times n)$ -dimensional submatrix of $S(x^0)$ such that rank $S_0(x^0) = d$ (cf. (6.9)). Let $S_0: X \to \mathbb{C}^{d \times n}$ be a matrix-valued function such that $S_0(x)$ is constructed by deleting the same rows as in $S(x^0)$. Let U be an open neighbourhood of x^0 such that rank S(x) = d, $x \in U$. In particular,

(6.10)
$$\operatorname{Ker} S_0(x) = \operatorname{Ker} S(x), \quad x \in U \cap M.$$

Let $\psi: X \times \mathbb{C}^n \to \mathbb{C}^n$ be defined by the formula

$$\psi(x, z) = (x_{d+1}, \ldots, x_n, S_0(x)z).$$

In view of (6.10), $Y \cap (U \times C^n) = \{(x, z) \in U \times C^n : \psi(x, z) = 0\}$. Note that,

$$d_{(x,z)}\psi = \begin{bmatrix} 0 & I_{n-d} & 0 \\ --- & S_0(x) \end{bmatrix} \begin{cases} n-d & 0 \\ S_0(x) & 0 \end{cases}$$

 $(x, z) \in X \times \mathbb{C}^n$. Consequently, rank $d_{(x,z)} \psi = n$, $(x, z) \in U \times \mathbb{C}^n$, which proves that $Y \cap (U \times \mathbb{C}^n)$ is an *n*-dimensional manifold.

Step 3. Put $c_1 = (4^{\alpha+3} at)^{-1}$, $\gamma_1 = \alpha + \tau + 2$. Then

(6.11)
$$||G(x \oplus z)|| \ge \frac{1}{2t} \delta^{\tau}(x) ||z||, \quad (x, z) \in Y, \ ||z|| \le c_1 \delta^{\gamma_1}(x).$$

Proof. Note that $c_1 \delta^{\gamma_1}(x) < \frac{1}{2} \delta(x)$, so by (2.42),

$$||G(x \oplus z)|| \ge ||(d_x G)z|| - 2 \left\lceil \frac{4}{\delta(x)} \right\rceil^{\alpha+2} a ||z||^2.$$

On the other hand, in view of (6.8),

$$||z|| = ||N(x)z|| = ||Q(x)(d_x G)z|| \le ||Q(x)|| \, ||(d_x G)z|| \le \frac{t}{\delta^{\tau}(x)} \, ||(d_x G)z||.$$

Finally,

$$||G(x \oplus z)|| \ge \frac{1}{2t} \delta^{\mathfrak{r}}(x) ||z|| \left[2 - \frac{||z||}{c_1 \delta^{\gamma_1}(x)} \right],$$

which proves the required estimate.

Step 4. Put $c_2 = (4^{3\alpha+\tau+5} a^2 t^2)^{-1}$, $\gamma_2 = 2\alpha+2\tau+3$, $Y_0 = \{(x, z) \in Y : ||z|| < c_2 \delta^{\gamma_2}(x)\}$. Note that $Y_0 \in \text{top } Y$ and $Y_0 \subset X^* C^n$. We shall prove that the mapping

$$Y_0 \ni (x, z) \xrightarrow{\Phi} x \oplus z \in X$$

is injective.

Proof. Let us fix (x_1, z_1) , $(x_2, z_2) \in Y_0$, $x_1 \neq x_2$, and suppose that $x_1 \oplus z_1 = x_2 \oplus z_2$. Let, for instance, $\delta(x_2) \leq \delta(x_1)$. Put $z_0 = z_1 - z_2$. Then $x_2 = x_1 \oplus z_0$ (in particular $z_0 \neq 0$). Define

$$w_1 = [N(x_1) - N(x_2)]z_2, \quad w_2 = N(x_1)(z_1 - z_2).$$

Note that $(x_1, w_2) \in Y$ and (in view of (6.6)) $w_1 - w_2 = z_0$.

Since $||z_0|| < 2c_2\delta^{\gamma_2}(x_1) < \frac{1}{2}\delta(x_1)$ and $||z_2|| < c_2\delta^{\gamma_2}(x_1)$, it follows that, by (2.41) and (6.4), we have

(6.12)
$$||w_1|| \le ||N(x_1 \oplus z_0) - N(x_1)|| \, ||z_2||$$

$$< \left\lceil \frac{4}{\delta(x_1)} \right\rceil^{\alpha + \tau + 2} 2^{\alpha + 1} \, at \, ||z_0|| \, c_2 \, \delta^{\gamma_2}(x_1),$$

whence, in view of the definition of c_2 and γ_2 , we get

$$||w_1|| < \frac{1}{2} ||z_0||.$$

In consequence,

$$\frac{1}{2}||z_0|| < ||w_2|| < \frac{3}{2}||z_0|| < 3c_2 \delta^{\gamma_2}(x_1) < c_1 \delta^{\gamma_1}(x_1),$$

and so, according to (6.11),

(6.13)
$$||G(x_1 \oplus w_2)|| \geqslant \frac{1}{2t} \delta^{\tau}(x_1) ||w_2|| > \frac{1}{4t} \delta^{\tau}(x_1) ||z_0||.$$

On the other hand, since $x_1 \oplus w_2 = x_2 \oplus (-w_1)$, it follows by (2.41) and (6.12) that

$$||G(x_1 \oplus w_2)|| \leq \left[\frac{4}{\delta(x_2)}\right]^{\alpha+1} a ||w_1||$$

$$< \left[\frac{8}{\delta(x_1)}\right]^{\alpha+1} a \left[\frac{4}{\delta(x_1)}\right]^{\alpha+\tau+2} 2^{\alpha+1} atc_2 \delta^{\gamma_2}(x_1) ||z_0|| \leq \frac{1}{4t} \delta^{\tau}(x_1) ||z_0||,$$

which contradicts (6.13).

Step 5. Φ is an injective holomorphic mapping of an *n*-dimensional analytic manifold Y_0 into a Riemann domain X. This implies that $U_0 := \Phi(Y_0)$ is an open neighbourhood of M and Φ is a biholomorphism of Y_0 onto U_0 .

Let us define $\pi: U_0 \to M$ by the formula

$$\pi = (\text{projection onto } M) \circ \Phi^{-1}, \quad \Phi(x \oplus z) = x.$$

It is clear that π is a holomorphic retraction.

Step 6. Fix $0 < \varepsilon_0 < 1$, $\gamma_0 \ge 1$ (cf. Lemma 6.2) and let

$$c_3 = \min \{ \varepsilon_0, c_2/2 \}, \quad \gamma_3 = \max \{ \gamma_0, \gamma_2 \}, \quad Y_1 = \{ (x, z) \in Y_0 \colon ||z|| < c_3 \delta^{\gamma_3}(x) \}.$$

Obviously, $\bar{Y}_1 \subset Y_0$. Put $U_1 := \Phi(Y_1)$. It is clear that U_1 is an open neighbourhood of M, $\bar{U}_1 \subset U_0$ and, in view of the definition of π ,

$$x \in U_1 \Rightarrow x \in \hat{B}(\pi(x), \varepsilon_0 \delta^{\gamma_0}(\pi(x))).$$

Put $\gamma = \gamma_3 + \tau$, $\theta = \frac{1}{2t} (\frac{2}{3})^{\gamma} c_3$ and let $U := U(G, \theta, \gamma, M)$ (recall that U is

the sum of all connected components of $\{||G|| < \theta \delta^{\gamma}\}$ which intersect M). It remains to show that $U \subset U_1$.

Proof. Suppose that $U \not\subset U_1$. Then $U \cap \partial U_1 \neq \emptyset$, and so (since $\partial U_1 \subset U_0$) there exists $(x, z) \in Y_0 \setminus Y_1$ such that $x \oplus z \in U$. Note that $c_3 \delta^{\gamma_3} < c_1 \delta^{\gamma_1}$, whence by (6.11)

$$||G(x \oplus z)|| \geqslant \frac{1}{2t} \delta^{\mathsf{r}}(x) ||z||.$$

On the other hand, in view of the definition of U,

$$||G(x \oplus z)|| < \theta \delta^{\gamma}(x \oplus z) \le \theta(\frac{3}{2})^{\gamma} \delta^{\gamma}(x).$$

Hence $||z|| < c_3 \delta^{y_3}(x)$, which implies that $(x, z) \in Y_1$. We get a contradiction. The proof of Lemma 6.2 is completed.

Proof of Lemma 6.3. We start with the following two auxiliary results:

PROPOSITION 6.14. Let X be a Stein domain over C^n , $\delta \in \mathcal{W}_r(X)$ $(\delta^{a_0} \in L^2(X)), G \in [\mathcal{O}^{(a)}(X, \delta)]^m$, $F \in [\mathcal{O}^{(\overline{a})}(X, \delta)]^N$, \overline{b} , $\overline{b} > 0$, $\overline{\beta}$, $\overline{\gamma} > 0$ and let M be an analytic subset of X such that $M \subset G^{-1}(0)$. Suppose that

$$||F|| \geqslant \bar{b}\delta^{\bar{\beta}}$$
 on $U = U(G, \bar{\theta}, \bar{\gamma}, M)$.

Then there exist $f_1, \ldots, f_N \in \mathcal{C}^{(v)}(X, \delta)$ such that

$$f_1F_1+\ldots+f_NF_N=1 \quad on M,$$

where $v = \alpha_0 + \mu(2\overline{\alpha} + 3) + (2\mu + 1)\overline{\beta} + q(2\alpha + 2\overline{\gamma} + 3) + n$, $\mu = \min\{n, N - 1\}$, $q = \min\{n, m\}$.

Proof. Since $-\log \delta \in \mathrm{PSH}(X)$, it follows that $\{||G|| < \overline{\theta}\delta^{\overline{\gamma}}\}$ is a Stein domain and therefore U is also Stein. Observe that

$$J=\int_{U}\frac{1}{\|F\|^{2(2\mu+1)}}\delta^{2k}d\lambda<+\infty,$$

where $k := \alpha_0 + (2\mu + 1)\overline{\beta}$. Hence, in virtue of Th. 4.1 (with r = s = t = 0, $u_0 = 1$), there exist $u_1, \ldots, u_N \in H^{(l)}(U, \delta)$, $l = k + \mu(2\overline{\alpha} + 3)$, such that

$$u_1F_1 + \ldots + u_NF_N = 1$$
 on U .

Now, by Th. 4.3 (and 2.37), there exist $f_1, \ldots, f_N \in \mathcal{O}^{(v)}(X, \delta)$, $v = l + q(2\alpha + 2\overline{\gamma} + 3) + n$, such that

$$f_j = u_j$$
 on M , $j = 1, ..., N$.

A thorough analysis of the proof of Lemma 4.2 in [23] leads to the following

PROPOSITION 6.15 (an algebraical criterion of existence of pseudoinverse matrices). Let P be a commutative ring with a unit element. Assume that $P = \bigcup_{k \geq 0} P_k$, where P_k , $k \geq 0$, are subgroups of P and $P_k P_{k'} \subset P_{k+k'}$, $k, k' \geq 0$. Let A be an $(m \times n)$ -dimensional matrix with entries in P_k (k is fixed). Suppose that there exists $1 \leq r \leq m$, n such that:

(i) there exists a system $(f_{I,J})_{I \in \mathcal{I}_{\star}^m, J \in \mathcal{I}_{\star}^n}$ of elements of P_{ν} with

$$\sum_{I,I}' f_{I,J} \det (A_{I,J}) = 1,$$

(ii) if $r < \min\{m, n\}$ then, for every $l \in \mathcal{I}_{r+1}^m$, $J \in \mathcal{I}_{r+1}^n$, $\det(A_{l,J}) = 0$.

Then there exists an $(n \times m)$ -dimensional matrix B with entries in $P_{2\nu+(2r-1)k}$ which is pseudoinverse to A, i.e., ABA = A and BAB = B.

In view of the above two propositions, for the proof of Lemma 6.3 we only need to prove the following

LEMMA 6.16. Let X be a Riemann domain over C^n , $\delta \in \mathcal{L}(X)$, let M be a δ -regular submanifold of X of pure dimension d and let m, α , b, β , G, be as in Def. 5.1. Then there exist \bar{b} , $\bar{\theta} > 0$ (depending only on n, m, d, α , $||\delta^{\alpha}G||_{\infty}$, b, β) such that

$$\Delta_{\mathbf{r}}(d_x G) \geqslant \bar{b}\delta^{\beta}(x), \quad x \in U = U(G, \bar{\theta}, \bar{\gamma}, M),$$

where $\bar{\gamma} = (3r-1)\alpha + 3\beta + 3r$.

Proof. The proof will be divided into six steps.

Step 1°. Let $b_0 \in (0, 1]$ be such that

$$\max \{ |\det (d_x G)_{I,J}| \colon I \in \mathscr{I}_r^m, J \in \mathscr{I}_r^n \} > b_0 \delta^{\beta}(x), \quad x \in M.$$

Put $t := \frac{1}{2} (\frac{2}{3})^{\beta}$ and let

$$M_{I,J}^j := \{x \in M : |\det(d_x G)_{I,J}| > t^{j-1} b_0 \delta^{\beta}(x)\}, \quad I \in \mathcal{J}_r^m, J \in \mathcal{J}_r^n, j = 1, 2, 3.$$

Note that $\overline{M_{I,J}^{j}} \subset M_{I,J}^{j+1}$ and $M = \bigcup_{I,J} M_{I,J}^{1}$.

Step 2°. Fix $a \ge 1$ such that $||\delta^a G||_{\infty} \le a$. Put

$$b_1 = b_0 t [2r!4^{r(\alpha+1)+1}(2^{\alpha+1}a)^r]^{-1}, \quad \beta_1 = r(\alpha+1) + \beta + 1.$$

Then

(6.17)
$$|\det(d_{x \oplus z} G)_{I,J}| > t^j b_0 \delta^{\beta}(x \oplus z), \quad x \in M_{I,J}^j, ||z|| \leq b_1 \delta^{\beta_1}(x), j = 1,2.$$

Proof (cf. the proof of Lemma 6.1). The function $f_{I,J}:=\det(d_x G)_{I,J}$ is of the class $\mathcal{O}^{(r(\alpha+1))}(X,\delta)$ and $||\delta^{r(\alpha+1)} f_{I,J}||_{\infty} \leq r! (2^{\alpha+1})^r$. Fix $x \in M^j_{I,J}$, $||z|| \leq b_1 \delta^{\beta_1}(x)$. In view of (2.41):

$$\begin{split} |\det (d_{x \oplus z} \, G)_{I,J}| &= |f_{I,J}(x \oplus z)| \geqslant |f_{I,J}(x)| - |f_{I,J}(x \oplus z) - f_{I,J}(x)| \\ &> t^{j-1} b_0 \, \delta^{\beta}(x) - \left[\frac{4}{\delta(x)} \right]^{r(\alpha+1)+1} r! \, (2^{\alpha+1} \, a)^r \, ||z|| \\ &\geqslant \frac{b_0}{2} \, t^{j-1} \, \delta^{\beta}(x) \geqslant t^j \, b_0 \, \delta^{\beta}(x \oplus z), \end{split}$$

which proves (6.17).

Observe that, in view of (6.17), for the proof of the lemma it suffices to construct $\bar{\theta}$ such that

$$U(G, \bar{\theta}, \bar{\gamma}, M) \subset \bigcup_{I,J} \bigcup_{x \in M_{I,I}^2} \hat{B}(x, b_1 \delta^{\theta_1}(x))$$

(then $\bar{b} = b_0 t^2$).

Step 3°. For
$$J = (j_1, ..., j_r) \in \mathcal{J}_r^n$$
, let

$$E_J = \{z = (z_1, \ldots, z_n) \in \mathbb{C}^n : j \notin \{j_1, \ldots, j_r\} \Rightarrow z_j = 0\}.$$

Put $t_1 = b_0 t^2 [2r! (2^{\alpha+1} a)^{r-1}]^{-1}$, $\tau_1 = (r-1)(\alpha+1) + \beta$, $b_2 = t_1 (2 \cdot 4^{\alpha+2} a)^{-1}$. Then

$$(6.18) ||G(x \oplus z)|| \ge t_1 \delta^{\tau_1}(x)||z||, (x, z) \in M_{L,I}^3 \times E_I, ||z|| \le b_2 \delta^{\beta_1}(x).$$

Proof (cf. the proof of (6.11)). Put $G_1 = (G_{i_1}, ..., G_{i_n})$. In view of (2.42):

$$||G(x\oplus z)|| \geq ||G_I(x\oplus z)|| \geq ||(d_xG_I)z|| - 2\left[\frac{4}{\delta(x)}\right]^{\alpha+2} a||z||^2.$$

Let $z^* := (z_{j_1}, \ldots, z_{j_r}) \in \mathbb{C}$. According to the definition of E_J , we get

$$||z|| = ||z^*|| = ||[(d_x G)_{I,J}]^{-1} (d_x G)_{I,J} z^*|| \le ||[(d_x G)_{I,J}]^{-1}|| ||(d_x G_I) z||$$

$$\le \frac{1}{2t_1 \delta^{t_1}(x)} ||(d_x G_I) z||.$$

Hence

$$||G(x \oplus z)|| \ge t_1 \delta^{\tau_1}(x) ||z|| \left[2 - \frac{||z||}{b_2 \delta^{\beta_1}(x)} \right] \ge t_1 \delta^{\tau_1}(x) ||z||.$$

Step 4°. Put
$$b_3 = \min \left\{ \frac{b_1}{3^{\beta_1} + 1}, \frac{b_2}{2} \right\}$$
 and let

$$Y_{I,J}^{j} := \{(x,z) \in M_{I,J}^{j} \times E_{J} \colon ||z|| < \frac{1}{3} j b_{3} \delta^{\beta_{1}}(x) \}, \quad I \in \mathcal{I}_{r}^{m}, J \in \mathcal{J}_{r}^{n}, j = 1, 2, 3.$$

Note that $\overline{Y_{I,J}^j} \subset Y_{I,J}^{j+1}$ and $Y_{I,J}^3 \subset X^* C^n$. We shall prove that the mapping

$$Y_{I,J}^3 \ni (x, z) \xrightarrow{\Phi_{I,J}} x \oplus z \in X$$

is injective (cf. Step 4 of the proof of Lemma 6.2).

Proof. Suppose that $x_1 \oplus z_1 = x_2 \oplus z_2$ and $\delta(x_2) \le \delta(x_1)$. Put $z_0 = z_1 - z_2$. Then $x_2 = x_1 \oplus z_0$ and $||z_0|| < 2b_3 \delta^{\beta_1}(x_1) \le b_2 \delta^{\beta_1}(x_1)$. In view of (6.18) we get

$$0 = ||G(x_2)|| \ge t_1 \, \delta^{\tau_1}(x_1) \, ||z_0||,$$

which implies that $z_0 = 0$, and consequently $(x_1, z_1) = (x_2, z_2)$.

Step 5°. Observe that $Y_{I,J}^3$ is an *n*-dimensional analytic manifold, whence as in Step 5 of the proof of Lemma 6.2, the set $U_{I,J}^i := \Phi_{I,J}(Y_{I,J}^i)$ is an open neighbourhood of $M_{I,J}^i$ and $\overline{U_{I,J}^i} \subset U_{I,J}^{j+1}$.

Put
$$b_4 = 2b_3 t_1 [3^{\beta_1 + \tau_1 + 1} 4^{\alpha + 1} a]^{-1}, \ \beta_2 = \beta_1 + \tau_1 + \alpha + 1.$$

Then, for every $x \in M_{I,J}^1$, the ball $\hat{B}(x, b_4 \delta^{\beta_2}(x))$ is contained in $U_{I,J}^2$.

Proof. Suppose $\hat{B}(x, b_4 \delta^{\beta_2}(x)) \notin U_{I,J}^2$. Then there exists a point $(x_1, z_1) \in Y_{I,J}^3 \setminus Y_{I,J}^2$ such that $x_1 \oplus z_1 \in \hat{B}(x, b_4 \delta^{\beta_2}(x))$. Note that $\delta(x_1) \leq 3\delta(x)$ and $\delta(x) \leq 3\delta(x_1)$; in particular:

$$||p(x_1) - p(x)|| < b_3 \delta^{\beta_1}(x_1) + b_4 \delta^{\beta_2}(x) \le b_1 \delta^{\beta_1}(x).$$

Hence, in view of (6.17), $x_1 \in M_{I,J}^2$.

On the other hand, in view of (6.18) (and (2.41)):

$$\begin{split} t_1 \, \delta^{\mathfrak{r}_1}(x_1) \, \|z_1\| & \leq \|G(x_1 \oplus z_1)\| = \|G(x_1 \oplus z_1) - G(x)\| \\ & \leq \left\lceil \frac{4}{\delta(x)} \right\rceil^{a+1} a \, \|p(x_1 \oplus z_1) - p(x)\| < \frac{2}{3} \, b_3 \, \delta^{\beta_1}(x_1) \, t_1 \, \delta^{\mathfrak{r}_1}(x_1). \end{split}$$

Thus $||z_1|| < \frac{2}{3}b_3 \delta^{\beta_1}(x_1)$ and therefore $(x_1, z_1) \in Y_{I,J}^2$, which is a contradiction.

Step 6°. Put $\bar{\theta} = b_4 t_1 (\frac{2}{3})^{\bar{\gamma}}$ $(\bar{\gamma} = \tau_1 + \beta_2 = (3r - 1)\alpha + 3\beta + 3r)$. It remains to show that $U = U(G, \bar{\theta}, \bar{\gamma}, M) \subset W := \bigcup_{I,J} U_{I,J}^2$ (cf. the remark after Step 2°).

Proof (cf. Step 6). Suppose $U \subset W$. Then there exist I, J, $(x, z) \in Y_{I,J}^3$ such that $x \oplus z \in U \cap \partial W$. Since $M = \bigcup_{I,J} M_{I,J}^1$, there exist I', J' such that $x \in M_{I',J'}^1$. The ball $\hat{B}(x, b_4 \delta^{\beta_2}(x))$ is contained in $U_{I',J'}^2$ (Step 5°), whence $||z|| \ge b_4 \delta^{\beta_2}(x)$. Now, by (6.18),

$$||G(x \oplus z)|| \ge t_1 \delta^{\tau_1}(x) ||z|| \ge \overline{\theta} \delta^{\overline{\gamma}}(x \oplus z),$$

which contradicts the definition of U.

The proof of Lemma 6.3 is completed.

Remark 6.19. In the case where dim M=0 the proof of the existence of holomorphic retraction $\pi: U \to M$ may be simplified, namely:

Let X be a Riemann domain over C^n , $\delta \in \mathcal{L}(X)$ and let M be a 0-dimensional δ -regular submanifold of X. Then (as in Step 3°) one can prove that there exist $t_1 > 0$, $0 < b_1 < 1/2$ such that

$$||G(x \oplus z)|| \ge t_1 \delta^{\tau_1}(x) ||z||, \quad x \in M, z \in \mathbb{C}^n, ||z|| \le b_1 \delta^{\beta_1}(x),$$

where $\tau_1 = (n-1)(\alpha+1) + \beta$, $\beta_1 = n(\alpha+1) + \beta + 1$.

Consequently, if $0 < b_2 < b_1/2$, $\beta_2 \geqslant \beta_1$, then, for every $x_1, x_2 \in M$, $x_1 \neq x_2$:

$$\hat{B}(x_1, b_2 \delta^{\beta_2}(x_1)) \cap \hat{B}(x_2, b_2 \delta^{\beta_2}(x_2)) = \emptyset.$$

Put $U_0:=\bigcup_{\substack{x\in M}}\widehat{B}\big(x,\,b_2\delta^{\beta_2}(x)\big)$ and let $\pi\colon U_0\to M$ be defined by the formula $\pi(y)=x,\,y\in\widehat{B}\big(x,\,b_2\,\delta^{\beta_2}(x)\big)$ $(x\in M)$. Define $\gamma=\beta_2+\tau_1,\,\theta=b_2\,t_1\,(\frac{2}{3})^\gamma$. The standard arguments show that $U(G,\,\theta,\,\gamma,\,M)\subset U_0$.

Note that the existence of a pseudoinverse matrix Q (as in Lemma 6.3) is in some sense equivalent to the δ -regularity of M; namely, we have the following:

PROPOSITION 6.20. Let X be a Stein domain, $\delta \in \mathcal{W}_r(X)$ and let M be a d-dimensional analytic submanifold of X. Suppose that there exist $m \in \mathbb{N}$ and $G \in [\mathcal{O}(X, \delta)]^m$ such that

$$M \subset G^{-1}(0)$$

and

$$\operatorname{rank}(d_x G) = r = n - d, \quad x \in M.$$

Then the following conditions are equivalent:

- (i) $\exists b > 0$, $\beta \ge 0$: $\Delta_r(d_x G) \ge b\delta^{\beta}(x)$, $x \in M$ (i.e., M is δ -regular).
- (ii) $\exists (f_{I,J})_{I \in \mathscr{I}_{-}^m, J \in \mathscr{I}_{-}^n} \subset \mathscr{O}(X, \delta)$:

$$\sum_{I,J}' f_{I,J}(x) \det (d_x G)_{I,J} = 1, \quad x \in M.$$

(iii) There exists a matrix-valued function $Q: X \to \mathbb{C}^{n \times m}$ with entries in $\mathcal{O}(X, \delta)$ such that, for every $x \in M$, Q(x) is pseudoinverse to $d_x G$.

Proof. The implication (i) \Rightarrow (ii) is a consequence of Prop. 6.14 and Lemma 6.16. The implication (ii) \Rightarrow (iii) follows from Prop. 6.15. It remains to prove that (iii) \Rightarrow (i).

Let A (resp. B) be an $(m \times n)$ (resp. $(n \times p)$)-dimensional matrix with complex entries. Then, for every $1 \le r \le m$, n, p,

$$\Delta_{\mathbf{r}}(A \cdot B) \leqslant \Delta_{\mathbf{r}}(A) \cdot \Delta_{\mathbf{r}}(B).$$

Consequently, $\Delta_{r}(d_{x}G) \leq [\Delta_{r}(d_{x}G)]^{2} \Delta_{r}(Q(x)), x \in M$. Since $\Delta_{r}(d_{x}G) > 0$, $x \in M$, we get: $1 \leq \Delta_{r}(d_{x}G) \Delta_{r}(Q(x)), x \in M$. Hence $\Delta_{r}(d_{x}G) \geq b\delta^{rr}(x), x \in M$ (b > 0 constant) provided that the entries of Q lie in $\mathcal{O}^{(r)}(X, \delta)$.

References

- [1] I. Cnop, Extending holomorphic functions with bounded growth from certain graphs, Value Distribution Theory, M. Dekker, 1975.
- [2] J.-P. Demailly, Scindage holomorphe d'un morphisme de fibres vectoriels semi-positifs avec estimations L², Seminaire P. Lelong - H. Skoda (Analyse), 20e et 21e année, 1980-1981, Lect. Notes in Math. 919.
- [3] J.-P. Ferrier, Spectral Theory and Complex Analysis, North-Holland Publishing Company, Amsterdam-London 1973.
- [4] R. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Prentice-Hall, Inc., Englewoof Cliffs, N. J., 1965.
- [5] W. Hayman, Interpolation by bounded functions, Ann. Inst. Fourier 8 (1958), 277-290.
- [6] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943-949.
- [7] --, An Introduction to Complex Analysis in Several Variables, North-Holland Publishing Company, Amsterdam-London 1973.
- [8] M. Jarnicki, Holomorphic functions with bounded growth on Riemann domains over Cⁿ, Z. Nauk. UJ 20 (1979), 43-51.
- [9] --, Holomorphic Functions with Bounded Growth on Riemann Domains over Cⁿ, Bull. Acad. Sci. Pol. 27 (9) (1979), 675-680.
- [10] --, Holomorphic functions with restricted growth on complex manifolds, Z. Nauk. UJ 22 (1981), 85-93.
- [11] --, Holomorphic continuation of functions with restricted growth, ibid. 23 (1982), 7-14.
- [12] --, Homomorphic continuation of holomorphic functions with bounded growth, Univ. Iag. Acta Math. 24 (1984), 209-216.
- [13] --, Holomorphic continuation with restricted growth, ibid. 25 (1985), 133-143.
- [14] --, Multiplicative linear functionals on some algebras of holomorphic functions with restricted growth, Ann. Pol. Math. 44 (1984), 353-361.
- [15] --, A method of holomorphic retractions and pseudoinverse matrices in the theory of continuation of δ -tempered functions, Preprint 276 of the Polish Academy of Sciences 1983.
- [16] B. Jennane, Extension d'une fonction définie sur une sous-variété avec contrôle de la croissance, Lect. Notes in Math. 694, 126-133.
- [17] J. J. Kelleher, B. A. Taylor, Finitely generated ideals in rings of analytic functions, Math. Ann. 193 (1971), 225-237.
- [18] F. Leja, Theory of Analytic Functions, PWN, Warszawa 1957 (in Polish).
- [19] A. F. Leontiev, On the interpolation in the class of entire functions of finite order, Doklady Akademii Nauk S.S.S.R. 61 (1948), 785-787 (in Russian).
- [20] P. Mazet, M. Jarnicki, A note on holomorphic continuation with restricted growth, Univ. Iag. Acta Math. 25 (1985), 145-147.

50 References

- R. Narasimhan, Cohomology with bounds on complex spaces, Lect. Notes in Math. 155, 141-150.
- [22] Y. Nishimura, Problème d'extension dans le théorie des fonctions entières d'ordre fini, J. Math. Kyoto Univ. 20 (4) (1980), 635-650.
- [23] H. Rossi, J. L. Taylor, On Algebras of Holomorphic Functions on Finite Pseudoconvex Manifolds, J. Funct. Analysis 24 (1) (1977), 11-31.