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§1. Introduction

In the paper we investigate some problems of the theory of continuation
of holomorphic functions with restricted growth.

Let X be a complex analytic space countable at infinity and let M be an
analytic submanifold of X (dimM <dim X). Let ¢(X) (resp. (O(M)) denote
the space of all holomorphic functions on X (resp. on M).

One can pose the following general continuation problem:

_Given fe O(M), does f admit an extension f e 0(X) such that the growth
of f on X is in some sense similar to the growth of f on M?

One of the most useful definitions of the growth of holomorphic
functions is by estimates of the form &*|f| < ¢, where 6 is a given function;
more precisely:

Let 6: X — (0, + c0) be a bounded function. For k > 0 let O™ (X, §) (resp.
("™ (M, 8)) denote the vector space of all functions f holomorphic on X (resp.
on M) such that the function &*f is bounded. The space O¥(X,d) (resp.
("™ (M, d)) has the natural structure of a normed space with the norm given
by the formula: f —||6*f]|.,, where || ||, denotes the supremum norm. Put
0(X,8) = {J O™(X,6) and analogously O(M,8) = () O™ (M,é). O(X,9)

k20 k=20
(resp. O(M,d)) is a complex algebra with a unit element (cf. §2).
Let R = R¥, denote the restriction operator

O(X)3f = flue O(M).

Note that R maps (" (X,d) continuously into O™(M,d), k = 0.
Now our problem of continuation of holomorphic functions with restric-

ted growth may be formulated as follows:
Given a triple (X, M,4), when is

© O(M, 8) = Ry (0(X,9))
satisfied?

Many classical problems concerning holomorphic continuation (or inter-
polation) with controlled growth may easily be translated into this language.
For example:

Let X =C" and let M be an analytic subset of C". We ask whether
every function f e ("(M) with polynomial growth on M extends to a polyno-
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mial f of n-complex variables. Take 6 = 8, = (1+|z}|%)~ /2. By the Liouville
theorem, the space O (C",J,) is identical with the space of all polynomials

of degree < [k], and so the above question may be equivalently formulated
as follows:

When does the triple (C", M, ) satisfy (C)?

Similarly, putting 6 = e "?!", we get a problem of continuation of
functions with exponential growth (see §3).

Taking into considerations the algebraical and topological structures of
0O(X, 6) and O(M, 6), one may consider some stronger versions of (C), for
instance:

(H) There exists an algebra homomorphism

T: OM, 5 — OX, d)
such that Ro T =id.

(L)y36=20: Vu>1 3c=c(n) >0: Yk >0: there exists a linear con-
tinuous extension operator

L: 0™ (M, 8)— 0**(X, §)

such that ||L,|| < cn*.

The simplest case is that in which X is a domain of holomorphy in C"-
in this case, for some special triples (X, M, 8), problem (C) was studied, for
instance, in [1], [2], [21], [22].

On the other hand, the most interesting case is that in which X is a
Stein domain spread over C"—in particular, by the passage to the envelope
of holomorphy, this permits us to study (C) for all open sets in C". In the
case of Stein domains over C", some results related to (C), (H), (L) were
proved by the author in [1], [12], [13], [14]. In a more general context, the
problems (C), (H), (L) will be studied in the present paper.

The main result of the paper is the following:

THEOREM 5.7. Let X be a Stein domain over C", let M be an analytic
submanifold of X and let 6 be a regular weight function on X (see Def. 2.11;
if X is a domain of holomorphy in C", then we can take, for instance,
8 = dx = min {gy, 8o}, where gy denotes the distance to the boundary of X).
Assume that there exists a Ge[O(X, 8)]™ such that

M < G™1(0),
rank(d,G) =codim, M =:r(x), xeM,
1@dxG) A ... Ad,G)|| =bé¥(x), xeM (b>0,B >0 constants).

r(x) times

Then (X, M, d) satisfies (L).
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The above result is a simultaneous generalization of some results of [1],
[2], [11], [13], [21], [22] (for details see §5).

The paper is organized as follows:

§2 is of preparatory nature. We collect in it some basic properties of
algebras of type (O(X, §). Most of the results presented in that section are
taken from [3], [8], [9], [10] and [14].

Some general remarks relating to (C), (H) and (L) are presented in §3.
The main result of that section is a characterization of the solvability of (H)
contained in Corol. 3.9. Namely we have proved that if X is a Stein domain,
0 is a regular weight function and M is determined by functions from
(¢(X, d), then each bounded homomorphic extension operator (as in (H)) is
given by the formula Tf = fon, fe O(M, &), where n: X — M is a suitably
chosen holomorphic retraction. Note that the existence of a holomorphic
retraction n: X — M implies that the analytic subset M must be a submani-
fold (cf. Remark 3.10). In the second part of § 3 we present some examples
which illustrate the relations between the classical theory of interpolation for
holomorphic functions and (C). These examples are also studied in § 5. § 3 is
based on [5], [11], [12], [13], [14], [15], [19] and [20].

In § 4 a generalized version of Nullstellensatz for holomorphic functions
with restricted growth on Riemann domains is presented (Th. 4.1). As a
consequence of this result we get the fundamental theorem on holomorphic
continuation from some special (“regular”) neighbourhoods of M (Th. 4.3).
Theorem 4.3 is a particular case of Th. 1 from [11]. In the case where
X etop C" analogous results were proved in [2] and [16].

The main result of the paper (Th. 5.7) is formulated in § 5. In the same
section we also present some of well-known results, which are special cases of
Th. 5.7. The proof of Th. 5.7. is given in § 6.

The proof is based on a method of holomorphic retractions implied by
Lemma 3.11. By Lemma 3.11, a triple (X, M, ) satisfies (L) if one can find a
neighbourhood U of M and a holomorphic retraction n: U — M such that
for every holomorphic function f with controlled growth on U (specified in
the lemma) there exists a holomorphic function f with controlled growth on
X with f = fon M. In the case X etop C", an analogous method was used in
[2]. Our approach to the construction of holomorphic retractions is different
from that in [2]. The main concept is based on a method of pseudoinverse
matrices (cf. Lemmas 6.2, 6.3). The idea of the method is taken from [23].
This method of proof permits us to make it elementary.

Most of the results presented in this paper were announced in the
preprint [15].

The author wishes to express his deep gratitude to Professor J. Siciak
.for his suggestions, which were helpful in the improvement of an earlier
version of this paper.



8 Theory of continuation of d-tempered functions

§ 2. Basic properties of J-tempered holoinorphic functions

Let X be a complex analytic space countable at infinity and let
6: X—(0, +00) be a fixed function. For k > 0 let

ONX,8):={feO(X):Ic=c(f) = 0: *|f] < c}
= the space of all d-tempered holomorphic functions on X of degree < k.

Put
0X,d):= | WX, d)

k20

='the set of all 5-tempered holomorphic functions on X.

2.1. It can be seen that:
(@) The space O™ (X, 8) endowed with the norm

(%) OW(X,0)af — 16" fl.e R,
is a complex normed space.

(b) @V(X, 8) = H*(X) = the Banach algebra of all bounded holomorphic
Junctions on X.

(€) (X, ) 0% (X, §) = O***)(X,4), k, k' =0.

(d) If 6 is bounded, then

o™ (X, 8) < O"N(X,5), k<k.

In particular, if § is bounded then O(X, J) is a complex algebra with a
unit element and '

(%) 0(X,8) =) (X, )).

keN

(e) If 1/6 is locally bounded (e.g., § is lower semi-continuous) then for
every compact K — X:

(w*+) SI'J(plfI < [Stll(p(l/é)]“llé"fllw, fe O™ (X, 8).

Consequently, if 1/ is locally bounded then the topology induced by the
norm (») is stronger than the topology of uniform convergence on compact
subsets of X; in particular, ™ (X, ) is a complex Banach space.

2.2. Note that:

(a) If 6 is unbounded then (O(X, 8) need not be a vector space and (*x)
need not be true. For example:

Let X =C, é=|ef, where ge O(C) is such that g(—n)= —Inn,
g(n)=1Inn, neN. For k>0, let f,:=e *. Obviously f,e ®Y(C, J), k > 0,
but f,+f,¢ O(C, d) and fi,¢ ) O¥(C, d).

keN
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(b) If 1/6 is not locally bounded then the space (¥ (X, &) need not be
complete (k > 0). For example:

Let X = {x+iyeC: 0 <x,y <1}. By the Runge approximation the-
orem one can construct a sequence (f,),-; of complex polynomials and
a bounded non-holomorphic function f,: X — C such that:

VzeX An(2): Vnzn(2): |f,@)— fo(2)| < 1/n  (see[18],p.382).

Put §:=inf {1,(yn|f,— fo) "',ne N}. It can be seen that : X —(0,1]
and ||0(f,— folll. € 1/n,n= 1. Thus (f,|x)7, is a Cauchy sequence in
¢'VY(X, 6) which has no limit in this space.

23 (cl. [8], Prop. 1). Assume that dim O(X) = co. If 1/ is locally
bounded then (™ (X, ) is of the first Baire category in O(X) in the topology
of uniform convergence on compact subsets of X. Consequently, if & is bounded
then, in view of (xx), O(X, 0) is of the first Baire category in O(X).

Let X,, X, be two complex analytic spaces countable at infinity and let
d;: X;— (0, + o) be a bounded function, j =1, 2.

24. A linear mapping
L: O(X,, 6;)— O(X,,6,)

is said to be bounded if for every k, = O there exists a k, > 0 such that the
operator L|eux.s maps continuously 0*V(X,,d,) into O*2(X,, 5,).

A linear isomorphism L: O(X,, §,) — O(X,, d,) is called a bounded
isomorphism if the operators L and L ! are bounded (cf. [3], §§ 2.1, 2.2).

Bounded algebra homomorphisms play the role of morphisms in the
category of algebras of type (X, d); if L: O(X,,é,)— O(X,, 0, is a
bounded algebra isomorphism, then the algebras ¢ (X,, §,) and O(X,, 3,)
can be identified.

2.5. Observe that if ¢: X, — X, is a holomorphic mapping such that
0} €£cd;0¢ (y, c >0 constants),

then the operator @* |gx, s,) is a bounded algebra homomorphism of O(X,, é,)
into O(X,, 8,) (¢* f:= fog) (see also 3.6).

2.6. We say that two functions &, 6,: X — (0, +o0) are equivalent
(04 ~ 6,) if there exist constants y;, c; >0, j =1, 2, such that:

01 <c by, 0P <6 (cf[3],§1D).

It is clear that if 6, ~ d, then O(X, §,) = O(X, §,), and if, moreover,
., 3, are bounded then the identity mapping is a bounded algebra isomor-
phism of ¢(X, é,) onto O(X, 5,).

More generally:
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27. If ¢: X;— X, is a biholomorphic mapping for which 6,0¢ ~ §,,
then @*|qx,.s,) i a bounded algebra isomomorphism of 0(X,,d,) onto
0(X,, 6,) (cf. 2.5, see also 3.8).

28. Let 6: X — (0, + ) be a bounded function. We shall denote by
S(X, b) the set of all characters on (O(X, 0), that is, the set of all non-zero
linear and multiplicative functionals £: 0(X, 6) — C. Let S,(X, §) denote the
set of all bounded characters on (¢(X, 4); a character ¢: 0(X, 6) — C is said
to be bounded if for every k > O the operator ¢|qux,s maps continuously
O0W(X, 8) into C. Further, let E(X,d) denote the set of all evaluations on
O(X, J), that is, the set of all characters of the form

O0(X,0)3f— f(x)eC,
where x is a point of X. Note that E(X, §) = S, (X, ) = S(X, 9).

Now we pass to the case where X is a Riemann domain over C"

Let (X, p) be a Riemann domain over C" countable at infinity, ie. X is a
complex n-dimensional manifold countable at infinity and p: X - C" is a
local biholomorphism.

We say that (X, p) is finitely sheeted if for every xe X the stalk
p~!(p(x)) is a finite set.

A set C < X is said to be univalent if the mapping plc is injective.

An open set X — C" will always be identified with the domain (X, idy).

A domain (X, p) is said to be a Stein domain if X is a Stein manifold.

We shall frequently write X instead of (X, p).

Let [lz]l = (2,12 + ...+ |zJ®)Y3, z =(z4,...,2,)e C", denote the Euclidean
norm in C".

For xe X and r >0 let B(x, r) = By(x, r) denote an open univalent
neighbourhood of x which is mapped (biholomorphically) by p onto the
Euclidean ball B(p(x), r) = C".

Put o(x) = gx(x):=sup{r >0: B(x, r) exists} = the Euclidean distance
to the boundary of X of the point x (if X ctop C" then gy coincides with the
standard Euclidean distance to 0X; g = + ).

Let B(x) =By(x):= U B(x, r) = the maximal “ball’ centred at x,

0<r<g(x)

px = p 'ﬁ(x)v

X*C":={(x,z)e X xC™ ||z|| <o(x)} (note that (X*C, pxid,) is a
Riemann domain over C?"),

x®z:=p; H(p(x)+2), (x,z)e X*C".

2.9. Observe that:

(a) The mapping

@: X*(C"3(x, z2) > xPze X
is holomorphic.
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(b) le(x®z)—o ()| < llzll, (x,z)eX*C", x¢X,, where X :={xeX:
0(x) = + o} =the sum of all connected components of X which are mapped
biholomorphically by p onto C"

Our approach to the theory of d-tempered holomorphic functions on
Riemann domains will be based on Hormander’s I?-estimates for the o-
problem (cf. §4) and therefore we have to restrict our considerations to the
case where X is Stein and J satisfles some additional regularity conditions.

DerinrTion 2.10. A function 6: X — (0, 1] is said to be a Ltpschztz
function on X (de L (X)) if

(1) o

(1) I5(X®Z)—5(X)I < lzll, (x, z)e X* C™.

Some characterizations of Lipschitz functions will be given below. Now
let us only observe that the function min{g,1} is the maximal Lipschitz
function on X (cf. 2.9 (b)). ‘

Let 1 = 1y denote the Lebesgue measure on X (4 is locally “transpor-
ted” by p from the space C". Let I?(X) denote the space of all i-square
integrable functions on X and let || ||, denote the norm of IZ?(X).

Further, let PSH(X) denote the set of all plurisubharmonic (psh.)
functions on X.

For any function é: X — R, let us consider the following conditions:

(wWy) 8 < de0p,
where 8,(z) = (1+])z]|%)~ Y2, ze C".

(wy) Jap = 0: 6% I2(X).

(w;) —logde PSH(X).

(Wg) VI >0: {xeX: 6(x) >t} = = X.

Deriniion 211, Let & 5 (X) denote the set of all Lipschitz func-

tions on X which satisfy the conditions (w; ), ..., (W;,), 1 <i; <... <i <4,
1 € k < 4. Additionally, let
Lo(X) 1= Z(X),

Z(X):= ¥, (X) = the set of all weight functions on X,
W, (X) = % ,,3(X) =the set of all regular weight functions on X.

In the sequel we shall show that, generally speaking, every space of
holomorphic functions with restricted growth on a Riemann (resp. Stein)
domain X may be realized as a subspace of an algebra (X, §) where
0€ P1.2.4(X) (resp. 0 ¥, 5.3.4(X)) (see 2.28, 2.29). We shall also show that
the passage to the envelope of holomorphy always permits us to reduce the
problem to the case where X is Stein (see 2.31).

2.12. Let n: X — [0,1] be such that the set Y:= {# >0} is open. One
can easily prove that the following conditions are equlvalent
(W) nlye £(Y),
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(i) n satisfies (1,) and (1,) on X.
In particular, if X = C" then nlye Z(Y) iff

@ —-nG) <llz—-2, 2z,zeC"

This shows that in the case of C" our definition of Lipschitz functions is
equivalent to that in [3], §1.2.

2.13. The function
dx :=min {g, 6, 0p}

is the maximal weight function on X. Observe that é , = .

Recall that @™ (C", §,) = the space of all complex polynomials of
n-complex variables of degree < [k] (cf. §1). By analogy, in the general case
functions from O™ (X, ) are called holomorphic functions with polynomial
growth on X of degree < k. Observe that the mapping p* |ycn,s, i @ bounded
algebra monomorphism of O(C", §,) into O(X, 8x) (p* maps O (C", é,) into
(Q(k)(x’ 5X)9 k 2 0) .

For every analytic subset M < X, functions from (*(M, Jy) are called
holomorphic functions with polynomial growth on M of degree < k.

214, For every 0<i<4:
(@) 8y, 6,€ Z;(X)=min {4,, ,} e £ (X).

l
(b) 8, ..., 5me$i(X)=>;6l "o O € Zi(X).

(c) e & (X),a = laééaefi(X).

d) If 6,e Zi(X,), ..., 0pc ¥ (X,) then the function & given by the
formula
1
8(Xyy ey Xp) = —=min {8 (x1), .., S (Xm)}s  (X15oves X EX g X ooo X X,
Jm
belongs to £;(X; x ... xX,).

Let ¥ denote the set of all C!'-functions y: R, — R, such that:
(i) ¥ is increasing and convex,

(i) () =t teR,,

@iii) Y’ (e < D teR, .

One can prove (cf. [10], Lemma 7) that:

2.15. For every increasing function Vy: R, — R, there exists a C*-
Sunction Y e ¥ such that = y,.

For 4: X —(0,1] and y e ¥ put

. — ,—W(~logd)
Oy =€ .
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Note that éy, < 6. One can easily prove (cf. [3], §1.5, [10], the proof of
Prop. 2) that:

216. be i (X), ye¥ =4y c Zi(X),i=0,..., 4, whence 6, has at least
the same regularity as &.

The above result, as well as 2.14, give an insight into the construction of
new Lipschitz functions, which satisfy some fixed regularity conditions. Let
us consider the following example:

2.17. It is clear that for every 7 > 0 there exists a constant ¢(z) > 0 such
that the function

Y ():=c(r)+e”, teR,,

belongs to ¥. Note that §, is equivalent (in the sense of 2.6) to e % ".
Put §,:=(Jo)y, and observe that &, is equivalent to e~ '*!". Hence

N O(C", b,) = E,(C") =:the algebra of all entire functions

T™>n

of order < u (u=0).

By analogy, in the general case, if M is an analytic subset of X
(including the case where M = X), we put:

E,(M):

() O(M,(6x)y,) = the algebra of all holomorphic

T>u

functions with exponential growth on X of order < u

; > allnB > 0: X SAeBr‘sXx t’ € L
{fE (9(“4) V1T u t |f( )I T tox(0} X M}
More generally:

Let ye¥ be fixed. Then for every Riemann domain X and for every
analytic subset M of X the function  generates an algebra O(M, (8x),) which
may be considered as a generalization to M of the algebra O(C", (6o)y,)-

Let n: X — (0, 1] be a function satisfying (1,) and such that 1/# is locally
bounded. Put

q(x):=inf {n(x@2)+lzll: flzll <e(x)}, xeX.

The function # will be called the Lipschitz regularization of n (it may easily
be proved that 7 coincides with the formal convolution of n (cf. [9])).
Observe that:

218. (a) <.

(b) e £(X).
(c) 1 =sup{b6e L (X): d <n}.

Consequently, we get the following criterion for  to be a Lipschitz
function on X:
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2.19. Let 6: X — (0, 1] be such that é < ¢ and 1/6 is locally bounded.
Then the following conditions are equivalent:

(i) 6 £ (X).

(ii) 6 = 4.

(ii1) For every univalent set C — X for which p(C) is convex the function
S0(p|c)~! satisfies the standard Lipschitz condition with the constant 1 in p(C)

(cf. [9]).

2.20 (cf. [9], Th. 3). Let X be a Stein domain and let n: X — (0, 1] be
such that n < ¢ and —logne PSH(X). Then —log#ie PSH(X).

221. Let N(X):=sup{#p '(p(x): xeX}. If NX)<+oo (eg.
X etop C), then for every 6e W (X) and for every ¢ > 0: 6" e #?*(X). Conse-
quently, if N(X) < +00 then W (X) = %,(X) c Z,(X).

Proof. By the Fubini theorem

[62"* 9y < [(do0p)*"*Pdiy < N(X) [ 657" 9dA, < N(X)c(n)fe. w

X X o

Note that if N(X) = +oo then 8y need not satisfy (w,).

222 If X is finitely sheeted (eg. N(X)< + o) then W (X)
=Z(X) = 34(X_)~

Proof We only need to observe that a closed set K of a finitely

sheeted Riemann domain X is compact ifl the set p(K) is bounded and
info > 0 (cf. [4], p. 48, the proof of Th. 8). m
K

Note that if X is not finitely sheeted then oy need not satisfy (w,).

2.23. For every Riemann domain X: %\ ,4(X) # Q.

Proof. If N(X) < + o then the result follows from 2.21 and 2.22. In
the general case, let 7o: X — (0, 1] be an arbitrarily fixed continuous func-
tion satisfying (w,). Put

7, = (min {’70, 5,\'})--

Then 7, satisfies (w,) and belongs to %, 4(X) (cf. 2.18). Now one can choose
Ye¥ in such a way that

n:=)we L1.24(X) (cf. 215 and 2.16). =

2.24. It is clear that if X is a Stein domain then éxe 5 (X).

228. If £34(X)# @ then X is a Stein domain.

Proof. For the proof it suffices to observe that if de.%;,4(X) then
—logd is a continuous psh. exhaustion function. s

2.26. For every Stein domain X: %, ,3.4(X) # Q.
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Proof. If N(X) < + oo then the result follows from 2.21, 2.22 and 2.24.
In the general case the proof is analogous with that of 2.23. It is enough to
observe that if X is Stein then the function n, may be chosen in such a way
that —logn,e PSH(X) (cf. 2.20). =

2.27 (cf. [3], §1.5). Let ne L4(X) and let G be a locally bounded family
of functions X — C. Then there exists a yeW such that

ﬂ(w)lglgls geG.

Proof. It suffices to take ¥ such that
¥ (t) > sup {sup {log* lgl}}, reR.,
ge G Ke"
where K,:={n =1}, 1 >0 (cf. 2.15). m
The above result implies the following two important corollaries:

2.28. Let X be a Riemann (resp. Stein) domain, let M be an analytic
subset of X (including the case where M = X) and let F < O(M) be a locally
bounded family of functions. Then there exists b€ %Ly ,4(X) (resp.
0€ #1,2.3.4(X)) such that

F e {fe (X, &: lI6fll, < 1}.

Proof. The result is a consequence of 2.23 (resp. 2.26) and 2.27 with
G .= {fUOX\M: fEF} a

229. Let X be a Riemann (resp. Stein) domain, let M be an analytic
subset of X and let 3: M — (0, + o0) be such that 1/3 is locally bounded. Then
there exists a d€ ¥ 5,4(X) (resp. 6€ ¥ 3,3.4(X)) such that

(M, 9) < OV (M, §)
and
1A llw < 1 flle, feOP(M, ), k>0
In particular, if 9 is also bounded then the identity mapping is a bounded
algebra monomorphism of O(M, 9) into O(M, J).
Proof. The result is a consequence of 2.1 (*,*) and 2.27 with

G:={(fINSM* U0y k>0, fe OV (M, ), f#0}. w

Let (X, p) denote the envelgpe of holomorphy of (X, p) and let ¢: X — X
be the embedding of X into X (¢ is locally biholomorphic and po¢ = p).
Let 6: X —(0, 1] be a lower semi-continuous function. Define

S=e",

where @ : = sup {uePSH()?) uo¢ < —logd}, ®* denotes the upper regula-
rization of &. The function & is called the plurisubharmonic regularization of o
(cf. [3], § 44).
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230. (a) 5 < 1,

(b) 6 <boo, i X

(c) 6: X—(0, 1] and —logoe PSH(X).

Proof. (a), (b) follow directly from the definition of 5. We pass to the
proof of (c). It is known that for every compact L — X there exists a compact
K < X such that

Lc[o(K)]mum = (%€ X: Vue PSH(X): u(%) < supuO(p}

In particular,

sup® < sup(—logd) < + 0.
L K

This proves that the function ¢ is locally upper bounded, whence
—logde PSH(X) (in particular §: X — (0, 1]). =
Analogously with [3], § 44 one can easily prove that:

231. o* (O™ (X, §)) = O™ (X, 5) and
1Al =116 (o)l fEOP(X,8).k20

In particular, @*|qz 5 is a bounded algebra isomorphism of O(X, 6) onto
0(X, d).

232 e Z(X)=be Li(X), i=0, 1.
(The author does not know whether the above implication is true for
i=2,4)

Proof (cf. [14]). Observe that

o(Bx(x, 1) = Blo(), 1), 0<r <ox(x);

hence ¢ox < ¢50¢ and oy < dz00. Obv1ously —logoz, —logdgze PSH(X).
Consequently, if & < gy (resp. 6 < 8y) then 8 < gz (resp. 8z < dg). It remains
to show that if e #(X) then (8)” = & (cf. 2.19). In view of 2.20, it is enough
to prove that 8 <(§) o¢. Fix xe X. Since ¢(x®z) = ¢(x)@z, (x, 2)e X* C",
we get

(6)” (¢ (x)) = min {inf {(§ 0 ) (x®2) +|lzI|: lizll < ex (%)},
inf {8 (¢ (x)®z)+lzll: ex(x) < llzll < ox(¢(0)}}
> min {5(x),gx(x)} =6(x). »

233. Let X be a Stein domain. Then we can take X = X, ¢ = idy. Let
8: X —(0, 1] be a lower semi-continuous function and let § denote its
plurisubharmonic regularization. We already know that 0(X, 8) = O(X, 6)
(cf. 2.31). Let M be an analytic subset of X, dim M < n—1. Then obviously
0" (M, §) =« (M, d), k > 0.



2. Basic properties of é-tempered holomorphic functions 17

Note that in general O(M,d) need not be equal to O(M, d) (even if X,
M, & are very regular). For example:
Let X = C* M = {z, =0}. Set

50(21,22) if 227’:0,
e I7l if z; =0.

"7(21322) = {

Note that n<d, and 1/n is locally bounded. Let é:=7#. Then
ele ™V (M, 8). We shall show that !¢ O(M, J).
Note that :

8(zy, z2) = min {4 (z,, z5), inf {e™ ™11+ /|z) —w,|?+|z,)?: wie Cll,
S0 &(zy, z5) = 8o(24, z3), |z,] = 1. Hence, since —logée PSH(X),
—10gd(z;, 0) < max {—logd(zy, z,)} = —logdy(zy, 1),
Jzal=1
s0 8(z;, 0) = 8g(zy, 1), z,€C.
Consequently, for every k = O:

sup {6*le’!|} > sup {2+ x?)"¥%e* xeR} = + .
M

2.34. In the case where X etop C" the class of weight functions may be
extended as follows (cf. [2], [6]):

A function n: X — (0, + o) is said to be a generalized weight function on
X (ne #7?(X)) if there exist constants cy,¢; >0, 0 <cp, <1, a4y, >0, a, 21
such that

11 S 6050,
[xe X, yeC, Ix—)ll e ' ()] =Dye X, n() = c2n"* (9]

If moreover —logne PSH(X) then we say that 75 is regular (ne #7?(X)).

Note that #7(X) & #¥(X) and #,(X) £ #¥(X), but from the point of
view of the theory of é-tempered functions the classes #°(X) and #7¥(X) are
equivalent, namely (cf. [3], §§ 1.4, 44) for every ne #¥(X) (resp. ne #?(X))
there exist constants ¢, y > 0 such that the function & :=(cy’)” is equivalent
to n and belongs to # (X) (resp. %, (X)).

We have shown how the study of d-tempered holomorphic functions on
a Riemann domain X may be reduced to the case where X is a Stein domain
and & 1s a Lipschitz function satisfying some of the conditions (w,), ..., (w,).

Now we would like to present the special properties of (X, é) in the
case where X and & are sufficiently regular.

We need some auxiliary notations,

Let 6: X — (0, + ) be a A-measurable function. For k > 0 define

H®(X, 8) = {fe 0(X); *f e 2(X))

2 — Dissertationes Mathematicae CCLVH] U
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and let
H(X,8)=U H""_(X, ).

k20

235 (cf. 2.1). (a) The space H¥ (X, §) with the scalar product
| (fs 9) —~ [ £ 36 dix
X

is a complex unitary space (k = 0).
(b) If é is bounded then
H® (X, 8) =« H¥(X, 8), K 2k;
in particular, H(X, d) is a complex space and

H(X,d) = kUNH"" (X, 9).

(c) If 1/6 is locally bounded then for every compact K = X there exists a
constant ¢(K) > 0 such that

sup|f| < [c(K)TII*f1l;,  feH¥(X,d), k> 0.
K

Consequently, H® (X, ) is a complex Hilbert space which topology is
stronger than the topology of uniform convergence on compact subsets of X.
() 1eH(X, &) iff & satisfies (w,).
() If 8¢ 12(X) then
0% (X, 8) < H*""(X, §)
and

1877 £ll, <160l 16* fll, S OV (X, 8), k > 0.

2.36. One may also easily prove (cf. [10], Th. I) that if dim O(X) = o0
and 1/8 is locally bounded then H® (X, 9) is of the first Baire category in €(X)
(k = 0). Consequently, if 6 is bounded then H(X, ) is of the first Baire
category in O(X).

237 ([31, § 1.3, [8], Prop. 3). If 6 £ (X) then
H® (X, §) < 0**" (X, )
and
10" " fllo < c(n, B)WIG* fll2, feH®(X, ), k>0,

where c(n, k) = [t,max {e"(1—¢)*: 0 <e < 1}]7!,7, = the volume of the unit
ball in C". .

In view of 235 (¢) and 237, if e ¥,(X) then O(X, §) = H(X, d) and
the structures of @(X, 8) and H(X, §) are isomorphic.
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238 ((3], § 1.3, [8), Prop. 2). If de L(X) then
164+ (@ Dl S VLM 2 MG [, feOV(X, &), k >0, ve ZT,

where

0 ) -1
%(x) -= —(fgz%)(l’(x)), j=1,...,n,

o\ 0 \"n .
5, =<51;> o...o(ap"> , v‘—(v,,...,-v,,)eZ+.

Consequently, for every veZ%, " is a bounded linear operator of
0 (X, ) into O(X, 9).

2.39. Let e £(X) and let G=(Gy,...,G,): X — C" be such that
Gie™(X,0),j=1,...,m Put

IGll := (1G> + ... +|Gn)"?  and II5*GIIm:=Sl;p{5"IIGII}-

Let d9G:=d%,(Gop;') =the sth differential of G at x (se N). d¥G is
a homogeneous polynomial of degree s of C" into C™.
By the Cauchy inequalities

(t2 19G] < st [af—x)T"‘a" 116 (x@2: flzl) = $500)

2 +s
<s!| — k .
s [5()‘):'. 16°Gll., xe€X, seN

In particular,

8G
op

J

(2.40) ok+1 < 224G, j=1,...,n

Note that

G(x@z)-G(x) = }(d%uG) (z)dt
0

= (d"G)(2)+ }(1 —1)(d3.G)(2)dt, (x,z)e X*C".
0

Hence in view of (} ) we get the following two very useful estimates:

4 k + 1
(241) IIG(X®Z)—G(X)II<|:@] 16*Gll o llzl,  llzll < 46 (x).

. 4 k+ 2
(242) HG(x(-BZ)—G(X)II>I|de(2)ll—2[%] 164Gl M1z112, llzll < 36 (x).
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243 ([12], the proof of Lemma 3, [14], 2.3). Let X be a Stein domain,
de &L, 3(X). Then, for every k 2 0, ac X, there exists a u,e C(*“**" (X, §) such
that

(1) u,(a) =1,

(i) u,(x) =0, xep~!(p(x), x # a,
(iii) 0% **"u,)|.. < c(n, k)8*~2"(a), where c(n, k) depends only on n and k.
In particular, (**"”(X, 8) separates points in X.

2.44 ([8), Th. 4). Let X be a Stein domain, € ¥ 3(X). Then

(a) €¢(X,6) is dense in ((X) in the topology of uniform convergence on
compact subsets of X;

(b) For every k > 6n there exists an fe ("™ (X, ) such that X is the
maximal domain of existence of f.

In particular, in view of 2.31 and 2.32 we get

245. For every Riemann domain X and for every de W (X):

(@) If ©(X) separates points then so does (**™(X, 9);

(b) (X, 6) is dense in O(X).

246 ([14], Th. 2). Let X be a Stein domain, ¢ W ,(X). Then S,(X, 0)

=E(X, 0). If, moreover, X is finitely sheeted then S(X, )= S,(X, d)
=E(X,9).

(The author does not know any example of an infinitely sheeted Stein
domain and de #'(X) for which E(X, ) £ S(X, §))

§3. Holomorphic continuation and holomorphic retractions

Let X be a comp]ex analytic space countable at infinity, let M be a
closed subspace of X and let R = R); denote the restriction operator

0(X)> f = flue O(M).

We shall always assume that every connected component of X intersects M.

Let 6: X — (0, + o) be a fixed bounded function such that 1/4 is locally
bounded.

We shall study the following problem of holomorphic continuation.
Given X, M, §, find when

(€) O(M, 8) = R}(0(X, 9)), ie, VfeOM, d) Afe0(X, d): flu=1.
The basic problem (C) has many stronger versions — for example:
(Cy (Continuation with controlled degree)

Vk 3k: O™ (M, 8) « R(O™(X, 8)).
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(C,,) (Continuation with controlled degree and norm)
Vk 3k,3b > 0: "M, §) = R(¢® (X, 8))
and
Viet™M,8) 3fe®(X,8: flu=1 16°/llo<bl&"fllw.
(C4ny) (Linear continuation with controlled degree and norm)

Vk 3k,3L,: OV(M, 8)— O™(X, ) L, is a linear
. continuous extension operator.

(L) (Linear continuation with uniform estimate of degree and geometri-
cal estimate of norm)
d620: Vyp>13c=c(n):

Vk 3L: WM, 8)— @**?(X, 8): L, is a linear continuous
extension operator with ||L ]| < cn*.

(Lo) (A limit version of (L))

3¢>0: VkIL,: (WM, §)— "W (X,d): L, is a linear
continuous extension operator with ||L,|| < c.

(H) (Homomorphic continuation)
AT: O(M, d)— O(X, d): T is a homomorphic extension operator.
(H,) (Bounded homomorphic continuation)

IT: O(M, d)— O(X, d): Tis a bounded homomorphic extension operator.

It can be seen that:

(L) = (L) =>{Cg,n,1) =>(Cq,n) = (Cq) =>(C)
) i)
Hp => H

Below we shall show (cf. 3.5, 3.9 and 4.5) that if X is a finitely sheeted
Stein domain over C” (e.g., X is a domain of holomorphy in C"), ée ¥ ,(X)
and M is an analytic subset of X determined by functions from ‘(X ,) then:

(Lo) => (L) => (Cypn,1) <> (Cyp) <> (Cq) <> (C)

f

(H) <= (Hy)

Let us start with a few general remarks relating to bounded linear
operators between algebras of d-tempered functions.

Let X,, X, be two complex analytic spaces countable at infinity and let
d;: X;— (0, +0) be a bounded function such that 1/5; is locally bounded,
j=1, 2. Let L: O(X,, 8,) = O(X,, 8,) be a linear operator.
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Lemma 3.1. The following conditions are equivalent:
(i) L is bounded. .
(i) For every k, =0 and for every x,e X, the operator
"Xy, 8)3f = (L) (x)eC
is continuous.

Proof (the method of the proof is taken from [20]). The implication
(1) = (ii) is obvious. For the proof of (ii) = (i), let us fix k, > 0 and observe
that it is enough to prove that there exist r,, r, > 0 and k, > 0 such that:

(* [fed* (X1, 6), 161 fllo < 111 = OISR LN < r2]-
For 4, u, veN let
Cowni= {0 (X,, 81): 101" fllo < A, 164 (LNl < V).
The set C; ,, is absolutely convex and

U Cuuy = 0"(X,, 8)).

Au,veN

The space @(kl)(X 1, 9;) has the Baire property, whence for some Ay, u,,
vo€ N, int cl(C,I0 uowvo) @ (the interior and the closure are taken in the

sense of (7 (Xl, 9,)). In consequence there exists an r; > 0 such that
= e (X, 8): 103 flle S 71} © l(Cg gy
We shall prove that
182°(Lf)llw < 2v,  f€B,, (cf. (*)).
Fix f, €B,,. Since
Cl(clo.uo.vo) < Clo,uo,v0+%Brla
there exist sequences (920 < Ciguq, a0d (f)s2; = B, such that

f;=gs+%f;+1, 520.

Hence

t
=(Y 270g)+27 iy, £ 1.

s=0
The sequence (f)2, is bounded in ™Y (X,, 8,), and so the series
Y. 27*g, is convergent in (X, 8,) to f,.
s=0

ao
On the other hand, since g,€C, v, § =0, the series ) 27°Lg, is
s=0
absolutely convergent in e (X,, 8,) to an element with the norm < 2v,.



3. Holomorphic continuation and holomorphic retractions 23
In view of (ii)
a
LfO = Z 2_ngs,

s=0

which finishes the proof.

LEmMMA 3.2. Assume that L is bounded. Then the following conditions
are equivalent:

(1) L is surjective.
@) Vk, 3k;: 0*2(X,, 8,) « L(¢*V (X4, 6,)).
(iii) Yk, 3k;,3b>0: ¢*2(X,, 8,) = L(0*V (X4, 6,)) and

V f€ 0“7 (X, 6,) 3 f1€ 0“V(X,, 8,): Lfy = £, 118 fillw < B1I63 fillo-

Proof. The implications (iii) = (i) = (i) are obviou§. The proof of
(i) = (i) is analogous with the proof of Lemma 3.1. Fix k;. It suffices
to prove that there exist ry, r; >0, ky 2 0 such that

B,, = {f,e "2 (X, 8,): 165 fillw <72} < L(B,),
where
B, :={fie 0"V(X,, ,): 118} fill o <71}
Let
Crw = {126 6P (X3, 69): 1185 fillw < 4, 3f1 € O (X, 8y):
Lf; = f1, 1101 fillo < v}.
There exist Ay, ug, vo and r, >0 such that

B,, = cl(C; ) (cf. the proof of Lemma 3.1).

A0HO0 YO

Fix foeB,,. As in Lemma 3.1, one can construct a sequence
@20 = Cio-ﬂo-Vo such that

fO = Z 2—sg”
s=0

where the series is convergent in *? (X5, 45).
In view of the definition of C, ..., there exists a sequence

(h)= o < 09 (X,, 8,) such that
th =ds» 520

and the series ) 27°h, is absolutely cohvergent in 0"?(X,, 8, to an
s=0
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element f, with the norm < 2v,. Since Lis bounded, we get
Lfo = fo,
which gives the required result with r, = 2vy, k; = po.

CoroLLary 3.3. The conditions (C), (C,) and (C,,) are equivalent.

Proof. The result is a consequence of Lemma 3.2 with X, = X, X,
=M, 6, =96, 6, =6|y, L=RE.

We shall need the following lemma on the solvability of a system of
linear equations.

LemMma 34. Let E be a normed space, H a Hilbert space, D a linear
subspace of H, and let T,: D — E, o€ A, be a family of linear operators such
that

S:={veD: T,v =0, ac A}
is a closed subspace of H.
Assume that

d¢>0: VueE JveD: VaecA: T,v=u and ||v||g < c||ullg.
Then there exists a linear continuous operator

L: E-D
such that
T,oL=id, aeA, and |L|<2c.

Proof (cf. the proof of Lemma 1 in [11]). Let P: H— S denote the
orthogonal projection. We can put

Lu:=v—Pv, uekE,

where v = v(u) is an element of D such that v =u, acA. »

CoRrOLLARY 3.5. Let X be a Riemann domain, 6 ¥,(X). Then the
conditions (C), (C,), (Cy,) and (C,,) are equivalent.

Proof. InAview of Corol. 3.3, it is enough 'to prove that (Cy,) =(Cy,)-
Fix k and let kK and b be as in (C,,). In view of 2.35 (e),

(k+ag)

(X,8) <H (X, 6)

and )
16" %0 gll, <116°,110%g) .,  ge P(X, §).

(k+ag)

Let E:= 0™ (M,d), H:=H (X,98),D:={geH: g|yeE}, T, = R¥.
Note that the set S ={geH: g|, =0} is closed (235 (c)). Hence, by
Lemma 3.4, there exists a linear continuous operator

L:E-D
such that RoL, =id and ||L,|| < 2b|6*9,.



3. Holomorphic continuation and holomorphic retractions 25

According to 2.37, L, may be regarded as an operator into gt
with the norm < 2b|(6*%|, c(n, k+ao). =

LemmA 3.6. Assume that (X, p) is a Stein domain over C", ;€ W ,(X,).
Then for every bounded algebra homomorphism

(X, 9)

T: O(Xy, dy) — U(X3, 63)
with T1 =1 there exists exactly one holomorphic mapping
o: X, — X,
such that
(*%) 03 < cdy0¢ (y,¢ >0 constants) and T = ¢@*|gx,.5y)-

Moreover, if X, is finitely sheeted then the same is true for every algebra
homomorphism T with T1 =1 (in consequence T has to be bounded).

Note that, in view of 2.5, the above result gives a full characterization of
all bounded homomorphisms 7 with T1 = 1.

Proof (the proof is based on the methods of [12]). Fix an algebra
homomorphism (resp. bounded algebra homomorphism) T with T1 = 1. For
x,e X, let & O(X,, 6,)— C be given by the formula

&f =(TN)(x2), [feO(Xy, 8y).

Then £eS(X, 6) (resp. £€S,(X, 0)). By 2.46, there exists exactly one point
x, € X, such that

&f =f(x1), fel(Xy,9,).

Put ¢(x;):=x;. Then ¢: X, —» X, and T= ¢*|gx,.s,). In particular T
satisfies condition (i) of Lemma 3.1, and so T is bounded. It remains to
prove (x+) and show that ¢ is holomorphic.

Due to 243, there exists a family (v,),cx, = ¢°°"* (X, 8,) such that

01(a)v,(a) = 1,
165" *0all o, < c(m),  ae Xy,

where c(n) depends only on n.
Since T is bounded, there exist y, ¢ > 0 such that

||55(Uao¢)||w<0a anl'
In particular,

04(x2) |U¢(:2)((P_ (xz))| ¢, Xx€X,,
which proves (*x*).
We pass to the proof that ¢ is holomorphic. Note that
foeel(X,), [fel(X,,4d,);
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in particular, pogpe[0(X,)])", and so it suffices to show that ¢ is
continuous.

Let X,;3x,— xoe X3, V,:=@(x), z,:=p(y), s=0 Observe that
z,— z9. 1/, is locally bounded, and so there exists an ¢ > 0 such that

S,(x)=¢e, s=0;
thus
1

1
51 (ys) 2 -65 (xs) >—¢
C C

:2r, s20.

We may assume that {|z,—zo|| <r, s = 1. Then there exists a sequence
(W)2, < p~'(zo) such that w,eB(y,, r), s > 1.

Now we have two possibilities:

(a) There exists an s, such that w, = y,, s > s,. In this case y,e B(yo),
s 2 So, and so y, — yo.

(b) There exists a subsequence (w,)Z; such that w # yo, t > 1. We
may assume that this subsequence coincides with the initial sequence
(w)Z ;. In this case, in view of 2.43, there exists a function fye (““"(X,, 6,)
such that fo(w,)) =0, s = 1, fo(yo) = 1. The function f; 0 ¢ is holomorphic; in
particular, f,(y,) — fo(yo) = 1. On the other hand, in view of (2.41),

fo Wl = 1fo (¥ — fo (Wl <[ ] 163" foll o llz, = 2ol

61 (ys)
<TI0 follwllzs—2oll =0 as s — +o0,

which gives a contradiction. =

Remark 3.7. If X, is not Stein then the assertion of Lemma 3.6 need
not be true. For example:

Let X, X, ? 5, 6 be as in 2.31. Assume that de #'(X) and ¢(X) # X.
Then ((p loz,5) ' is a bounded algebra 1somorphlsm of O(X,d) onto
0(X, 8) which is not given by any mapping of X into X.

CoroLLARY 3.8. Let X, X, be Stein domains, d;e W ,(X;),j =1, 2. Then
for every bounded algebra isomorphism T: C(X,, 6,)— (' (X,, §,) there exists
a biholomorphic mapping ¢: X, — X, which satisfies (xx) (of Lemma 3.6) and
is such that T = @*|gx,.s,)-

If X, X, are finitely sheeted (e.g., X,, X, are domains of holomorphy in
C") then the same is true for every algebra isomorphism of O(X,, 6,) onto
0(X,, 9,).

CoroLLARY 3.9 (A characterization of solvability of (H) and (H,)). Let X

be a Stein domain, 6 W ,(X) and suppose that M = (\ f~'(0), where F is a
JeF
Jamily of functions from (O(X, ) (we always assume that every connected

component of X intersects M). Then for every bounded homomorphic extension
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operator T: O(M, ) — (X, 8) there exists exactly one holomorphic
retraction n: X —+ M such that '

(+*) 0" < cdom (y, ¢ >0 constants) and T =1*|gp.4-

If X is finitely sheeted then the same is true for every homomorphic extension
operator T (which, in consequence, has to be bounded).

Proof. The operator ToR: O(X, ) — (O(X, $) is a bounded algebra
homomorphism (resp. algebra homomorphism) and (T o R)(1) = 1. Hence, by
Lemma 3.6, there exists exactly one holomorphic mapping n: X — X such
that (,*,) holds true and TOR = n*|ux 4. In particular, fon = T(f|y)
=T(0)=0, feF, and so n: X—- M. If feO®(M, d) then we have fon
=(Tf)orn =(ToR)(Tf) =Tf. Hence T =n*|yys. The space O(M, 9
separates points and thus = is a retraction. m

Remark 3.10. Let X be a complex manifold and let M be an analytic
subset of X. It is known that if n: X — M is a holomorphic retraction then
M has to be a submanifold (if X is disconnected then connected components
of M may have different dimensions). In particular, under the assumptions of
Corol. 3.9, if the triple (X, M, ) satisfies (H,) then M has to be a
submanifold.

The existence of global holomorphic retractions n: X — M with (+*4) as
in Corol. 3.9 seems to be very rare (even without the condition (,*,)). On the
other hand, it is known that if M is a submanifold of X then there exists a
neighbourhood U of M and a holomorphic retraction n: U — M. In the case.
of problem (L) this leads to the following idea (a different approach was
presented, for instance, in [13], [21], [22]):

Lemma 3.11. Let X be Riemann domain over C", let e &,(X). Suppose
that there exists a 64 = 0 such that for every 0 <e < 1 there exists an open
neighbourhood U of M, a holomorphic retraction n: U — M and a constant
¢ > 0 such that

() VxeU: xeB(n(x), e5(n(x))),

(i) VI VfeHOU, 8) 3fe H' 79X, &):

fu=1 and 11877 fll, < clld S
Then the triple (X, M, &) satisfies (L) with ¢ = 0o+ ay+n.

Proof. Fix n>1 and let 0 <e¢ <1 be fixed in such a way that
1+e

1—¢

< 7. Let U, mn, ¢ be associated with ¢ according to the assumptions.
In view of 2.35 (e), the operator
LY: 0"(M, 8)sf - foreH* " (U, 6)
is well-defined, linear, continuous and has the norm < ||6°%|,(1+¢)*.

In view of (ii), by Lemma 3.4 (cf. the proof of Corol. 3.5 and 2.37) there
exists a linear continuous operator
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Prag: H U, 8) » 04+ 2(x, 9)
such that
WOLZ e =Ry and IR . /) < 2c[z,e"(1—g)" 707",

Set
Li= I, 0 ).
Then L,: O®(M, 8) - ¢**?(X, §) is a linear continuous extension operator
and

oo +a 1+e\
1Ll < 2¢ [z, e"(1—¢)"0 0]~ (ﬁ) <crt,

where ¢’ is independent of k. w

For sufficiently regular (X, M, d) a class of neighbourhoods U satisfying
condition (i) of Lemma 3.11 will be characterized in § 4 (Th. 4.3). The
problem of existence of holomorphic retractions n: U — M (as in condition
(1)) will be studied in § 6 (Lemma 6.2).

Problem (L) is simpler in the case where M is a graph — more precisely:

312. Let (Y,q) be a Riemann domain over C* ™ and let
F=(F,,..., F)e[(®(Y, 6,)]" (« = 1). Put

= {(v, FO): yeY} = YxC™,

M is the graph of F. Let Xetop(Y xC™), p:=gxid,,. Assume that
M < X. We shall shortly say that M is a graph in X.

Put G;(y,2) =z;—F;(y), (v,2eX, j=1,...,m Obviously M={G
= 0}. One can easily check that dx(y, z) < dy(y), (¥, z)e X. Hence for every
deW(X): G:=(Gy, ..., G e[O*(X, &)]".

Let (X, p) be the envelope of holomorphy of (X, p) and let ¢: X — X
denote the embedding.

Fix de #'(X) and let & denote its psh. regulanzat:on In view of 231,
there exist G, ..., G,e 09(X, 5) such that G,o9=G,, j=1,...,m. Put

1:={G =0). Clearly ¢(M) c M. Observe that

k=1, ...
0 lfk#], b ’ ,y m,

0z,
whence

oG, 1 ifk=j,

0 if k#j.
In particular, rank(d;é) =m, fe}?, which implies that M is an
(n— m)-dimensional submanifold of X.

We shall prove (cf. 5.8) that if e w,(X) (eg, N(X) < + o0, cf. 221)
then (X, M, 9) always satisfies (L). Consequently we get:

ﬁpn—m+k
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3.13. If $e W (X) then
(X, M, 9) satisfies (C)<>o*(O(M, 8)) = O(M, §).

Remark 3.14. Note that there exist very regular graphs for which
condition (C) is not fulfilled. For example: n=3,m=2,Y=C,F, =F, =0,
X =CA, where A={z;=e "',z;=0}. Clearly M = {z, =z, =0}  X.
Observe that codimAd =2, so X = C?, ¢ =idy. Set & =5;. Obviously
M = M and e #,(C?. One can easily prove (on the analogy of 2.33) that
¢'e (M, 6)\ (M, 8). Hence, in view of 3.13, (X, M, &) does not satisfy (C).

In the case X = C" one of the most important problems of the interpo-
lation theory is to characterize those analytic subsets M of C" for which
E, (M) =R (E,(C") (cf. 2.17), where p> 0 is a fixed number.

The same problem may be formulated in the general case — we say that
an analytic subset M of a Riemann domain X is an interpolation set for
E,(X) if E,(M) = R} (E,(X)).

In the case X = C the interpolation sets are completely characterized by
the following theorem:

3.15 ([19]). Let M = {z;: seN} = C, |z » +o0. Fix p>0. Then the
following conditions are equivalent:
(i) M is an interpolation set for E,(C).

(ii) (a) For every t > u the series ), |z~ * is convergent and
s=1
(b) 1/K’'e E,(M), where K is the Weierstrass canonical product for
(22, (cf. [18], p. 220).
(i) There exists a Ge E,(C) such that
(@) M =G '(0) and
D) Ve>pudb=1:|G(2) = e b1+ ze M.

Note that the implication (ii) = (iii) is obvious (we can take G := K).
The implication (iii) =(ii) is a consequence of standard properties of entire
functions of order < u (cf. [18], pp. 218, 224).

In the case X = C", n = 2, the situation is more complicated: generally
speaking, the implication (iii) = (i) remains true but (i) = (iii) does not, namely:

3.16 ([22]). Let M be an (n—1)-dimensional submanifold of C". Fix

= 0. Suppose that there exists a Ge E,(C") such that

. M =G 1(0),
and there exist T >y, b > 1:
(i) |d,G|| = e 22119 xe M.
Then
(1) for every m =1 there exists an m > 1 such that every function
fe €O(M) satisfying -

If() < e™* I, xe M,
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admits an extension to an entire function f such that
I () < 210, xeCm,

In particular, O(M, é,) = R(O(C", 4,)). Consequently, if for every t > u there
exists a b > 1 for which (i) is satisfied, then M is an interpolation set for
E,(C") (this corresponds to the implication (iii) = (i) in 3.15).

On the other hand, there exists a Ge Eo(C?) such that for every 7 > 0
condition (ii) is fulfilled but there are no t > 0 for which (i) is true ([22], § 4).

Theorem 3.16 was generalized to the case of Stein domains in [13] (cf.
also Corol. 5.10). '

We shall end this section with a few remarks relating to problem (L,) in
the case where dimM = 0.

LemMa 3.17. Let X be a Riemann domain, let M = {x,: se N} © X be
a zero-dimensional subset and let 6: X — (0, 1] be such that 1/6 is locally
bounded. Then the following conditions are equivalent:

() (X, M, 8) satisfies (Lo) with a constant c.

(ii) For every k > O there exists a sequence (h), .y = O™ (X, &) such that

1 ifs=
S A

(b) &* 3 67 (x) Ikl < ¢

Proof. (ii) = (i); define L, f = i f(x)h, fe ™ (M, d). In view of (b)

8 317Gk <18 fllo 8 3. 5 Al < el |

Consequently, L, is a well-defined linear continuous operator of (M, &)
into O® (X, §). In view of (a), L, is an extension operator.
(i) = (ii); let f,e H®(M) be given by the formula

if s=t

1 ’
i) = {o if s+t

Put h:= L,(f), te N (L, is as in (Ly)). Then obviously (a) is fulfilled, and
so it remains to verify (b).
le xc X and let ©,eR be such that &% h,(x%) = Ih.(xo)l, teN. Let

Om'= Z 67%(x)e'® f,, meN. Then g,e O™ (M, &) and ||0*g,|l. <1, meN.

=1
Hence we get

¢ 2 16" (Ly gmll w = 8* (x°) (L g) (x°)|
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m i0
_ 4
2 (x| Y 67 (x) e h(xO)
=1

= 6*(x°) _i 57%(x)| h(x°), meN. m

Let us consider the simplest case where X = D:= {zeC: |z] <1}, M
= {z,: se N} = D. We shall say that M is a universal interpolation sequence
(uis) if H®*(M) = RE(H®(D)) (cf. [5)).

3.18 ([5], Thms. 1, 2).
(i) M is a uis. iff there exists a b > 0 such that

(+) l;[ 1 7z =>b, seN.
1#s
i) If
1—
(++) limsupjiﬂ<l,
s—+ —lz

then M is a uis.; if z,€(0, 1), se N, and z; » 1 then (+ +) is also necessary
for M to be a u.is.
(ii)) Assume that there exist 4 <1, ¢ > 0 such that

(+++) ﬁ[l—<l— )tl?c, seN.

t=1
t#£s

Then M is a u.is. and, moreover, there exist ¢;, ¢; > 0, f,e O(D), te N, such

that

_z‘

1-2z

lf;(zl)| cla tEN,
Zlf,(z)l ¢, zeD.

(iv) If (+ +) is satisfied then (+ + +) holds true with 4 = 1/2.

ProPOSITION 3.19. Assume that (+ + +) is satisfied. Let € O(D) be such
that

0¢y (D),
0(2):=¥(z)e(, 1], zeD,

vzl < (@), zeD.
Then (D, M, 6) satisfies (L,).
Proof (the concept of the proof is taken from [5]). Define

P,(z) H e'e' 2- o zeD, seN,
t=

t*s
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where ¢ %z, = —|z,), te N. In view of (+), P,e O(D), |P| < 1, |P,(z)| = r, and

P,(z) =0, t #«s. Let ¢;, ¢, f;, te N, be as in 3.18 (iii). Fix k > 0 and put

P,
g,(z):=f'(z)—i;(z), zeD,teN.
[Y(—e 2]
. £ (2)] -k -
Obviously g,e O(D), 1g,(2)l < ———5 — <67 (£, zeD, g¢,(z) =0,
W (—e™2)
s #t, and
| fe (2l T, _
z)| = =c, b67%(z), teN.
Igl( t 'l’(lzrl) 1 t
Let h,:=g£z'z), teN. It is easily seen that the sequence (k)2 , satisfies
t\<y

condition (ii) of Lemma 3.17 (with ¢ = c,/c, b). Thus the result is a direct
consequence of Lemma 3.17. =

CoRrOLLARY 3.20. Assume that (+ + +) is fulfilled. Then

(i) (D, M, 6p) satisfies (Ly).

(i) For every t >0: (D, M, ) satisfies (Lo) (cf. 2.17).

(i) For every u> 0: M is an interpolation set for E, (D).

Proof. (i) is a consequence of Prop. 3.19 with Yy (z):=1—z, ze D. (ii)
follows from 3.19 with ¥ (z) = exp[—c(r)—e " =], ze D. Finally (iii) is a
direct consequence of (ii).

§4. Continuation from regular neighbourhoods

Let X be a Riemann domain over C" countable at infinity, é e 2 (X),
F=(F,,..., Fy)e[0"™(X, 8)]*, Uetop X. Assume that F #0 on any con-
nected component of U.

Define

A?,s = {uELZ;r,s)(U’ IOC): auel‘z(r,s+1)(ua lOC)},
A:',s= {u = (uI)I: uleA2s9 I = (ila ey it), 1 < ila ey il S N’
the system (u;); is skew-symmetric with respect to I}.

For u = (u);e 4., we put |lul| = (3 |u)?)"2. Let
1

25: A‘r,s - A’r,s+ 1
and

P! AH'I—'A'
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be defined by the formulae

= =

(cu); 1= Cuy,

N
(Pu (.1 ZF'u(il ..... i)

Additionally, let P: 47— 0 be defined as the zero operator.

Using the same methods as in [6], [17], one can prove the following
general version of Nullstellensatz for holomorphic functions with restricted
growth on Riemann domains.

THEOREM 4.1. Assume that U is Stein, —logde PSH(U) and 4 < d,0p
on U. Then, for every k=0, 0<r,s<n O0<t< N—1, there exists a
constant ¢ > 0 (depending only on n, N, r, s, t, x,||6* F|| o) such that for every
uge 4. with Pug =0, 0ug =0,

lll?
[FIPe D
4

there exists a ue A5 such that Pu=uqy,ou =0 and

j“u“262(k+p(2x+ 3)]d). <dJ.
U

6*di < +o00, p=min{n—s,N—t—1},

In the proof of Th. 4.1 all I?-estimates may be deduced from the
following generalization of Hérmander’s theorem (cf. [8], Th. 2).

42. Let X be a Stein domain, let 4: X —(0, 1] be such that
—logée PSH(X) and 6 <dp0p (eg., 6%, 3(X)). Then, for every k >0,
0<r s<n and for every d-closed form uelZ ., (X, loc), there exists a
ve I3, 4 (X, loc) such that v =u and

{I0)262* 2 da < [u|? 6% dA.
X X

Now we are able to present some examples of neighbourhoods U
satisfying condition (i) of Lemma 3.11.

THEOREM 4.3. Let X be a Stein domain over C", € ¥, 3(X) and let M be
an analytic subset of X for which there exists a Ge[(® (X, 8)]™ such that
McG '0). Fix 0>0,y>0and let U="U(G, 0, y, M) denote the sum of
all connected components of the set V=V (G, 0,y :={|G|| <66} which
intersect M (U will be called a regular neighbourhood of M). Then there exists
a constant ¢ > 0 (depending only on n, m, ,||0°G||, 6, y) such that

VI>0 VfeHOU,8) 3feH (X, 8): iy = fls and

16°7° Fll2 < cll8' fll2,
where 0, = q(20+2y+3), ¢:= min {n, m}.

3 — Dissertationes Mathematicae CCLVIII
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Proof (cf. [11], Th. 1). Let us fix a function y e CF(C™ [0, 1]) such
that ¢ = 1 on B(0, 1/3) and suppy < B(0, 2/3). Define y = ¢ (% G>. Note
that yx is locally Lipschitz (cf. 2.19), x =1 on {||G|| <364’} and

suppy < {lIGll < 36"} = V.

Consequently (xe o 1)(X, loc), supp(Ty) < (366" < ||G|| < %06’} and, in
view of (2.40),

My ¢y =ci(n, mya, ||6°Gll, 6, 7).
Let us fix fe H"™(U, 8). It suffices to consider the case where

[ —
16" 1l = 1. Put (f% i U,
=%  in X\U.

Clearly, uge 2, 1,(X, loc), dug =0 and supp(uo) = U nsupp(cy). Hence

2
u
J= J‘ﬁ‘i_aﬂ”a”ﬂ“’dl <cy=cy3(n,m0,y,cy).

According to Th. 41 (with N=m, F=G,U=X,r=0,5s=1,t=0 k=1
+a+2qy+1) there exist d-closed forms u,, ..., u,e 3o ,(X, loc) such that

uo = ulGl"I' [ +ume
and
()28 P di< ey = ey, m, 4, 1°Glly ), j=1, .0 m.
X
In view of 4.2, there exist functions vy, ..., v,,€ (X, loc) such that
ﬁvj = Uj and

y 2(1 - .
jlvjlzé(”o Vdi<cy, j=1,...,m.
X

e fx—w, G+ ...+v,G,) in U,
’ —(lel+...+Ume) iﬂ X\U.

It can be seen that felI?(X,loc), 3f =0 (so fe (X)), f =f on M and
187 fll, < ¢ = c(m, a, (16" Gll o, ¢3). m

CoroLLARY 4.4 (a generalization of Th. 4 from [12]). Let X be a Stein
domain over C", 6e W,(X) (8°°e I*(X)) and let M be an analytic submanifold
of X. Suppose that there exists a holomorphic retraction n: X — M such that
pone[0® (X, 6)]" (x = 1). Then (X, M, §) satisfies (L) with ¢ = ag+ 2na+ 6n.
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Proof. Put G:=p—pon. Clearly, Ge[¢®(X, 6)]" and M = G~ 1(0).
Note that :

1 L
er(G, s 1, M)=>xeB(n(x), sé(n(x))).

Now it can be seen that the result follows from Lemma 3.11 and Th. 4.3.

CorOLLARY 4.5. Let X be a Stein domain, 6c #,(X) and let M be an
analytic submanifold of X determined by functions from € (X, 8) (cf. Corol. 3.9).
If (X, M, §) satisfies (H,) then it satisfies (L).

Proof. The result is a consequence of Corol. 3.9 and Corol. 44.

CoroLLaRY 4.6 (a generalization of Corol. 1 from [11]). Let M be
a graph as in 3.12. Assume that X is Stein, 6 W ,(X) (6°°€ I*(X)). Then
(X, M, J) satisfies (L) with ¢ = ay+2nx+6n (cf. 3.14).

Proof. The mapping X 3(y, z)—"»(y, F(y))e M is a global holomorphic
retraction such that pone[ (™ (X, §)]". Hence, the result is a consequence of
Corol. 44.

Remark 4.7. Notice that, under the assumptions of Corol. 4.6, n* need
not map (M, d) into O(X, 8) (see [11]).

§ 5. Continuation from J-regular submanifolds; Main Theorem

For 1 <r < m let #7 denote the set of all indices I =(iy, ..., i) such
that 1 <i; <...<i, <m

Let A = [a;;] be an (m xn)-dimensional matrix (with complex entries).
For Ie #7, Je #; set A;;:= [ai”_jv],,‘vzl‘_m,. Put

4,(4):= |4 A ... A Al =} [det (A, )I*)"3,
LJ

rlimes

where the sum is taken over all e 47, Je #].

Throughout this section M will be an analytic submanifold of a Rie-
mann domain over C" countable at infinity. We denote by M,, ..., M,
purely dimensional components of M, M = M, u...U M;. Let d;:=dim M,
ri:=n—d;, j=1,...,s, and assume that 0<d; <... <d; <n—1.

DeriniTioN 5.1, Let 6: X — (0, 1]; we shall say that M is a d-regular
submanifold of X if there exist me N, > 0,b >0, > 0and Ge[("™ (X, §)]"
such that

(@ M <G1(0),

(b) rank(d,G) =r;, xeM;, j=1, ..., 5,

(©) 4,,d.G) > bé#(x), xeM;, j=1,...,s.
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ProrosITION 5.2. Let M be an algebraic submanifold of C". Then M is .-
regular. In consequence, for every é: C"— (0, 1] with 6 < 84, M is S-regular.

Proof. It is known that there exist polynomials G,, ..., G, such that
M=G '0) (where G:=(G,, ..., G,)
and
Ker(d,G) = T,M (= the tangent space at x), xeM.

Thus it remains to verify condition (c) of Def. 5.1.
Let G;,, ..., Gj_,,,j be polynomials such that

Mj={Gj.1="'=Gj.Mj=0}’ j=1,...,S.
Fix j (1 €j <s). The polynomials
Gj,l’ Ceny Gj.mj, det (d_,;G)IJ, Ief;"j, JE/:,I"

have no common zeros in C"; hence, by the Hilbert Nulistellensatz, there
exist polynomials P;,, ..., Pj',,,j, Qi1 L€ f;"j, Jef:,-’ such that

mj
Z Pj,l Gj',+ Zle,l,.’det(dx G)’_J = 1
=1 1,J

Set f:= max {degQ; - Ie sy, Je g7, j=1,...,s} and let b >0 be such
that

1168 Qill, <1/b, where Q' =Qj1daj=1,...,5.
Then, for xe M;, we get

=27 0;14(x)det(d, G)r,y <IQ; ()l 4,,(d, G) < [b8§(x)]™'4,,(d;G). =
1,J

ProrosiTiON 5.3. Let X be a bounded domain of holomorphy in C" such
that X has a fundamental system of neighbourhoods which are domains of
holomorphy. Let N be an analytic submanifold of an open neighbourhood U of
X. Put M:=NnX. Then M is l-regular. Consequently, for every 6: X
— (0, 1], M is é-regular.

Proof. We may assume that U is a domain of holomorphy. Let ¥
denote the sheaf of ideals of the subvariety N. ¥ is a coherent sheaf (cf. [4],
p. 138, Th. 2). This implies that there exist an open neighbourhood U, of X
and functions G, ..., G,e O(Uy) such that, for every xeU,, the germs
(Gy)ys ---> (G,), generate ¥, (cf. [4], p. 244, Th. 17). Put G =(G,, ..., G,). It
is clear that NnUy, =G '(0) and Ker(d,G) = TN, xe NnU,. Conse-
quently, since X is compact, we get the required result. w

PROPOSITION 54. Let M be a graph as in 3.12. Then M is é-regular (in

-~

X).
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Proof (the notation is the same as in 3.12). For the proof we only need
to observe that A4,(d;G) =2 1, Xe X.

PropPosITION 5.5. Let V; be a d;-regular submanifold of X;, where X; is a
Riemann domain over C%, j=1,...,t. Put

O(xg, .., X) =min {8, (xy), ..., 6, (%)},  (Xq, ..., x)e Xy x ... xX,.

Then Vy x ... xV, is a é-regular submanifold of X, x ... x X,.

Proof. It suffices to consider the case where t = 2. Let m;, a;, b;, B;, G
be associated with V; according to Def. 5.1, j=1,2. Put n =n;+n,, m= ml
+m,, a = max{a;, ay}, b =byb,, f=p,+h, and define

G(x,y, x3) = (Gl(xl)’ Gz(xz)), (x1, x)e X, xX,.
Clearly, Ge[(" (X, xX,, 6)]" and V¥, xV, = G~!(0). Fix (x?, x)eV, x V,.
Let d = dim(,,?,,,(z),(V1 xVa), r =n—d, d; = dim,oV), r; = n;—d;, j=1, 2. Then
j
rank-(d(x?,,g, G) =rank (dx(l)Gl)+rank (dngz) =ry+r,=r

and
Ar(d(x(l),xg) G) 2 Arl (dxo G ) : A (dxo GZ)

> b, 6‘“<x,)b2 6"2<x2) > bo% (x?, x9). =

ProOPOSITION 5.6. Let V,, ..., V. be disjoint 6-regular submanifolds of X

and let mj, a;, b;, B;j, G; be associated with V; according to Def. 5.1,

j=1,...,t. Suppose that there exist constants ¢ >0, y > 0 such that
||Gj(x)|| zcd(x), xeVu..uV_ uV,u...ul, j=1,..,t

Then Viu...0V, is & O-regular submanifold of X.

Proof. We shall show that the submanifolds V, U V;, V;, ..., V, satisfy
all the assumptions of Prop. 5.6 — this will permit us to apply the finite
induction over t.

Let G;=(Gj,, ..., Gjm), j=1,2, and let ¢coe(0, 1) be such that
max {|G;,(x): u=1,...,m} 2¢co6"(x), xe(Vyu...0UW\V, j=1,2.
Put m=m;m,, « =a,+a,, b =c} min{by, b,}, B = ny+max{p,, ,}. Defi-
ne G: X - C" G=(G,\)u=1,...m.v=1....m5» DYy the formula
Gy(x) =G, ,(x)G,,(x), xeX.

Obviously, Ge[(f)‘“’(X, 8)]™ and V, UV, =G~ 1(0). Fix x°eV, U V,. Let, for
instance, x°c V. Put r = n— dim o V;. Fix 1 <vo < m, in such a way that
G2,y (x°) > ¢ 67 (x°). Note that

oG,

X9 =G 0 luo
(7u() 2v() ()
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Hence
rank(d oG) =rank(d oG,) =r
and

4,(d,0G) 2 1G4, (X 4,(d 0 G1) = [0 6" (xO b, 8”1 (x°) = b3 (x);

thus Vy UV, is é-regular.
Now let x°eV;u...uV¥,. There exist 1 < po<m;, 1 <vy,<m, such
that

|G 1o (XN 2 €607(x%), G0 (XO)] < €087 (x9).

Consequently, |G (x| 2 |Gy, (x°W G2,y (x)] = 3677 (x°). m

The main result of the paper is the following:

THEOREM 5.7. Let X be a Stein domain over C", 6 W ,(X) (6" °ec I (X))
and let M be a d-regular submanifold of X. Let m, a, b, § and G be as in Def.
5.1. Then (X, M, 0) satisfies (L) with the constant ¢ of the form ¢ = Pay+ Qu
+ Rf+S, where P, Q, R, S depend polynomially on n, m, d,, ..., d, (P, O, R, S,
as polynomials of the variables n, m, d,, ..., d,, are of degree < 3) and P, Q, R,
S <96n® (P, Q, R, S may be effectively calculated!).

The proof of Th. 5.7 will be given in § 6. Th. 5.7 is a simultaneous
generalization of some results of [1], [2], [11], [13], [21], [22]; more
exactly:

CoroLLary 5.8 (a generalization of Corol. 4.6 and, in consequence, of
the results of [1] and [11]). Let M be a graph as in 3.12. If 6 W ,(X) then
(X,M,0) satisfies (L).

Proof. The result is a consequence of Prop. 54 and Th. 5.7.

CoroLrLArRY 59 (a generalization of Corol. 2 from [2]). Let X be a
domain of holomorphy in C". Let e #?(X) (cf. 2.34) and let M be a é-regular
submanifold of X. Then (M, &) = Ry (0(X, 5)).

Proof. The result follows from 2.34 and Th. 5.7.

CoroLLARY 5.10 (a generalization of Th. 1 from [13] and, in conse-
quence, of [22]). Let X be a Stein domain, de W ,(X) and let M be an
(n—1)-dimensional submanifold of X such that there exist x > 0,b >0, =0
and Ge (X, &) with M <= G~ 1(0), ||d, G| = bd*(x), xe M. Then (X, M, 6)
satisfies (L).

CoroLLArY 5.11. Let M be an algebraic submanifold of C". Then

(i) (a generalization of Th. 7 from [21]) for every de % ,(C") the triple
(C", M, 9) satisfies (L),

(1) M is an interpolation set for every E,(C").

Proof. The result is a consequence of Prop. 5.2 and Th. 5.7.
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Analogously, Prop. 53 and Th. 5.7 imply:

CoOROLLARY 5.12. Let X, M be as in Prop. 5.3. Then

(i) (a generalization of Th. 6 from [21]) for every de # ,(X) the triple
(X, M, §) satisfies (L),

(i) M is an interpolation set for every E,(X).

The following result is a consequence of 3.15, Prop. 5.5 and Th. 5.7:

CoroLLARY 5.13. Let V; be an interpolation set for E,(C), j=1,...,¢t
Then Vi x ... xV, is an interpolation set for E,(C").

Remark 5.14. Let X be a Riemann (resp. Stein) domain. Note that
if Ge[O(X)]™ is such that M <G~ '(0) and rankd,G)=r;, xeM;,
j=1,...,s, then, in view of 227, there exists a de.%; ,4(X) (resp.
b€ ¥, .2.3.4(X)) such that M is é-regular.

CoroLLARY 5.15. Let X be a Stein domain and let Ge[O(X)]" be such
that M < G™'(0) and rank(d,G) =r;, xeM;, j=1,...,s. Then for every
locally bounded family F < O(M) there exists a locally bounded family
F < ©(X) such that F = R} (F).

Proof. In view of 2.28 and Remark 5.14, there exists a de #,(X) such
that M is é-regular and F = {fe "V (M, 8): ||6f]], <1). In virtue of Th.
57, (X, M, 9) satisfies (L). Fix n=2 and let ¢ =¢(2) and (Lidkz o be as
in (L). Define F = L, (F). Then F = R(F) and ||6°** fI|, < 2c, feF, and so,
in view of 2.1 (e), F is locally bounded. m

§ 6. Holomorphic retractions and pseudoinverse matrices;
Proof of Main Theorem

At first we shall show how to reduce the proof of Th. 5.7 to the case
where M is purely dimensional.
LeMMa 6.1. Under the assumptions of Th. 5.7, there exists a 0 <8, <1
such that the sets
U B(x, Boéyo(x)), j=1,...,s,
xeMj
are disjoint, where yo:=r(a+1)+g+1.
Proof. Let 0p:=2"""""9,, where 0,€(0, 4). Fix 1 <j <k <5, x; € M;,
x,e M, and suppose that
B(x,.0007°(x)) N B(x3, 087°(x,)) # Q.
Then x, = x; ®z and ||z|| < 6,8"°(x,).
The functions f;,:=det(d,G),,, Ief"’ Je /,, are of the class
A" (x 8 < 1TV (X, 8) (cf. (2.40) and moreover, if f:=(f; )1,

then 167"V fll. <c=c(n, m, dy, ..., d,, , [16°Gll).
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In view of (241):
4,(dx, G) = |Lf (I 2 LS xll =11 6, @ 2) = f (el

4

d(xy)

ri@+ H+1

riarh+l ri(@tl)+1
] clizll = & (x;) [b—4"! cfy].

Hence if 8, <b[4 c]~! then A,J.(d,,2 G) >0, and so r, =rank(d,, G)
>r;, which is a contradiction. =

In view of the above Lemma (and of Lemma 3.11 and Th. 4.3), for the
proof of Th. 5.7 it suffices to prove the following two lemmas:

LemMma 6.2 (on the existence of holomorphic retractions). Let X be a
Riemann domain over C", de ¥ (X) and let M be an analytic submanifold of X
of pure dimension d < n—1. Assume that Ge[(O® (X, 8)]™ is such that

M < G™1(0),
rank(d,G)=r=n—d, xeM.
Let Q: X — C"*™ be a matrix-valued function with entries in O (X, 8) such
that, for every xeM, Q(x) is pseudoinverse to d G, ie., (d,G)-Q(x)-(d,G)

=d,G and Q(x):(d,G) Q(x) = Q(x). Then, for every 0 < gy, <1, yo = 1, there
exist 6 >0 and a holomorphic retraction

n. U—-M,
where U = U(G, 0, y, M) (cf. Th. 4.3), y = max {t +y,, 20+ 31+ 3}, such that

xeU=>xe B(rc(x), €o é.vo(n(x))).

LEmma 63 (on the existence of pseudoinverse matrices). Let X be a
Stein domain over C", 6e % ,(X) (6°cI>(X)) and let M be a b-regular
submanifold of X of pure dimension d < n—1. Let m, a, b, B, G be as in Def.
5.1. Then there exist T =1(n, m, d, &y, a, f) and a matrix-valued function

0: X - Cmm

with entries in (" (X, &) such that, for every xe M, Q(x) is pseudoinverse to
d,.G (see also Prop. 6.20).

Proof of Lemma 6.2. The proof will be divided into six steps.

Step 1. Fix a, t>1 such that ||6°Gll, <a, ]|16°Qll. <t. Let N:
X — C"*" be a matrix-valued function given by the formula

N(x)=Q(x):d,G), xeX.
In view of (2.40), the entries of N belong to ¢ ***V(X, §) and
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(6.4) [16****IN||o, < 2** L ar.

Note that Ker N(x) = Ker(d,G), xe M, whence

(6.5) rank N(x) = n—d, xeM.

Observe that

(6.6) N(x)'N(x) = N(x), xeM.

Let S: X — C"*" be a matrix-valued function defined by the formula

(6.7) S(x)=1,-N(x), xeX.

In view of (6.6) we get

(6.8) KerS(x) =ImN(x), xeM,

and by (6.5),

6.9) rank S(x) =d, xeM.
Put

Y:={(x,2)e M xC" S(x)z =0},

and note that Y is a closed subset of X x C".
Step 2. Y is an n-dimensional submanifold of X x C".

Proof. The case d =0 is trivial, and so assume that d > 1. The
analyticity of Y is a local property, whence, without loss of generality,
we may assume that X is an open neighbourhood of 0 in C" and
M={x,...,x)eX: X44, =...=x, =0}.

Fix x°eM and let S,(x° denote a (d x n)-dimensional submatrix of
S(x% such that rank S,(x° =d (cf. (6.9)). Let So: X — C**" be a matrix-
valued function such that S(x) is constructed by deleting the same rows as
in S(x%. Let U be an open neighbourhood of x° such that rank S(x) =d,
xeU. In particular,

(6.10) KerSo(x) = KerS(x), xeUnM.
Let y: X xC"— C" be defined by the formula
¢(x, Z) = (xd+1, ceey Xy So(x)Z).
In view of (6.10), Y (U xC" = {(x,z2)eU xC": y(x, z) = 0}. Note that,

d n-d n
— A A
| 1
0/ -d : 0 }n_d
dix, 2 ¥= ““:-:-—i---
| S| Ja

(x, z)e X x C". Consequently, rankd,, ¥ =n, (x,‘ z)e U x C", which proves
that Y n(U xC") is an n-dimensional manifold.
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Step 3. Put ¢, =(4**%ar)™!, y, =a+1+2. Then

(6.11) G (x®2)|| = 2%5'()6)||le, (x,2)€Y, llzll < ¢; 8" (%)
Proof. Note that ¢, 8" (x) <3d(x), so by (2.42),

IG(x®2)| = |l(d: G) 2|l -2 [5?_)0:]” 2 allz|l*.

On the other hand, in view of (6.8),

llzll = IN(X¥) zll = 1@ (x)(dx G) zll < IQ X[ [l(dx G)zll < ﬁll(dx G)z|.

Finally,

1 ||zl
IG (x@2)l| > 50" (%) il [2— o5 (XJ,

which proves the required estimate.

Step 4. Put ¢, =(@>*"*%a2H)7 !y, =20+21+3, Yy={(x,2z)eY:
llz]| < cy8"*(x)}. Note that YyetopY and Y, = X* C". We shall prove that
the mapping

Y 2(x, 2)3 x®ze X
is injective.
Proof. Let us fix (x,, zy), (x;,2z;)eY,, X; # x,, and suppose that

X, @z, = x,@Pz,. Let, for instance, d(x,) <d(x,). Put zy =z, —z,. Then
x; = x;®z, (in particular z, # 0). Define

wy =[N(x))—N(xz)]zz, w; = N(x)(z;—22)-

Note that (x,, wy)e Y and (in view of (6.6)) w, —w, = z,.
Since ||zoll < 2¢,6 %(x,) <38(x,) and ||z,]| < ¢, 6"%(x,), it follows that, by
(2.41) and (6.4), we have

(6.12) [lwyll <IN (x1@2z0) = N (x|l [|z2]l
4 a+t+2 ‘1 72
<[5(x1):| 22" at|lzoll €367 (xy),

whence, in view of the definition of ¢, and y,, we get
lwill < 3llzoll-
In consequence,

¥ ¥
Hlzoll <|Iwall < 3lzoll < 3¢387%(x4) < ;8" (xy),
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and so, according to (6.11),
1 1
(6.13) G (x, @w,)l| = 55‘(x1)|lw2|| > 1;5’()61)“20“-

On the other hand, since x; @w, = x,@® (—w,), it follows by (2.41) and (6.12)
that

4 a+1
IG (x, @wa)ll < [5 (xz)] aliwi]

8 a+ 1 4 at+t+2 , 1
<[5(x1)J a[é(xl):l 22" Lare, 877 (xy) 2ol <55’(X1)I|20||,

which contradicts (6.13).

Step 5. @ is an injective holomorphic mapping of an n-dimensional
analytic manifold Y, into a Riemann domain X. This implies that
Uyg:= @(Y,) is an open neighbourhood of M and & is a biholomorphism
of Y, onto U,.

Let us define n: Uy — M by the formula

n = (projection onto M)o®~ !, P(xDz) = x.

It is clear that = is a holomdrphic retraction.
Step 6. Fix 0 <gy <1, yo =1 (cf. Lemma 6.2) and let

. Y
¢y = min {gg, ¢3/2}, 73 = max {Vos Y2}, Y= {(x, 2)e Yo: lzll <c3d 3(x)}.

Obviously, ¥, = Y,. Put U, := @(Y,). It is clear that U, is an open neigh-
bourhood of M, U, = U, and, in view of the definition of m,

xeU; =>xe§(1r(x), €0 5y°(1t(x))).

1
Put y =y3+1, 0 = Z(%)’c3 and let U:= U (G, 0, y, M) (recall that U is

the sum of all connected components of {||G|| < 66’} which intersect M).
It remains to show that U c U,.

Proof. Suppose that U4 U,. Then UndU, # P, and so (since

oU, = U,) there exists (x, z)e ¥,\Y; such that x@®ze U. Note that c38’3
< ¢, 8", whence by (6.11)

16 (x®2) > 5. 5" (.

On the other hand, in view of the definition of U,

IG (x®:z)|| < 08" (xDz) < 0(3)" " (x).
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Hence ||z]] < ¢3 6" (x), which implies that (x,z)e Y;. We get a contradiction.
The proof of Lemma 6.2 is completed.

Proof of Lemma 6.3. We start with the following two auxiliary
results:

ProrosiTioN 6.14. Let X be a Stein domain over C", Se W,(X)

(0% 2(X)), Ge[** (X, 8)]™, Fe[¢®(X,8]", b, >0, B, 7>0 and let M
be an analytic subset of X such that M = G~'(0). Suppose that

N\FI| = b6 on U=U(G,B8,7, M).
Then there exist fi, ..., fye O (X, 8) such that
f1F1+"'+fNFN=1 on M,

where v = ao+p(28+3)+(2u+1)B+q(2¢+25+3)+n, u=min{n, N—1}, g
= min {n, m}.
175 1

Proof. Since —logéePSH(X), it follows that {||G|| < 86"} is a Stein
domain and therefore U is also Stein. Observe that

1
J= jwma”da < + oo,
U

where k := oo+ (2u+ 1) B. Hence, in virtue of Th. 4.1 (with r =s =1t =0, u,
= 1), there exist u,, ..., uye H?(U, 8), | = k+ u(2x+3), such that

u1F1+...+uNFN=1 OnU.

Now, by Th. 4.3 (and 2.37), there exist f;, ..., f[ye (X, 6), v =1+qx+2y
+3)+n, such that

fi=u; on M, j=1,..,N. =
A thorough analysis of the proof of Lemma 4.2 in [23] leads to the

following

ProposITION 6.15 (an algebraical criterion of existence of pseudoinverse
matrices). Let P be a commutative ring with a unit element. Assume that P
= \J Py, where P, k >0, are subgroups of P and P, Py, c P, .., k, k' > 0.

kz0
Let A be an (m x n)-dimensional matrix with entries in P, (k is fixed). Suppose
that there exists 1 <r < m, n such that:

(i) there exists a system (fij)ics™scg" of elements of P, with
Y fisdet(4,) =1,
7

(i) if r < min{m, n} then, for every le #7,,, Je #7.,, det(A4; ;) =0.
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Then there exists an (n x m)-dimensional matrix B with entries in Py, 5,— 1y
which is pseudoinverse to A, i, ABA=A and BAB = B.

In view of the above two propositions, for the proof of Lemma 6.3 we
only need to prove the following

LEMMA 6.16. Let X be a Riemann domain over C*, e ¥ (X), let M be a
o-regular submanifold of X of pure dimension d and let m, a, b, B, G, be as in
Def. 5.1. Then there exist b, @ > 0 (depending only on n, m, d, «, ||6° G|, b, )
such that

4,d,G) = b6*(x), xeU=U(G,8,7 M),
where ¥ = (3r—1)a+38+3r.

Proof. The proof will be divided into six steps.
Step 1°. Let bye(0, 1] be such that

max {|det(d, G); ,I: le I7", Je #7} > bo 6% (x), xeM.
Put r:=4(%Pf and let
Mi, = {xeM: |det(d,G) )| > "' bo 8P (x)}, Ies™ Je g j=1,2,3.
Note that Mj c Mj%! and M = UM,_,
Step 2°. Fix a =1 such that ||(5"G||JC a. Put
by = bot [2rl47a+ D1 (22 1gr1 =1 B — p(a+ 1)+ f+1.
Then
(6.17)  |det(dyor Gyl > by (x@2), xeMi, llzll by 61 (%), j = 1,2.

Proof (cf. the proof of Lemma 6.1). The function f; ; :=det(d,G);, is
of the class Ore* (X, 8) and [|6"*Y f; o <P1(2*TY). Fix xeMi,,
llzll < b, 8" (x). In view of (241):

Idet (dx . G)r,sl = /1,y (x@2)| 2 |fr,y () =1 fr,s (x@2) = f1,5 ()}

r@a+1)+1
>t 1hy &8 (x)—[w] r1 (22 a) |z

> %tj‘ 188 (x) = /by 8 (x®2),

which proves (6.17).
Observe that, in view of (6.17), for the proof of the lemma it suffices to
construct 8 such that

UG,8,5,Mcyy U B(x, b, 5"1(x))

LJ xeMIZJ

(then b = by t?).
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Step 3°. For J =(j;,...,J,)e #7, let
E,={z=(z,...,2,)eC" j¢ {jy, ..., J,} =1z; = 0}.

Put ¢, =bot?[2r1(2* @) 117, 1, =(r=D(@+ 1)+, by =t,(2:4* 2g)" 1,
Then

(6.18) (IG(x®2) = 1,8 (M)lzll,  (x, 2)e M7, xEj, |lzll < by 6" (%).
Proof (cf. the proof of (6.11)). Put G, =(G;,, ..., G;). In view of (2.42):

4 x+2
IG(x@2)l| 2 |G, (xD2)| = |I(d, G:)le—2[5—] allzl|®.
(x)

Let z*:=1(z;,, ..., z;)e C. According to the definition of E,, we get
llzll = llz*| = Ildx G)1.s]™ ' (@< G)rsz*|| < I[(dx G)p, b1 M 1A Gy 2ll
1
< — 7 —lid; Gzl
2t, 6 '(x)
Hence

1k

IG(x@2)| > 1, 6™ ()l [2— T

]2 1,61 (x) ||zl

b b
Step 4°. Put by = min{— L 224 and let
P14 2
. . 1
Y= 1(x,2)e Mj; xE;: ||z| <§jb35ﬁl(x)l, lesr, Je #7,j=1,2,3.
Note that ¥/, c ¥j;! and Y3, « X* C". We shall prove that the mapping

L]
Y2 a(x, z) 2 x®ze X

is injective (cf. Step 4 of the proof of Lemma 6.2).

Proof. Suppose that x,®z, = x,®z, and d(x,) < (x,). Put z5 =z,
—z,. Then x, = x; ®zo and ||zol| < 2b; 8" (x;) < b, 8”1 (x,). In view of (6.18)
we get

0 =[G (x)ll = t1 8" (1) llzoll,

which implies that z, = 0, and consequently (x,, z;) =(x,, z,).

Step 5° Observe that Y?, is an n-dimensional analytic manifold,
whence as in Step 5 of the proof of Lemma 6.2, the set Uj,:= &, ,(Y/,)

is an open neighbourhood of Mj; and Uj, < Ui}, .
Put by, = 2byt, [31 T T4 1)1 B = B 1 +a+ ],
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Then, for every xe M}, the ball B(x, b, 6ﬂ2(x)) is contained in U7,.

Proof. Suppose B(x b,é ﬂz(x))d:U,_, Then there exists a point
(X1, z1)€ Y5\ ¥}, such that x, @z, e B(x, by & 2(x)) Note that &(x,) < 38(x)
and d(x) < 36(x,); in particular:

P (x1)— P < by 8™ (x))+b4 82 (%) < by 6”1 (%).

Hence, in view of (6.17), x;e M},.
On the other hand,.in view of (6.18) (and (2.41)):

ty 81 (x) |1zl € 1IG (xy ®zy)ll = (|G (x,Dz,)— G ()]
4 z + 1 2 By o
< 5(x) allp(x;®@z;)—pX| <zb36 " (x;)t, 6" (xy).
(x) 3

Thus ||z,]| < 2b;6"!(x,) and therefore (x,, z,)e Y/, which is a contra-
diction.
Step 6°. Put O =b,t,(d” (7 =1,+B, =(3r—1)a+38+3r). It remains
to show that U = U (G, 0, 3, M) € W:= ) U}, (cf. the remark after Step 2°).
LJ

Proof (cf. Step 6). Suppose U ¢ W. Then there exist I, J, (x, z)e Y7,
such that x@ze U ndW. Since M = UM”, there exist I, J' such that

xe M} ;. The ball B(x b, o 2(x)) is contamed in Uf ;. (Step 5°), whence
llzl| = by 6°%(x). Now, by (6.18),

IG(x@2)|l = t, 8 (x)]lzl| > 067 (xD2),
which contradicts the definition of U.

The proof of Lemma 6.3 is completed.

Remark 6.19. In the case where dim M = 0 the proof of the existence
of holomorphic retraction #n: U — M may be simplified, namely:

Let X be a Riemann domain over C", e £(X) and let M be a
O-dimensional §-regular submanifold of X. Then (as in Step 3°) one can
prove that there exist ¢; > 0, 0 < b, < 1/2 such that

IG(x®@2)l > 1,87 (Wlzl,  xeM, ze €, ||zl} < by 6™ (x),
where 7, =(n—1)(@+1)+B, By =nl@+1)+p+1.
Consequently,if 0 < b, < b,/2, B, = B,,then, forevery x,, x, e M, x; # x,:
B(x,, b,é (xl))mB(xz, b, 8" (x ))=0.

Put Uy:= U B(x, b,s’ *(x)) and let n: Uy— M be defined by the

formula = (y) —x yeB(x b, 6 2(x)) (xe M). Define y = B,+1,, 6 =b,t,(3).
The standard arguments show that U(G, 8, y, M) < U,.
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Note that the existence of a pseudoinverse matrix Q (as in Lemma 6.3) is

in some sense equivalent to the d-regularity of M; namely, we have the
following:

ProposITION 6.20. Let X be a Stein domain, 6 W ,(X) and let M be
a d-dimensional analytic submanifold of X. Suppose that there exist me N
and Ge[O(X, 6)]™ such that

McG™1(0)
and
rank(d,G)=r=n—d, xeM.

Then the following conditions are equivalent:

() Ab>0, B=0: 4,(d.G) = bé*(x), xe M (i.e, M is S-regular).

(i) 3(fr,)resmaesr < O(X, 0):

Z’f,_,(x)det(d,G),', =1, xeM.
IJ

(iii) There exists a matrix-valued function Q: X — C"*™ with entries in
O(X, 6) such that, for every xe M, Q(x) is pseudoinverse to d,G.

Proof. The implication (i) = (ii) is a consequence of Prop. 6.14 and
Lemma 6.16. The implication (ii) = (iii) follows from Prop. 6.15. It remains to
prove that (iii) = (i).

Let A (resp. B) be an (m xn) (resp. (n x p))-dimensional matrix with
complex entries. Then, for every 1 <r<m, n, p,

4,(A-B) < 4,(4) 4,(B).
Consequently, 4,(d,G)<[4,(d,G)}*4,(Q(x)), xeM. Since 4,(d,G)>0,

xe M, we get: 1 <4,(d,G)4,(Q(x)), xe M. Hence 4,(d,G) > bd”(x), xe M
(b > 0 constant) provided that the entries of Q lie in (*V(X, d). =
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