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Introduction

The extended complex plane C, endowed with the conformal structure defined by the

local coordinates z → z and z → 1/z, is called the Riemann sphere. The stereographic

projection maps the Riemann sphere conformally onto the unit sphere

(1) B := {(x, y, u) : x2 + y2 + u2 − u = 0}.

A Jordan curve (Jc) Γ on C is the image of the unit circle T := {z : |z| = 1} under

a homeomorphism of C. A domain on C whose boundary is a Jordan curve is called a

Jordan domain.

The geometric approach to the notion of K-quasiconformality on the Riemann sphere

C implies certain easily comprehensible rules. Given two topologically equivalent domains

D and D′ on C, let FD,D′ be the family of all sense-preserving homeomorphisms mapping

D onto D′. We pick up one of the four possible configurations that are conformally

characterized by one real parameter, and associate with it a suitable conformal invariant.

The simplest and most natural configuration seems to be the so-called quadrilateral ,

i.e., a Jordan domain Q, with a distinguished quadruple of points z1, z2, z3, z4 on the

boundary ∂Q, ordered according to the positive orientation of ∂Q with respect to Q. The

arcs 〈z1, z2〉 and 〈z3, z4〉 are called the a-sides and the other two arcs the b-sides of the

quadrilateral. The quadrilateral Q(z1, z2, z3, z4) carries a conformal invariant known as

the modulus of the quadrilateral , denoted by M(Q(z1, z2, z3, z4)). Unfortunately, this is

not a direct generalization of the real-valued cross-ratio; see Chapter IV.

The configuration consisting of a Jordan domain Q with one interior point z and

two ordered and distinguished boundary points, i.e., Q(z; z1, z2), carries a conformal

invariant, the harmonic measure ω(z, 〈z1, z2〉; Q) of the boundary arc 〈z1, z2〉 of Q as

seen from the point z. The ω(z, 〈z1, z2〉; Q) is a harmonic function of variable z and a

probability measure of the arc variable for any fixed z ∈ Q.

Another configuration is a domain Q bounded by two disjoint Jc’s. Its characteristic

conformal invariant is known as the modulus M(Q) of the ring domain Q.

The fourth configuration is made up of a Jordan domain Q and a pair of distinct

points z1, z2 ∈ Q, and denoted by Q(z1, z2). With this configuration there are associated

two well-known conformal invariants, the hyperbolic distance h and the Green’s function

g related by the identity

(2) tanh(h(z1, z2)) = exp(−g(z1, z2)), z1, z2 ∈ G.

Hence, given K ≥ 1, we may state the following definition.
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Definition 1. A mapping F ∈ FD,D′ is said to be K-quasiconformal (K-qc) if

(3) K−1m(G) ≤ m(F (G)) ≤ Km(G)

for every quadrilateral Q := Q(z1, z2, z3, z4) such that Q ⊂ D.

We denote by FD,D′(K) the class of all K-qc mappings F ∈ FD,D′ with a given

K ≥ 1. Clearly, FD,D′(K1) ⊂ FD,D′(K2) if and only if K1 ≤ K2. By (3), the class

FD,D′(1) is formed by all conformal mappings F : D → D′. To avoid some difficulties in

an adequate formulation of the results, we put

(4) F∞
D,D′ :=

⋃

K≥1

FD,D′(K)

and call F∞
D,D′ the family of quasiconformal (qc) mappings of D onto D′.

Given F ∈ F∞
D,D′ , the number

(5) K(F ) := inf{K ≥ 1 : F ∈ FD,D′(K)}
is called the maximal dilatation of F . Obviously,

(6) FD′,D(K) = {F ∈ FD′,D : F−1 ∈ FD,D′(K)}
for every K ≥ 1. Moreover, K(F−1) = K(F ) for every F ∈ F∞

D,D′ . It is easily seen

by (3) that for every F ∈ FD,D′(K) and G ∈ FD′,D′′(L) the mapping G ◦ F belongs to

FD,D′′(KL). This also shows that

(7) K(G ◦ F ) ≤ K(G)K(F )

for every F ∈ F∞
D,D′ and G ∈ F∞

D′,D′′ .

The definition of quasiconformality could equally well be given in terms of other

conformal invariants; see [LV]. Analytic characterizations of quasiconformality can be

found in [LV] and [Le].

Quasiconformal mappings with prescribed angle function were considered by S. Agard

and F. W. Gehring [AG] as well as by T. Sorvali [So2]. This problem is equivalent to

the following problem in geodesy: How to map a given surface in R3 conformally onto a

plane domain. In this form the existence problem was considered by C. F. Gauss already

in 1822; cf. [Ga].

A quasicircle in C is the image of the unit circle under a quasiconformal mapping of C.

If the mapping is K-qc, the image curve is called a K-quasicircle. Clearly, a quasicircle is

a Jc on C. The property of being a quasicircle has an obvious geometrical meaning; see

[Ge3] and [Le]. Moreover, K-quasicircles can be considered fractals ; see [As] and [BP].

The classical Schwarz Lemma for analytic functions was generalized in 1952 by J.

Hersch and A. Pfluger [HP] to the class of qc mappings of the unit disc ∆ := {z : |z| < 1}.
They proved that there exists a strictly increasing distortion function ΦK : [0, 1] → [0, 1]

such that |F (z)| ≤ ΦK(|z|) holds for every K-qc mapping F of ∆ into itself with F (0) = 0

and every z ∈ ∆. This distortion function will be of special interest in the sequel. The

classical Schwarz Lemma follows if K = 1 since Φ1(t) = t, 0 ≤ t ≤ 1.

If D and D′ are simply connected domains of hyperbolic type on C, then each mapping

F ∈F∞
D,D′ has a homeomorphic extension to D if and only if D and D′ are Jordan doma-

ins. It then induces a sense-preserving homeomorphism f = F |∂D of the oriented Jc Γ =
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∂D onto Γ ′ = ∂D′. Given two oriented Jc’s Γ and Γ ′ on C, let AΓ,Γ ′ be the family of all

sense-preserving homeomorphisms of Γ onto Γ ′. The boundary value problem is to charac-

terize f ∈ AΓ,Γ ′ which are the boundary functions of K-qc mappings F : D → D′, K ≥ 1.

By the Riemann mapping theorem and the composition property of K-qc mappings

one may assume, without loss of generality, that D = D′, provided that the obtained

characterization is conformally invariant.

For arbitrary Jordan domains D, D′ ⊂ Rn, n ≥ 3, a quasiconformal mapping F :

D → D′ does not always have a boundary extension; see [Ku]. J. Väisälä [Vä2] proved

the existence of boundary extension for all qc mappings between n-dimensional Jordan

domains D, D′ ⊂ Rn quasiconformally equivalent to the unit ball in Rn, n ≥ 2.

Given a Jordan domain D on C and an automorphism F ∈ FD(K) := FD,D(K),

K ≥ 1, let z1, z2, z3, z4 be a quadruple of distinct points on Γ = ∂D, ordered according

to the orientation of Γ . Consider the homeomorphic extension of F to the closure of D.

It follows from (3) that

(8)
1

K
M(D(z1, z2, z3, z4)) ≤ M(D(f(z1), f(z2), f(z3), f(z4))) ≤ KM(D(z1, z2, z3, z4))

for f = F |Γ and every ordered quadruple of distinct points z1, z2, z3, z4 of Γ .

In the case of D = U := {z : Im z > 0} and an automorphism F ∈ FU (K) that

fixes the point at infinity, the induced automorphism f = F |R of the real line R is

a ̺-quasisymmetric (̺-qs) function in the sense of A. Beurling and L. V. Ahlfors (see

[BA]), i.e., the condition

(BA)
1

̺
≤ f(x + t) − f(x)

f(x) − f(x − t)
≤ ̺

holds for all x ∈ R and t > 0, with a constant ̺ ≥ 1. In fact, setting z1 = x − t,

z2 = x, z3 = x + t and z4 = ∞, and substituting these values into (8), we see that

the boundary automorphism f = F |R satisfies the condition (BA) with the constant

λ(K) = ΦK

(
1
/√

2
)2

/Φ1/K

(
1
/√

2
)2

(see [LV]).

The class of all increasing homeomorphisms f : R → R satisfying the (BA) condition

with a given constant ̺ ≥ 1 is denoted by QR(̺). On the other hand, for any f ∈ QR(̺)

there is a qc automorphism Ff of U which has the boundary values given by f , and

whose maximal dilatation K∗ = K∗(̺) is a function of ̺; cf. the well-known estimates

of the qc constant by Beurling–Ahlfors ([BA], [Ea], [Ln], [Le] and [PZ1]), P. Tukia [T4],

Douady–Earle ([DE], [LP], [SZ] and [P1]), and E. Reich [R].

A characterization of the boundary values of K-qc automorphisms F ∈ F◦
∆(K) with

the fixed point zero was given by J. Krzyż [Kr1]. Using the configuration connected with

harmonic measure, he defined a class of ̺-qs functions of T = ∂∆, representing boundary

automorphisms f = F |T such that

(K)
1

̺
≤ |f(α1)|

|f(α2)|
≤ ̺

for each pair of disjoint adjacent open subarcs α1, α2 of T , with equal harmonic measure,

where |α| = ω(0, α; ∆) and a constant ̺ ≥ 1. The relations between K and ̺ remain the

same as in the previous case.



8 J. Zaja̧c

The class of all sense-preserving automorphisms of T satisfying the K-condition with

a given constant ̺ ≥ 1 is denoted by QT (̺).

This class is invariant under composition with increasing linear functions. Denote

by Q◦
R
(̺) the subclass of QR(̺) consisting of all ̺-qs functions f normalized by f(0) = 0

and f(1)=1. The family QT (̺) is invariant under composition with rotations of T . Hence,

we denote by Q◦
T (̺) the subset of QT (̺) consisting of all automorphisms f normalized

by f(1) = 1.

Let QR =
⋃

̺≥1 QR(̺) and QT =
⋃

̺≥1 QT (̺). A function from QR or from QT is

called quasisymmetric (qs). Both are groups under composition.

J. A. Kelingos ([Ke]) was one of the pioneers of the rigorous study of qs functions

on R, and he also introduced the name “qs functions”. Further developments, including

equivalent characterizations (cf. [Go], [AK], [Hi1] and [Hi2]), cluster around Beurling–

Ahlfors extension; see [BA]. It is a remarkable fact that the (BA) condition is formally

independent of complex analysis and, from different points of view, should be classified to

the real analysis. It gives rise to research of QR from a real analytic point of view. This

idea is discernible in [Ke], [HH], and some other papers.

A closer look at these characterizations rises the following arguments:

∗ The point at infinity plays a special role in the (BA) condition which is not justified

when dealing with the boundary value problem for all K-qc automorphisms of U .

Since this particular characterization is invariant under linear functions only, it

cannot be used to characterize all qc automorphisms of U . It thus gives a solution

of the boundary value problem for F ∈ FU (K), K ≥ 1, such that F (∞) = ∞.

∗ The K-condition characterizes not uniformly the boundary values of all qc auto-

morphisms of ∆. This is because the qs constant does not, in general, depend on K

only but also on the particular automorphism. Since every F ∈ F∆(K) has a fixed

point in ∆, we have F∆(K) =
⋃

z0∈∆̄ Fz0

∆ (K), but

sup
z0∈∆

̺(K, z0) = ∞

for any K ≥ 1. Taking K = 1, we see that

(9) F∆(1)|T 6⊂ QT (̺)

for any finite ̺ ≥ 1; see Example 2.1, p. 48. Rotation invariant ̺-qs automorphisms

of T cannot, in substance, be considered 1-dimensional K-qc mappings.

∗ The characterizations describing QR(̺) and QT (̺) involve two real parameters,

whereas the general case includes four parameters. This restricts the flexibility of

these characterizations. Although one may easily calculate, for instance, the qs con-

stant of a given automorphism of R or T , it is quite complicated to obtain an

asymptotically sharp distortion theorem for ̺-qs functions; cf. [Ke], [HH], [Kr2]

and others.

∗ Obviously, quasisymmetry and quasiconformality are defined by incompatible de-

formations. This explains why the constants ̺ and K do not behave similarly un-

der the group action. Indeed, it is not in general true that ̺(f) = ̺(f−1) and

̺(f ◦ g) ≤ ̺(f)̺(g); see [Ke].
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∗ Particular questions concerning boundary values of qc automorphisms of a Jordan

domain D ⊂ C can be reduced to equivalent problems for ̺-qs automorphisms of R

or T ; cf [BA], [FS] and [T3]. Unfortunately, general problems require a characteri-

zation which is both conformally invariant and suitable for all K-qc automorphisms

of D, i.e. uniform.

∗ One cannot introduce the Teichmüller metric in the class of normalized qs functions

of R, directly by using the qs constant in the same manner as the qc constant; cf.

[Le]. Therefore, the standard model of the universal Teichmüller space (UTS), i.e.,

the group of normalized qs functions of R, is equipped with the metric obtained

from qc extensions. This is not an intrinsic metric for normalized qs functions.

These arguments show that we should search for a general and uniform characteriza-

tion of the boundary behaviour of qc mappings.

A few years ago the author initiated a rigorous study of the boundary value problem

for K-qc mappings by stating and then solving the uniform boundary value problem for qc

automorphisms of a Jordan domain D on C; see [Z1]–[Z8]. The required characterization

is described by deformation of cross-ratios controlled by the Hersch–Pfluger distortion

function ΦK . A continuation and certain applications of this research can be found in

[CZ4], [KZ], [RZ1], [RZ2], [SZ], [Z9]–[Z17]. That gives a quite satisfactory characteriza-

tion provided D is bounded by a circle Γ on C. Recall that a circle on C means the

stereographic projection of a circle on the unit sphere B, which is a circle or a line in C.

By defining the concept of harmonic cross-ratio one may extend this idea to the

most general case where D is a Jordan domain on C, without any restriction whatsoever,

omitting the obstacles typical for qs automorphisms. The harmonic cross-ratio is a direct

generalization of the real-valued cross-ratio and an alternative conformal invariant with

respect to the modulus of a quadrilateral. Moreover, it is defined without any use of special

functions and keeps the properties of the real-valued cross-ratio, expressed conveniently

in the form of equalities.

Automorphisms of an oriented Jc Γ on C, characterized in this way, are called

K-quasihomographies (K-qh) and can be considered without constraints the 1-dimen-

sional K-qc automorphisms of Γ .

The study of how different properties of K-qc mappings behave with respect to di-

mension seems to be one of the most interesting topics, particularly when the function

space is formed by K-qc mappings of a domain in Rn, n = 1, 2, 3, . . .

The study of ΦK,n, n ≥ 1, and other special functions of quasiconformal theory, is

motivated also by some other reasons, as will be apparent from what follows. It is worth

noting that some of the results give solutions for questions on special functions; cf. [Z7].

Certain properties of these special functions result from a number of distortion the-

orems for K-qh of a circle Γ on C, including the best estimates. Therefore, one may

pursue rather rigorous development of this research on K-qh automorphisms, including

the general case of an arbitrary Jc Γ on C.

We present characterizations of normal and compact families of K-qh automorphisms

showing the true compatibility of K-qh and K-qc automorphisms and suggesting addi-

tional interesting topics in qc theory.



10 J. Zaja̧c

Our method involves a new metric which makes the family of all normalized qh auto-

morphisms of an arbitrary circle Γ in C a metric space. This metric is defined without

the use of qc extensions to complementary domains. Moreover, it is fairly justified to call

that metric space the universal Teichmüller metric space (UTMS) of a given circle Γ

on C; see Chapter V.

There is a natural gap between the harmonic cross-ratios of a given ordered quadruple

of distinct points of a Jc Γ in C. This gap measures the deviation of Γ from a circle in C,

and is used here to characterize quasicircles. In these circumstances one can define a norm

for the family of all normalized Jordan curves in C, and a metric in the space of certain

equivalence classes of quasicircles.

Given an oriented Jc Γ on C, one may associate uniquely with Γ the complementary

domains D and D∗, by calling them the left-hand and the right-hand complementary

domains , respectively. The unique correspondence Γ ↔ (D, D∗) is one of the convincing

arguments that the UTMS is naturally related to an oriented Jc Γ on the Riemann sphere,

without any reference to conformal or quasiconformal mappings of the complementary

domains.

At the end of the paper, we outline some general considerations regarding normaliza-

tion, extremal normalization and linearization aspects of the universal Teichmüller space

of an oriented Jc Γ on the Riemann sphere.

I. Special functions of quasiconformal theory

1. Introduction. A number of distortion theorems for K-qc and K-qr quasiregular

mappings follow from the properties of the distortion function ΦK,n (n ≥ 2) of the ge-

neralized Schwarz Lemma; cf. [HP], [MRV], [AVV4] and [Vo]. Hence, information on the

foregoing and other special functions such as K, µ, Mn (M2 = µ), τn and γn (cf. [Vo]), in

the form of functional identities, inequalities and differential equations is crucial for pro-

ving distortion theorems. The special functions K and µ have found various applications

in mathematics as well as in physics; cf. [BB].

Elliptic integrals and other special functions often provide a connection between extre-

mal length and conformal invariants in the plane. The general properties of elliptic

integrals can be found in standard books such as [WW].

It seems fair to credit the rigorous and efficient study of these special functions to G.

D. Anderson, M. K. Vamanamurthy and M. Vuorinen; see [An], [AVV1],. . . , and [VV].

In this part of our presentation one may find a series of new results on the distortion

function ΦK including, to some extent, the n-dimensional case, i.e., ΦK,n, Mn, τn and γn,

n ≥ 2 where ΦK = ΦK,2. Some of the results give solutions of the well-known problems

(cf. [Vo]), and, in particular, a very fast numerical method approximating uniformly ΦK,n

with the help of elementary functions to any prescribed precision.

The approximation may have been transferred back in order to approximate µ, µ−1

and the elliptic integral K (see [P3] and [Z11]), still with the help of elementary functions.
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2. The distortion function ΦK . In the quasiconformal version of the Schwarz

Lemma by J. Hersch and A. Pfluger [HP], it is proved that there exists a strictly increasing

distortion function ΦK : (0, 1) → (0, 1) such that |F (z)| ≤ ΦK(|z|) for every z ∈ ∆

and for each K-qc mapping F of ∆ into itself with F (0) = 0. The function ΦK is

defined by

(2.1) ΦK(t) = µ−1

(
1

K
µ(t)

)
,

where (π/2)µ is the conformal modulus of ∆ slit along the real line from 0 to t, 0 < t < 1,

and is strictly decreasing with limits ∞ and 0 at 0 and 1, respectively. It can be expressed

by the formula

(2.2) µ(t) =
K

(√
1 − t2

)

K(t)
,

where

(2.3) K(t) =

π/2\
0

(1 − t2 sin2 φ)−1/2 dφ

is the complete elliptic integral of the first kind. Multiplying µ by a positive constant, we

do not alter ΦK . Thus, for convenience we normalize µ with 1 instead of the usual π/2.

The function K satisfies the following identities due to Landen, sometimes called

Landen transformations:

(2.4) K
(

2
√

t

1 + t

)
= (1 + t)K(t), K

(
1 − t

1 + t

)
=

1 + t

2
K

(√
1 − t2

)
.

From (2.2) and (2.4) it follows that for t ∈ (0, 1),

(2.5) µ(t)µ
(√

1 − t2
)

= 1, µ(t) = 2µ

(
2
√

t

1 + t

)
, µ(t)µ

(
1 − t

1 + t

)
= 2.

The first identity in (2.5) yields, for x > 0,

(2.6) µ−1(x)2 + µ−1(1/x)2 = 1.

For K ∈ (0, 1) we extend ΦK by (2.1). We also extend the domain of ΦK to the closed

interval [0, 1] by setting ΦK(0) = 0 and ΦK(1) = 1 for each K > 0. Since µ decreases in

[0, 1] it follows that ΦK(t) ≥ t for K ≥ 1, and ΦK(t) ≤ t for 0 < K ≤ 1, with equality in

each case if and only if K = 1. It is well known (see [LV, p. 64]) that

(i) ΦK1
◦ ΦK2

= ΦK1K2
, Φ−1

K = Φ1/K , Φ2(t) =
2
√

t

1 + t
, 0 ≤ t ≤ 1.

The explicit estimate

(ii) t1/K ≤ ΦK(t) ≤ 41−1/Kt1/K , 0 ≤ t ≤ 1, K ≥ 1,

was obtained by C. F. Wang [W] and O. Hübner [Hü].

Using (2.1), (2.5) and (2.6) one obtains

(iii) ΦK(t)2 + Φ1/K

(√
1 − t2

)2
= 1, 0 ≤ t ≤ 1, K > 0,

as shown in [AVV1]. We call (iii) the circular property of ΦK .
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In the same way we obtain

(iv) Φ1/K

(
1 − t

1 + t

)
=

1 − ΦK(t)

1 + ΦK(t)
, 0 ≤ t ≤ 1, K > 0,

which we call the hyperbolic property of ΦK ; cf. [AVV1] and [Gh].

Moreover, it is shown in [AVV1] that

(v) ΦK(tu) ≥ max{u1/KΦK(t), t1/KΦK(u)}, 0 < t, u < 1, K ≥ 1,

and that the function ΦK(t)/t1/K is strictly decreasing. Furthermore, the function

f(t) =
ΦK(at)

ΦK(t)
, 0 < a < 1, 0 < t ≤ 1,

is strictly increasing and, in particular,

(vi) f(t) < f(1) = ΦK(a).

The first and simplest of our results reads

(vii) max

{
t1/K ,

(1 + t)K − (1 − t)K

(1 + t)K + (1 − t)K

}

≤ ΦK(t) ≤ min

{
41−1/Kt1/K ,

(1 + t)K − 41−K(1 − t)K

(1 + t)K + 41−K(1 − t)K

}

for K ≥ 1 and 0 ≤ t ≤ 1.

Here especially the right-hand estimate essentially has control of ΦK within the closed

interval [0, 1], whereas the majorant 41−1/Kt1/K (see (ii)) does not, i.e., at t = 1 we have

41−1/K → 4 as K → ∞.

To prove (vii) note that it is a fairly simple consequence of the Wang–Hübner inequal-

ity (ii) for Φ1/K , which has the form

(ii′) 41−KtK ≤ Φ1/K(t) ≤ tK , 0 ≤ t ≤ 1, K ≥ 1,

and of the hyperbolic property (iv).

The multiplicative property of ΦK is presented in

Theorem 1.1. For each t, u ∈ [0, 1] and an every K ≥ 1, there exists a constant K ′

such that

(viii) ΦK(tu) ≤ ΦK(t)ΦK(u) ≤ ΦK′(tu), Φ1/K′(tu) ≤ Φ1/K(t)Φ1/K(u) ≤ Φ1/K(tu),

where

(2.7) K ′ ≤ χ(K) =





K

(
1 +

K − 1

log4
31
33

)−1

, 1 ≤ K ≤ K0,

2K, K > K0,

and K0 = 1 + log16
33
31 .

P r o o f. The left-hand inequality of the first line in (viii) is presented in [AVV1]. Now

we prove the right-hand inequality. Suppose first that 1 ≤ K ≤ K0, and let δ = 2−5,

δ0 = (1 − δ)/(1 + δ) = 31/33 and K ′′ = 7K − 6.

Because 2 · 221(K−1) ≤ 1 + 242(K−1), we have

29K−8 − 212(1−K) ≤ 230(K−1),
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and

δ = 2−5 ≤
(

27K−6 − 47(1−K)

41−K

)1/(6(1−K))

=

(
2K′′ − 41−K′′

41−K

)1/(K−K′′)

.

Hence, for 0 ≤ t ≤ δ, we have

41−KtK + 41−K′′

tK
′′ ≥ (2t)K′′

=

(
2t

1 + t2

)K′′

(1 + t2)K′′

≥
(

2t

1 + t2

)K′′

(1 + 42−K−K′′

tK
′′+K),

and therefore,

(2.8)

1 −
(

2t

1 + t2

)K′′

1 +

(
2t

1 + t2

)K′′
≥ 1 − 41−KtK

1 + 41−KtK
1 − 41−K′′

tK
′′

1 + 41−K′′tK′′
.

Substituting a = (1 − t)/(1 + t), we have

t =
1 − a

1 + a
and

2t

1 + t2
=

1 − a2

1 + a2
.

Now, by (vii) and (2.8), we have

(2.9) ΦK′′(a)ΦK(a) ≤ ΦK′′(a2) for a > δ0.

Using (vi) we see that the function f(t) = ΦK′′(at)/ΦK′′(t) is strictly increasing for

0 < t ≤ 1 with a fixed 0 < a < 1. Hence (2.9) shows that, for δ0 ≤ a ≤ b ≤ 1,

ΦK′′(ab) ≥ ΦK′′(b)
ΦK′′(a2)

ΦK′′(a)
≥ ΦK(b)ΦK(a).

Since K ′′ ≤ χ(K), we have

(2.10) ΦK(a)ΦK(b) ≤ Φχ(K)(ab)

for all a, b ∈ [δ0, 1].

By the definition of χ(K) for 1 ≤ K ≤ K0 we have, for all 0 ≤ t ≤ δ0,

(2.11) 41−1/Kt1/K ≤ t1/χ(K).

Hence, by (ii) and (v) for 0 ≤ a ≤ δ0, and 0 ≤ b ≤ 1, we arrive at

(2.12) ΦK(a)ΦK(b) ≤ 41−1/Ka1/KΦχ(K)(b) ≤ a1/χ(K)Φχ(K)(b) ≤ Φχ(K)(ab).

In a similar way we prove (2.12) for 0 ≤ a ≤ 1 and 0 ≤ b ≤ δ0.

The last inequality in (2.12), together with (2.10), gives us the desired result for

1 ≤ K ≤ K0, where K0 is the root of the equation

(2.13) 2K = K

(
K − 1

log4 δ0
+ 1

)−1

.
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Suppose now that K > K0. Without any loss of generality we assume that t ≤ u.

Using the basic properties in (i) we see that

(2.14) Φ2K(tu) = ΦK(Φ2(tu)) = ΦK

(
2
√

tu

1 + tu

)
≥ ΦK

(√
tu

)
≥ ΦK(t) ≥ ΦK(t)ΦK(u).

Hence,

(2.15) χ(K) = 2K for K > K0.

To obtain the second line of (viii) note that, by (i) and the first line of (viii),

(2.16) ΦK′(Φ1/K(t)Φ1/K(u)) ≥ ΦK(Φ1/K(t))ΦK(Φ1/K(u)) = tu = ΦK′(Φ1/K′(tu)).

Composing both sides of (2.16) with Φ−1
K′ , we obtain the left-hand side of the second row

in (viii). The right-hand inequality can be obtained in a similar way: because

(2.17) ΦK(Φ1/K(t)Φ1/K(u)) ≤ ΦK(Φ1/K(t))ΦK (Φ1/K(u)) = tu = ΦK(Φ1/K(tu)),

we obtain the assertion by composing both sides of (2.17) with Φ−1
K . The proof is complete.

R e m a r k 1.1. According to information obtained from M. K. Vamanamurthy and

M. Vuorinen [VV], they were able to lower the bound on K ′ to K ′ ≤ K2. Very recently,

another improvement of this result was obtained by S. L. Qiu and M. Vuorinen [QV],

who showed that the bound on K ′ can be lowered to K ′ < Kc, where c = 2/m and

m ≈ 1.5324. Combining these we can see that the last result can be formulated as

K ′ ≤ min{Kc, 2K}.
A sharp estimate for one of the most natural functionals on ΦK , considered in [Be]

and [Vo], is presented in

Theorem 1.2. For each K ≥ 1, the function

ϕK(t) := ΦK(t) − t

is concave in [0, 1] and

(ix) ϕ(K) := max
0≤t≤1

ϕK(t) ≤ Ψ(K),

where

Ψ(K) =





1 − 1 + 41−K

2K
, 1 ≤ K ≤ K0,

1 − 41−K

1 + 41−K
, K > K0,

and K0 satisfies the equation (1 + 41−K)2 = 42−KK, 2.481 < K0 < 2.482.

Figure 2 represents the graph of Ψ(K), whereas in Figure 1 we see the graph of the

estimate obtained by M. K. Vamanamurthy and M. Vuorinen [VV].

Figure 3 shows both of these bounds in one picture, where the thin line means our Ψ .

For K close to 1 the graph of the bound from [VV] is better than our Ψ . Using B2[K, 4],

defined in Section 4 of this chapter, one can easily obtain other bounds for ΦK(t).

P r o o f o f T h e o r e m 1.2. Notice first that ϕK(0) = ϕK(1) = 0 for every K ≥ 1

and because ϕ′′
K(t) = Φ′′

K(t) < 0 in (0, 1) for every K > 0 we conclude that ϕK is concave

and then it attains its maximum at a unique point tK ∈ (0, 1).
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Let

(2.18) GK(t) =
(1 + t)K − 41−K(1 − t)K

(1 + t)K + 41−K(1 − t)K
, 0 ≤ t ≤ 1, K ≥ 1.

Then, because of (vii), ΦK(t) ≤ GK(t) for 0 ≤ t ≤ 1 and K ≥ 1. Differentiating GK we
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see that

(2.19) G′
K(t) = 42−KK

(1 − t2)K−1

[(1 + t)K + 41−K(1 − t)K ]2

is a strictly decreasing function in [0, 1], hence GK is a concave function in this interval.

Then

(2.20) GK(t) ≤ tG′
K(0) + GK(0) = t

42−KK

(1 + 41−K)2
+

1 − 41−K

1 + 41−K
.

Using (2.18) and (2.20) we see that

(2.21) ΦK(t) ≤ max
0≤t≤1

{min{tG′
K(0) + GK(0), 1}}.

Hence,

(2.22) max
0≤t≤1

[ΦK(t) − t] ≤ max{GK(0), 1 − r0} =





1 − 1 + 41−K

2K
, 1 ≤ K ≤ K0,

1 − 41−K

1 + 41−K
, K > K0,

where G′
K0

(0) = 1 and r0G
′
K(0) + GK(0) = 1. This completes the proof.

Next we prove a special case:

Lemma 1.1. Suppose that

f(x) =

(
1 − x

1 + x

)2

, gK(x) = 41−KxK , h(x) =
1 − x

(1 + x)3

and that y = y(x) = mK(x − xK) is a line such that y(x) ≤ gK(x) for each 0 ≤ x ≤ 1

and K ≥ 1. Moreover , let

(2.23) h(xK) =
1 − xK

(1 + xK)3
≤ mK ≤ 1

1 + xK
.

Then

(2.24) max
0≤x≤1

[f(gK(x)) − f(x)] ≤ 1 − f(xK).

P r o o f. If

(2.25) α(x) =
h(x)

h(y)
for xK ≤ x ≤ 1,

then

(2.26) α′(x) =
h′(x)h(y) − mKh(x)h′(y)

h(y)2
≤ 0

if and only if

(2.27)
h′(x)

h(x)
≤ mK

h′(y)

h(y)
,

which is equivalent to

(2.28)
d

dx
log h(x) ≤ mK

d

dy
log h(y)
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and hence equivalent to

(2.29)
1

1 − x
− mK

1 − y
≥ 3

(
mK

1 + y
− 1

1 + x

)

and also to

(2.30)
1 − mK(1 − xK)

(1 − x)(1 − y)
≥ 3

mK(1 + xK) − 1

(1 + x)(1 + y)
,

which is satisfied because of (2.23) and of the fact that mK(1 − xK) = y(1) ≤ 1.

Hence, α is a decreasing function in [xK , 1]. Because of (2.23), we now have the

inequality

(2.31)
h(x)

h(y)
=

h(x)

h(y(x))
≤ h(xK)

h(y(xK))
=

h(xK)

h(0)
= h(xK) ≤ mK for xK ≤ x ≤ 1.

We then see that

(2.32)
d

dx
[f(x) − f(y) + 1 − f(xK)] = f ′(x) − mKf ′(y) = −4h(x) + 4mKh(y) ≥ 0

for xK ≤ x ≤ 1, and hence,

(2.33) f(x) − f(y(x)) + 1 − f(xK) ≥ f(xK) − 1 + 1 − f(xK) = 0 for xK ≤ x ≤ 1.

This implies that

(2.34) 1 − f(xK) ≥ f(y(x)) − f(x)

for xK ≤ x≤ 1. This inequality, together with the assumption y(x)≤ gK(x) for 0≤ x≤ 1

of Lemma 1.1, gives

(2.35) f(gK(x)) − f(x) ≤ f(y(x)) − f(x) ≤ 1 − f(xK) for xK ≤ x ≤ 1.

Yet for 0 ≤ x ≤ xK ,

(2.36) f(gK(x)) − f(x) ≤ f(0) − f(x) ≤ 1 − f(xK),

which together with (2.35) gives the desired inequality (2.24). The proof is complete.

Using Lemma 1.1 we get a sharp estimate for the most useful special function in this

research:

Theorem 1.3. For each K ≥ 1, the function

MK(t) := ΦK

(√
t
)2 − t

is concave on [0, 1] and

(x) M(K) := max
0≤t≤1

MK(t) ≤ Λ(K),

where

(2.37) Λ(K) =





1 −
(

K + 1

3K − 1

)2

for 1 ≤ K ≤ 3/2,

1 − (2K − 1)−2 for 3/2 < K ≤ 4,
1 − 41−K for K > 4.

The graph of Λ is shown in Figure 4.
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P r o o f o f T h e o r e m 1.3. Since M ′
K(t) = ΦK

(√
t
)
Φ′

K

(√
t
)(

1/
√

t
)
− 1, using (v)

and the remark that Φ′
K is strictly decreasing, we conclude that MK is concave on [0, 1],

and then it attains its maximum at a unique point tK ∈ (0, 1). Using (vii) we can see that

max
0≤t≤1

[ΦK

(√
t
)2 − t] = max

0≤x≤1
[ΦK(x)2 − x2](2.38)

≤ max
0≤x≤1

[(
1 − 41−K(1 − x)/(1 + x)K

1 + 41−K(1 − x)/(1 + x)K

)2

− x2

]

= max
0≤x≤1

[f(gK(x)) − f(x)],

where f and gK are as described in Lemma 1.1, and 0 ≤ x ≤ 1.

Let 0 ≤ r ≤ 1. With the notation of Lemma 1.1 we see that

(2.39) mK(x − xK) = g′K(r)(x − r) + gK(r) ≤ gK(x) for 0 ≤ x ≤ 1.

Hence

(2.40) mK = g′K(r) = 41−KKrK−1

and

(2.41) xK = r − gK(r)

g′K(r)
= r

(
1 − 1

K

)
.

Suppose that r = 1/2. For each K ≥ 1,

2 · 8K−1 ≥ 3K − 1.

Moreover, for 1 ≤ K ≤ K0, we have

(2.42) 4 · 8K−1K(K + 1) ≤ (3K − 1)3,

where K0 6= 1 is the root of

4 · 8K−1K(K + 1) = (3K − 1)3.

The inequality (2.42) is equivalent to (2.23). Hence, by Lemma 1.1, we can see that

(2.43) max
0≤x≤1

[f(gK(x)) − f(x)] ≤ 1 − f(xK) = 1 −
(

K + 1

3K − 1

)2

for 1 ≤ K ≤ 3/2 < K0.
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Suppose now r = 1. For each K ≥ 3/2,

4K−1 ≥ 2K − 1

and, for 3/2 ≤ K ≤ K1,

(2.44) 4K−1K ≤ (2K − 1)3,

where K1 6= 1 is the root of

4K−1K = (2K − 1)3.

Hence, (2.44) is equivalent to (2.23). Then, by Lemma 1.1, we have

(2.45) max
0≤x≤1

[f(gK(x)) − f(x)] ≤ 1 − f(xK) = 1 − 1

(2K − 1)2

for 3/2 ≤ K ≤ 4 < K1.

Suppose that, for K ≥ 4, mK and xK satisfy

(2.46) mK(1 − xK) = 41−K = gK(1)

and

(2.47) mK =
1 − xK

(1 + xK)2
.

Hence, by (2.46) and (2.47) one can see that

(2.48)
1 − xK

1 + xK
= 21−K

and

(2.49) mK = 21−K

(
1 +

1 − 21−K

1 + 21−K

)−1

= 2−K(1 + 21−K) ≥ 41−KK = g′K(1)

for K ≥ 4. Then

(2.50) mK(x − xK) ≤ g′K(1)(x − 1) + gK(1) ≤ g(x) for 0 ≤ x ≤ 1

and, moreover,

(2.51)
1 − xK

(1 + xK)3
≤ 1 − xK

(1 + xK)2
= mK ≤ 1

1 + xK
.

Hence, the assumptions of Lemma 1.1 are satisfied with mK and xK given by (2.48)

and (2.49), and so

(2.52) max
0≤x≤1

[f(gK(x)) − f(x)] ≤ 1 − f(xK) = 1 − 41−K

for K ≥ 4, which completes the proof.

R e m a r k 1.2. Recently, D. Partyka [P4] proved that M(K) = 2Φ√
K

(
1
/√

2
)2 − 1.

3. Quasisymmetric functions. Now, we turn our attention to some problems on

̺-qs functions of R, and prove auxiliary but indispensable theorems of elementary nature

on these automorphisms. In this way one is led to have control on the growth of normalized

̺-qs functions by the distortion function ΦK . To visualize this, we show with a quantita-

tive estimation that automorphisms of Q◦
R
(̺) approach the identity as ̺ → 0. Comparable

results can be found in [L, p. 32], [HH], [Hi1], [Hi2], and recently in [VV]. However, this
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subordination is crucial in establishing the passage from ̺-quasisymmetric functions to

K-quasihomographies if we do not want to make use of qc extensions.

Recall that some Hölder-type estimates for normalized ̺-qs functions have been ob-

tained by J. A. Kelingos [Ke]. Unfortunately these are not asymptotically sharp for ̺ = 1.

Sharp Hölder-type estimates for these functions are presented in

Theorem 1.4. Suppose that f is a normalized ̺-qs function of R. For each m ∈ N,

we have:

(3.1)

(
1 −

(
̺

̺ + 1

)m)
tαm ≤ f(t) ≤

(
1 +

1

(̺ + 1)m − 1

)
tβm

for 0 ≤ t ≤ 1 and every ̺ ≥ 1;

(3.2)

(
2

̺
− 1

)(
1 −

(
̺

̺ + 1

)m)
(t2 − t1)

αm

≤ f(t2) − f(t1) ≤ (2̺ − 1)

(
1 +

1

(̺ + 1)m − 1

)
(t2 − t1)

βm

for 0 ≤ t1 ≤ t2 ≤ 1 and every ̺ ≥ 1;

(3.3)

(
1 +

1

(̺ + 1)m − 1

)
tβm ≤ f(t) ≤

(
1 −

(
̺

̺ + 1

)m)−1

tαm

for t ≥ 1 and every ̺ ≥ 1. Here

αm = log(2m−1)/2m

(
1 −

(
̺

̺ + 1

)m)
(3.4)

and

βm = log(2m−1)/2m

(
1 −

(
1

̺ + 1

)m)
.(3.5)

P r o o f. Let m ∈ N and cm = 1 − 2−m. Since f is ̺-qs, the inequalities

(3.6)
̺

̺ + 1
f(a) +

1

̺ + 1
f(b) ≤ f

(
a + b

2

)
≤ 1

̺ + 1
f(a) +

̺

̺ + 1
f(b)

hold for every a, b ∈ [0, 1], a < b, if and only if f is linear or a ̺-qs function. By induction

on m one can prove the inequalities

(3.7)

(
̺

̺ + 1

)m

f(a) +

(
1 −

(
̺

̺ + 1

)m)
f(b)

≤ f((1 − cm)a + cmb) ≤
(

1

̺ + 1

)m

f(a) +

(
1 −

(
1

̺ + 1

)m)
f(b)

for a, b ∈ [0, 1] and each m ∈ N. Induction on n gives

cnαm
m = cn

mlogcm

(
1 −

(
̺

̺ + 1

)m)
=

(
1 −

(
̺

̺ + 1

)m)n

≤ f(cn
m)(3.8)

≤
(

1 −
(

1

̺ + 1

)m)n

= c
n logcm

(1−( 1
̺+1

)m)
m = cnβm

m

for each n = 0, 1, 2, . . .
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Since f is strictly increasing for every t ∈ [cn
m, cn−1

m ], m, n = 1, 2, . . . , we have

f(t) ≤ f(cn−1
m ) ≤ (cn−1

m )βm ≤ (c−1
m t)βm = c−βm

m tβm

and

f(t) ≥ f(cn
m) ≥ (cn

m)αm ≥ (cmt)αm = cαm
m tαm .

This yields (3.1) because [0, 1] = {0} ∪ ⋃∞
n=1[c

n
m, cn−1

m ] for each m ∈ N.

Suppose that f ∈ QR(̺). For every fixed t1 ∈ [0, 1], the function

(3.9) gt1(t) =
f(t + t1) − f(t1)

f(1 + t1) − f(t1)

belongs to Q◦
R
(̺), with the same ̺ ≥ 1. Let 0 ≤ t1 ≤ t2 ≤ 1. Then, by (3.1) with

t = t2 − t1,

f(t2) − f(t1) ≤ (f(1 + t1) − f(t1))

(
1 +

1

(̺ + 1)m − 1

)
(t2 − t1)

βm(3.10)

and

f(t2) − f(t1) ≥ (f(1 + t1) − f(t1))

(
1 +

(
1

̺ + 1

)m)
(t2 − t1)

αm(3.11)

for every m ∈ N. By (3.9) and the definition of quasisymmetry, we see that

(3.12)
1

̺
g1(t1) − f(t1) + 1 ≤ f(t1 + 1) − f(t1) ≤ ̺g1(t1) − f(t1) + 1.

Since the inequality

(3.13) |f(t) − t| ≤ ̺ − 1

̺ + 1

holds for each f ∈ Q◦
R
(̺), ̺ ≥ 1 and 0 ≤ t ≤ 1 (see [Kr2]), we have

(3.14) t1 −
̺ − 1

̺ + 1
≤ g1(t1) ≤ t1 +

̺ − 1

̺ + 1

for every t1 ∈ [0, 1] and ̺ ≥ 1.

Consequently,

(3.15) f(1 + t1) − f(t1) ≤ ̺

(
t1 +

̺ − 1

̺ + 1

)
− t1 +

̺ − 1

̺ + 1
+ 1 = (̺ − 1)t1 + ̺ ≤ 2̺ − 1

and

f(1 + t1) − f(t1) ≥
1

̺

(
t1 −

̺ − 1

̺ + 1

)
− t1 −

̺ − 1

̺ + 1
+ 1(3.16)

=

(
1

̺
− 1

)
t1 +

1

̺
≥ 2

̺
− 1.

By (3.16), (3.10) and (3.11), we obtain

(3.17)
2

̺
− 1 ≤ f(1 + t1) − f(t1) ≤ 2̺ − 1.

The left-hand estimate of (3.17) is essential for 1 ≤ ̺ ≤ 2, but asymptotically sharp.
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Inequalities (3.3) can be derived in much the same way as (3.1). This ends the proof.

Corollary 1.1. For m = 1 the inequalities (3.1) and (3.3) reduce to those of Kelin-

gos [Ke, Thm. 10], whereas (3.2) is better. The sharpness is obtained as m → ∞.

Now we prove

Lemma 1.2. Let f : [a, b] → R be strictly increasing and concave. Then

(3.18)
f(t + st) − f(t)

f(t) − f(t − st)
≤ f(t + s) − f(t)

f(t) − f(t − s)
= F (t, s) ≤ 1

for every t ∈ (a, b) and 0 < s ≤ st = min{b − t, t − a}.
P r o o f. Let t∈(a, b) and 0 < s < st be arbitrary, and set d = st−s. By the concavity

of f we have

f(t − s) ≥ s

st
f(t − st) +

d

st
f(t) and f(t + s) ≥ d

st
f(t) +

s

st
f(t + st).

Thus

f(t) − f(t − s) ≤ s

st
(f(t) − f(t − st)) and f(t + s) − f(t) ≥ s

st
(f(t + st) − f(t)).

Since f is strictly increasing,

(3.19)
f(t + s) − f(t)

f(t) − f(t − s)
≥ f(t + st) − f(t)

f(t) − f(t − st)
.

Using once again the concavity of f one obtains

f(t) ≥ 1
2f(t − s) + 1

2f(t + s),

and so

f(t + s) − f(t) ≤ f(t) − f(t − s),

which completes the proof.

This lemma has a very practical application. It means that searching for the qs con-

stant ̺ of a given concave and increasing homeomorphism f on [a, b] we learn that it is

attained on the upper frame of the domain of F , defined by (3.18).

Another application of Lemma 1.2 yields

Theorem 1.5. Suppose that f : D → R is strictly increasing and concave. Then f is

̺-qs in each of the following cases :

(i) D = (a, b) and

min

{
inf

t∈(a,(a+b)/2]

f(2t − a) − f(t)

f(t) − f(a)
, inf
t∈[(a+b)/2,b)

f(b) − f(t)

f(t) − f(2t − b)

}
=

1

̺
> 0;

(ii) D = (b,∞) and

inf
t∈(b,∞)

f(2t − b) − f(t)

f(t) − f(b)
=

1

̺
> 0;

(iii) D = (−∞, a) and

inf
t∈(−∞,a)

f(a) − f(t)

f(t) − f(2t− a)
=

1

̺
> 0;
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(iv) D = R and

inf
t∈R

(
lim

x→∞
f(t + x) − f(t)

f(t) − f(t − x)

)
=

1

̺
> 0.

Using Theorem 1.4 we shall prove the following estimates, which are crucial in esta-

blishing the passage from quasisymmetric functions to quasihomographies.

Theorem 1.6. Suppose that f is a ̺-qs function of [0, 1] onto [0, 1]. Then, for each

̺ ≥ 1, there is a constant K = K(̺) such that

(3.20) Φ1/K

(√
t
)2 ≤ f(t) ≤ ΦK

(√
t
)2

for 0 ≤ t ≤ 1,

where

(3.21) K ≤ ν(̺) =





e2
√

̺−1

1 − 2−me1/m
· 1

1 + log2(1 − 2−m)
, 1 ≤ ̺ ≤ 5/4,

3.41 · log2(1 + ̺), 5/4 < ̺ ≤ 6,

( log 2)

(
1 − 1

log2(2/̺ log2(1 + ̺))

)
(1 + ̺), ̺ > 6,

with m = Ent
{
1/

√
̺ − 1

}
and ν(̺) ∼= (log 2)(1 + ̺) as ̺ → ∞.

Figure 5 shows the graph of the function ν. To see better the graph of ν for 1 ≤
̺ ≤ 5/4, one may look at Figure 6, which is a magnification of ν within this segment.
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Fig. 5

M. K. Vamanamurthy and M. Vuorinen [VV] lowered the bound (3.21) for 1 < K <

4.84151 and 6 < K < 11.4087 by using a different technique to obtain

K ≤ ν1(̺) := min{̺3/2, 2̺ − 1}.
The function ν1 can be easily recognized in Figure 7, where ν and ν1 are in the same

picture. Figure 8 shows that ν1 is essentially better for ̺ close to 1.

P r o o f o f T h e o r e m 1.6. Note that 1 − f(1 − t) is a ̺-qs function mapping [0, 1]

onto [0, 1] as soon as f is. By Theorem 1.4,

f(t) ≤ min{c−βm

m tβm , 1 − cαm

m (1 − t)αm}
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for every t ∈ [0, 1] and all m ∈ N. Let λ ∈ (0, cm) and

(3.22) Kλ,m = max

{
1

βm

log1/cm
λ

log1/cm
λ + 1

, αm

log1/cm
(1 − λ) − 1

log1/cm
(1 − λ)

}
.
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Then

c−βm
m tβm ≤ t1/Kλ,m for 0 ≤ t ≤ λ

and

(1 − t)Kλ,m ≤ cαm
m (1 − t)αm for λ ≤ t ≤ 1.

Now, by Theorem 1.5(ii) and (3.1), one has

(3.23) f(t) ≤ ΦKλ,m

(√
t
)2

for 0 ≤ t ≤ λ,

and again by Theorem 1.5(ii) and (3.1),

f(t) ≤ 1 − cαm

m (1 − t)αm ≤ 1 − (1 − t)Kλ,m(3.24)

≤ 1 − Φ1/Kλ,m

(√
1 − t

)2
= ΦKλ,m

(√
t
)2

for λ ≤ t ≤ 1.

Hence,

f(t) ≤ ΦK

(√
t
)2

for 0 ≤ t ≤ 1,

where

K = min
m∈N

min
0<λ<cm

Kλ,m ≤ min
m∈N

Kλm,m

and λm is the solution of

(3.25)
log1/cm

λ

1 + log1/cm
λ

= αmβm

log1/cm
(1 − λ) − 1

log1/cm
(1 − λ)

.

Consider first the case 1 ≤ ̺ ≤ 5/4. We have the following estimates:

αm =
log(1 − (̺/(̺ + 1))m)

log(1 − 2−m)
≤

(
2̺

̺ + 1

)m
1

1 − (̺/(̺ + 1))m
(3.26)

≤ ̺m 1

1 − (̺/(̺ + 1))m
≤

(
1 +

1

m2

)m
1

1 − 2−me1/m

≤ e1/m

1 − 2−me1/m
for 1 ≤ ̺ ≤ 1 + 1

m2 .

Similarly we obtain the estimate

(3.27) βm ≥ (1 − 2−m)e−1/(2m) for 1 ≤ ̺ ≤ 1 + 1/m2.

Suppose that m ≥ 2 is the smallest possible number for which (3.26) and (3.27) are

satisfied with λ = 1/2. Then

K ≤ K1/2,m = max

{
1

βm
· 1

1 + log2(1 − 2−m)
, αm(1 − log2(1 − 2−m))

}

≤ max

{
e1/(2m)

(1 − 2−m)(1 + log2(1 − 2−m))
,

e1/m

1 − 2−me1/m
(1 − log2(1 − 2−m))

}

≤ max

{
e1/(2m)

(1 − 2−m)(1 + log2(1 − 2−m))
,

e1/m(1 − log2
2(1 − 2−m))

(1 − 2−me1/m)(1 + log2(1 − 2−m))

}

≤ max

{
e1/(2m)

(1 − 2−m)(1 − log2(1 − 2−m))
,

e1/m

(1 − 2−me1/m)(1 + log2(1 − 2−m))

}
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≤ e1/m

1 − 2−me1/m
· 1

1 + log2(1 − 2−m)
≤ e1/m

1 − 2−me1/m
· 1

1 + log2
1
2

,

where m = Ent
{
1
/√

̺ − 1
}
. Since

1

m
<

√
̺ − 1

1 −√
̺ − 1

≤ 2
√

̺ − 1,

we obtain

(3.28) K ≤ ν(̺) =
e2

√
̺−1

1 − 2−Ent{1/
√

̺−1}e1/m
· 1

1 + log2(1 − 2−m)
.

Note that ν(̺) → 1 as ̺ → 1.

Consider now the case 1 ≤ ̺ ≤ 6. By setting m = 1 and λ = 1/4, we have

K ≤ min
0<λ<c1

Kλ,1 ≤ K1/4,1(3.29)

= max

{
1

β1

log1/c1
(1/4)

log1/c1
(1/4) + 1

, α1

log1/c1
(3/4)− 1

log1/c1
(3/4)

}

= max

{
2

log2(1 + 1/̺)
, log2(1 + ̺)

log2 3 − 3

log2 3 − 2

}

≤ log2(3/8)

log2(3/4)
log2(1 + ̺) < 3.41 · log2(1 + ̺) = ν(̺)

for 5/4 < ̺ ≤ 6.

To obtain the last case we set m = 1, α1 = α, β1 = β and ̺ ≥ 6. Then we have

αβ log 2 = log2(1 + ̺) log2

(
1 +

1

̺

)
log 2 <

1

̺
log2(1 + ̺) <

1

2
<

log3 2

2(1 − log 2)
.

Hence

21+1/(αβ) ≥ 2

(
log 2

αβ
+

log2 2

2(αβ)2

)
≥ 1

αβ log 2

and so αβ < 1/(r − 1) with r = log2(αβ log 2). By setting λ = 2−r we arrive at

K ≤ Kλ,1 = max

{
1

β
· r

r − 1
, α

(
1 − 1

log2(1 − 2−r)

)}
(3.30)

≤ max

{
1

β
· r

r − 1
, α(1 + (log 2)2r)

}

≤ max

{
1

β
· r

r − 1
, α +

1

β

}
≤ 1

β

r

r − 1
.

Then

K ≤ 1

log2(1 + 1/̺)

(
1 − 1

log2(αβ log 4)

)
(3.31)

≤ (log 2)(̺ + 1)

(
1 − 1

log2(αβ log 4)

)

≤ (log 2)

(
1 − 1

log2(2/̺) log2(1 + ̺)

)
(̺ + 1) = ν(̺)

for ̺ > 6.
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We have ν(̺) ∼= (log 2)(̺ + 1) as ̺ → ∞. To obtain the left-hand inequality in (3.20)

we notice that g(t)=1− f(1− t) is a ̺-qs function if f is. Substituting x=1− t we have

(3.32) f(x) ≥ 1 − ΦK

(√
1 − x

)2
= Φ1/K

(√
x

)2
,

which ends the proof.

The following result is in some sense opposite:

Theorem 1.7. For every K ≥ 1, there exists ̺ ≥ 1 such that ΦK is ̺-qs on [0, 1]

with

(3.33) ̺ < max{25K−3, 22−3/K(1 − ΦK(1/2))−1} = 25K−3.

P r o o f. Note that ΦK is concave for each K > 1. Let t∈(0, 1/2]. Then, by Lemma 1.2

and (ii), we have

ΦK(2t) − ΦK(t)

ΦK(t)
=

ΦK(2t) − ΦK

(
2t · 1

2

)

ΦK(t)
≥ ΦK(2t)

ΦK(t)

(
1 − ΦK

(
1
2

))

≥ (2t)1/K

41−1/Kt1/K

(
1 − ΦK

(
1
2

))
=

81/K

4

(
1 − ΦK

(
1
2

))
.

For t ∈ [1/2, 1) we have, since Φ1/K = Φ−1
K ,

ΦK(1) − ΦK(t)

ΦK(t) − ΦK(2t − 1)
≥ 1 − ΦK(t)

1 − ΦK(2t − 1)
=

1 − ΦK(t)2

1 − ΦK(2t − 1)2
1 + ΦK(2t − 1)

1 + ΦK(t)

≥ Φ1/K

(√
1 − t2

)2

Φ1/K

(√
1 − (2t − 1)2

)2 · 1

2
≥

(
41−K

(√
1 − t2

)K)2

(√
1 − (2t − 1)2

)2K
· 1

2

=
161−K(1 − t2)K

2(4t − 4t2)K
= 8 · 4−3K

(
1 +

1

t

)K

≥ 8 · 2−5K .

The last equality is an immediate consequence of a new estimate on the distortion func-

tion ΦK obtained by M. K. Vamanamurthy and M. Vuorinen [VV, Thm. 1.4]. The proof

is complete.

Hence, the following open problem arises: Find an asymptotically sharp bound for the

qs constant of the distortion function ΦK,n, n ≥ 3.

4. Functional identities for special functions. Concerning the theory of quasi-

conformal mappings in Rn with n = 2, 3, . . . (see [Cm], [Vä3] and [BI]) we are particularly

interested in two rings having extremal properties. The first is the Grötzsch ring RG,n(s),

s > 1, whose complementary components are the closed unit ball Bn and the ray [se1,∞],

where e1 is the first unit vector of the rectangular coordinate axes in Rn. The second

is the Teichmüller ring RT,n(t), t > 0, whose complementary components are the seg-

ment [−e1, 0] and the ray [te1,∞]. The conformal capacities γn(s) and τn(t) of RG,n(s)

and RT,n(t), respectively, are decreasing functions related by the functional identity

γn(s) = 2n−1τn(s2 − 1) for s > 1.

The work of F. W. Gehring (see [Ge1] and [Ge2]) suggests that the role of special

functions in the plane case is taken by these capacities. It seems that this idea can be
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modified by introducing the n-dimensional counterpart of the elliptic integral, denoted

by Kn, where K2 = K. Unfortunately, for n ≥ 3 this is not a special case of the hypergeo-

metric function; cf. [Z11].

Our main idea for studying special functions is a generalization of problems that

were intensively studied by several authors; cf. [AVV4], [Vo] and other papers. This gives

immediately a number of final results on these functions, both on the plane and in space;

see [Z7].

The distortion function ΦK,n : [0, 1] → [0, 1] in the n-dimensional (n ≥ 2) quasiregular

version of the Schwarz Lemma (see [MRV] and [Vo]) is defined for K > 0 and n =

2, 3, 4, . . . by ΦK,n(0) = 0, ΦK,n(1) = 1, and

(4.1) ΦK,n(t) = M−1
n

(
1

Kn
Mn(t)

)

for 0 < t < 1, where Kn = K1/(n−1) and Mn is given by

(4.2) γn(1/t) = ω◦
n−1M

1−n
n (t).

Here ω◦
n−1 = (2/π)n−1ωn−1, with ωn−1 the (n − 1)-dimensional surface area of the unit

sphere Sn−1 in Rn. Introducing any positive constant multiplier to the formula (4.2) that

defines Mn, we do not alter ΦK,n. Thus, for convenience, we normalize ωn−1 as above.

For n = 2 we have M2 = µ, where µ is given by (2.2) and ΦK,2 = ΦK . This results in

several functional identities; see [AVV1] and [Vo].

For the higher-dimensional case n ≥ 3 neither such explicit expressions nor functional

identities were known; cf. [Vo].

R e m a r k 1.3. It is worth noting that the generalized Schwarz Lemma is valid for

quasiregular mappings, which is wider than the class of qc mappings.

We recall that the explicit estimate

(4.3) t1/Kn ≤ ΦK,n(t) ≤ λ1−1/Kn

n t1/Kn

holds for K ≥ 1, n = 2, 3, . . . and 0 ≤ t ≤ 1, where Kn = K1/(n−1). The constant λn is

known only when n = 2, and in this case λ2 = 4; see [LV, p. 62]. Generally, 2e0.76(n−1) ≤
λn ≤ 2en−1 for n ≥ 3; see [Vo, p. 89].

The main purpose of this section is to show how one can obtain

∗ a one-parameter family of identities satisfied by ΦK,n, n = 2, 3, . . . and K > 0,

∗ equivalent identities for Mn, γn, τn, and for K when n = 2;

∗ a dynamical convergence formula for ΦK,n as an application.

Our idea can be realized since we know that Mn is differentiable in (0, 1) for

n = 2, 3, . . . ; see [An].

Let H denote the family of all differentiable automorphisms of (0, 1), and Hn,

n = 2, 3, . . . , be the set of all involutions h ∈ H such that

(4.4) h ◦ ΦK,n = Φ1/K,n ◦ h

for each K > 0. The formula (4.4) is called the involute identity.

Moreover, let Q = (0, 1) × (0, 1). Then we have
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Theorem 1.8. Let n = 2, 3, . . . , be fixed. A function h belongs to Hn if and only if

there is a number L > 0 such that

(4.5) h(t) = M−1
n (Ln/Mn(t))

for 0 < t < 1 and Ln = L1/(n−1). Moreover , if (ξ, η) ∈ Q is an arbitrary point , then

there is a number Lξη
n such that h(ξ) = η.

P r o o f. Assume that h ∈ Hn. Introducing M̃n = Mn ◦ h ◦ M−1
n , we see that (4.4)

with (4.1) may be written as

(4.6) M̃n(t/Kn) = KnM̃n(t)

for 0 < t < ∞, Kn = K1/(n−1), K > 0 and n = 2, 3, . . . By the definition of Hn and the

regularity of Mn, it follows that M̃n is differentiable in 0 < t < ∞. Hence, the well-known

Euler identity implies that all the solutions of (4.6) can be written as

(4.7) M̃n(t) = Ln/t

for 0 < t < ∞, Ln = L1/(n−1), L > 0 and n = 2, 3, . . . Thus

(4.8) h(t) = M−1
n (Ln/Mn(t)).

Let (ξ, η) ∈ Q. Setting Lξη
n = Mn(ξ)Mn(η) we see that M−1

n (Lξη
n /Mn(ξ)) = η, so the

second part of our theorem follows.

On the other hand, it is evident that each function of the form (4.8) belongs to Hn

for n = 2, 3, . . . , which ends the proof.

Let

(4.9) H∞ =

∞⋃

n=2

Hn.

We may additionally assume that each function of H∞ maps 0 and 1 to 1 and 0, respec-

tively. A function from H∞ is called a conjugate distortion function. To justify the name

let us consider the family of functions defined as

(4.10) ΨK,α,β [ν, t] = ν−1(Kανβ(t))

for α, β ∈ R, β 6= 0 and K > 0, where ν is a differentiable homeomorphism mapping

(0, 1) onto (0,∞). The family of functions defined by (4.10) forms a group of automor-

phisms of (0,1) under composition. With each automorphism ΨK,α,β[ν, · ] we associate the

automorphism

(4.11) Ψ∗
K,α,β [ν, · ] = ΨK,−α,−β[ν, · ].

The correspondence ΨK,α,β [ν, · ] → Ψ∗
K,α,β[ν, · ] is called the conjugation.

Substituting ν = Mn, α = 1/(1 − n) and β = 1 in (4.10) we obtain ΦK,n, whereas

(4.12) Φ∗
K,n := ΨK,−1/(1−n),−1[Mn, · ]

is called the space conjugate distortion function.

Figure 9 illustrates the family of conjugate distortion functions Φ∗
L := Φ∗

L,2 for

L = 0.2, 0.3, . . . , 5.
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Figure 10 shows the family ΦK for K = 0.2, 0.3, . . . , 5.

The graphs are obtained by identifying ΦK with B2[K, 8], and Φ∗
L with Φ∗

1 ◦B2[L, 8],

defined by (4.22) below.
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Figure 11 shows these families in one picture.

Figure 12 is a magnification of a corner of Figure 10. The line near the diagonal

represents the value L = 1.9.
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For each n = 2, 3, . . . , let

(4.13) Fn =
⋃

K>0

ΦK,n.

Then we have

Theorem 1.9. Let n = 2, 3, . . . be fixed. Then F∗
n = Hn and Fn ∪ Hn is a group

under composition.

The basic properties of the conjugate distortion functions are stated in

Theorem 1.10. For each K, L > 0 and n = 2, 3, . . . we have:

(i) for every fixed L ∈ (0,∞), Φ∗
L,n is a decreasing automorphism of (0, 1), and for

each t ∈ (0, 1), Φ∗
L,n is a decreasing diffeomorphism of (0,∞) onto (0, 1);

(ii) Φ∗
L,n ◦ Φ∗

K,n = ΦK/L,n;

(iii) Φ∗
L,n ◦ ΦK,n = Φ∗

LK,n;

(iv) ΦK,n ◦ Φ∗
L,n = Φ∗

L/K,n;

(v) Φ∗
L,n ◦ ΦK,n ◦ Φ∗

L,n = Φ1/K,n;

(vi) with Φ∗
L := Φ∗

L,2 and 0 < t < 1, we have

Φ∗
1(t)=

√
1 − t2, Φ∗

2(t)=
1 − t

1 + t
, Φ∗

4(t)=

(
1 −

√
t

1 +
√

t

2)
, Φ∗

8(t)=

(√
1 + t −

√
2 4
√

t

1 −
√

t

)4

, etc.

P r o o f. The properties (i)–(v) follow from the definition of Φ∗
L,n and the properties

of ΦK,n. Since M2

(√
1 − t2

)
= µ

(√
1 − t2

)
= K(t)/K

(√
1 − t2

)
= 1/µ(t), we have

Φ∗
1(t) = µ−1(1/µ(t)) =

√
1 − t2. Making use of (iii) we obtain Φ∗

2,2, Φ∗
4,2, Φ∗

8,2, etc. in

explicit form. The proof is complete.

The involute identity described by (4.4) has a natural geometric interpretation. To

see it, let us consider the mapping

(4.14) Φ̃K,n(t, x) = (ΦK,n(t), Φ1/K,n(x)),

which maps Q onto itself for each K > 0 and n = 2, 3, . . . We have

(4.15) Φ̃K,n(t, Φ∗
L,n(t)) = (ΦK,n(t), Φ1/K,n ◦ Φ∗

L,n(t)) = (ΦK,n(t), Φ∗
L,n(ΦK,n(t)))

for each 0 ≤ t ≤ 1, K, L > 0 and n = 2, 3, . . . Thus, every curve

(4.16) ΓL,n = {(t, x) : x = Φ∗
L,n(t), 0 < t < 1}, L > 0,

is invariant under each mapping from Fn for n = 2, 3, . . . Moreover, by Theorem 1.8 we

have

Q =
⋃

L>0

ΓL,n

for n = 2, 3, . . .

Theorem 1.11. Let n = 2, 3, . . . be fixed. The identities

(i) Mn(ΦK,n(t))Mn(Φ∗
L,n(t)) = Ln/Kn;

(ii) γn(1/ΦK,n(t))γn(1/Φ∗
L,n(t)) = (K/L)(ω◦

n−1)
2;

(iii) τn((1/ΦK,n(t))2 − 1)τn((1/Φ∗
L,n(t))2 − 1) = (K/L)π2(1−n)ω2

n−1
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hold for 0 < t < 1 and each K, L > 0. Moreover , these three identities and (4.2) are

equivalent.

P r o o f. By (4.12), (4.1) and (4.10) we obtain (i). The identities (ii) and (iii) follow

from (4.2) and the relationship between τn and γn. This finishes the proof.

The equation

(4.17)
K ◦ Φ∗

1,2(s)

K(s)
= p

K ◦ Φ∗
1,2(r)

K(r)

is called the modular equation of degree p; see [BB, Ch. IV] and [AVV4].

The unique solution of (4.17) is given by s = Φ1/p(r). For integer values of p, the

modular equation has been studied in number theory (see [Be1], [Be2]).

In the case n = 2 one obtains

Theorem 1.12. The identity

(4.18) µ = K
K ◦ Φ∗

K,2

K ◦ ΦK,2
= L

K ◦ Φ∗
L,2

K ◦ ΦL,2

holds for each K, L > 0, with K the elliptic integral.

P r o o f. This observation is an immediate consequence of (2.1) and Theorem 1.11(i).

R e m a r k 1.4. Given n = 2, 3, . . . and L > 0, the equation

Φ∗
L,n(t) = t

has a unique solution tL,n = M−1
n

(√
Ln

)
. This observation follows directly from the

definition of Φ∗
L,n.

R e m a r k 1.5. By Theorem 1.10 and Remark 1.3 we have the following assertions:

(i) setting n = 2 and then L = 1 or L = 2 in (iv), (v) of Theorem 1.10 we obtain the

well-known identities (3.4)–(3.6) and (3.8)–(3.9) of [AVV1];

(ii) setting n = 2 and then L = 4 with t = r2 in Theorem 1.10(iv) we obtain (3.10)

of [AVV1];

(iii) the identity (1.7) of [AVV1] follows from Theorem 1.10(vi);

(iv) setting n = 2 and then L = 1 or L = 2 in (i) of Theorem 1.11 we obtain the

identities (2.5);

(v) setting K = 1/p and L = 1 in (4.18) we obtain (4.17). Moreover, Theorem 1.8

describes all differentiable solutions of (4.17) as well;

(vi) for p = 2−n, n = 1, 2, . . . , the solutions of (4.17) are elementary functions;

(vii) the identity (2.6) can easily be obtained from Theorem 1.11(i) by setting n = 2

and K, L = 1. Hence one can obtain the related identity satisfied by M−1
n , n ≥ 2;

(viii) by Theorem 1.12 and the first Landen identity in (2.4), one can obtain the second

of these identities by taking (K, L) = (2, 1). Substituting any pair of numbers (2n, 2m),

n, m = ±1,±2, . . . , in (4.18), one may easily generalize the Landen identities.

R e m a r k 1.6. For every K > 0 and 0 ≤ t ≤ 1, we have

(i) Φ∗
K(t) =

√
1 − ΦK(t)2 = Φ1/K

(√
1 − t2

)
;

(ii) Φ∗
2K(t) = (1 − ΦK(t))/(1 + ΦK(t));
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(iii) Φ∗
4K(t) =

(
1 −

√
ΦK(t)

)2
/
(
1 +

√
ΦK(t)

)2
;

(vi) Φ∗
8K(t) =

(√
1 + ΦK(t) − 4

√
4ΦK(t)

)2
/
(√

1 + ΦK(t) + 4
√

4ΦK(t)
)2

.

R e m a r k 1.7. There does not exist a number L0 > 0 such that

Φ∗
L0

(t) = 1 − t.

P r o o f. Since the involute identity (4.4) must be satisfied for all K, assuming K = 2

and Φ∗
L0

(t) = 1 − t we obtain a contradiction to (4.4) at any point t ∈ [0, 1].

Now we prove

Theorem 1.13. For each L ≥ 1 and n = 2, 3, . . . , the inequalities

(4.19)
λ1−Ln

n Φ∗
1,n(t)Ln ≤ Φ∗

L,n(t) ≤ Φ∗
1,n(t)Ln ,

Φ∗
1,n(t)1/Ln ≤ Φ∗

1/L,n(t) ≤ λ1−1/Ln

n Φ∗
1,n(t)1/Ln

hold for 0 ≤ t ≤ 1 with Ln = L1/(n−1).

P r o o f. Using (iv) of Theorem 1.10 with L = 1 and the inequality (4.3) we obtain

the second line of (4.19). Since Φ1/K,n ◦ Φ∗
1,n = Φ∗

K,n, the first line of (4.19) follows by

applying (4.3) to Φ−1
K,n = Φ1/K,n. This ends the proof.

In the particular case n = 2 we have, by Theorems 1.10(vi) and 1.13,

R e m a r k 1.8. The inequalities

(4.19′)
41−L(1 − t2)L/2 ≤ Φ∗

L(t) ≤ (1 − t2)L/2,

(1 − t2)1/(2L) ≤ Φ∗
1/L(t) ≤ 41−1/L(1 − t2)1/(2L)

hold for each 0 ≤ t ≤ 1 and L ≥ 1.

From (v) of Theorem 1.10 and (4.3), applied to Φ1/K,n = Φ−1
K,n, we see that

(4.20) Φ∗
L,n(Φ∗

L,n(t)Kn) ≤ ΦK,n(t) ≤ Φ∗
L,n(λ1−Kn

n Φ∗
L,n(t)Kn)

for every 0 ≤ t ≤ 1, n = 2, 3, . . . , K ≥ 1 and L > 0, where Kn = K1/(n−1).

Let

bn[K, L](t) = Φ∗
L,n(Φ∗

L,n(t)Kn)(4.21)

and

Bn[K, L](t) = Φ∗
L,n(λ1−Kn

n Φ∗
L,n(t)Kn)(4.22)

for K ≥ 1, L > 0, 0 ≤ t ≤ 1, n = 2, 3, . . . , and Kn = K1/(n−1). Using these definitions

one may write (4.20) as

(4.23)
bn[K, L](t) ≤ ΦK,n(t) ≤ Bn[K, L](t),

Φ∗
1,n(Bn[K, L](t)) ≤ Φ∗

K,n(t) ≤ Φ∗
1,n(bn[K, L](t)).

Setting n = 2 and L = 2, we immediately obtain (vii) of Remark 1.5. Setting n = 2 and

L = 4, we see that

(4.24)

((
1 +

√
t
)K −

(
1 −

√
t
)K

(
1 +

√
t
)K

+
(
1 −

√
t
)K

)2

≤ ΦK(t) ≤
((

1 +
√

t
)K − 21−K

(
1 −

√
t
)K

(
1 +

√
t
)K

+ 21−K
(
1 −

√
t
)K

)2

for 0 ≤ t ≤ 1 and K ≥ 1. The right-hand inequality is just Theorem 5.7 of [AVV4].



Quasihomographies in the theory of Teichmüller spaces 35

Figure 13 shows the graphs representing

B2[K, 4](t) − t, 0 ≤ t ≤ 1,

which are bounds for ϕK(t) described in Theorem 1.2 and K = 1, 1.5, 2, . . . , 4.5, 5.

In Figures 14 and 15 one can see the graphs which are graph bounds for ϕK(t) with

K = 1.5, 2, . . . , 4.5, 5. These bounds were obtained by M. K. Vamanamurthy and M.

Vuorinen [VV].
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Fig. 14

In Figure 16 one may see these results in one picture, whereas Figure 17 is a magnifica-

tion of Figure 16, obtained for graphs as in Figure 13 but with K = 1, 1.01, 1.02, 1.03, 1.04,

1.09, for graphs as in Figure 14 but with K = 1.04, 1.09, and for graphs as in Figure 15

but with K = 1.04, 1.09.

Also the graphs 41−1/K
√

1 − x2(K − 1)x1/(4K) log 4 for K = 1.01, 1.02, 1.03 can be

found in Figure 17.

By Corollary 1.2 and (4.23), one can improve the estimates of (4.24) by taking L = 2i,

i ≥ 3 and n = 2. This can be easily seen by the use of a computer, which is also useful

in illustrating (4.21), (4.22) and (4.23).



36 J. Zaja̧c

0.2 0.4 0.6 0.8 1

1

2

3

4

5

6

Fig. 15

0.2 0.4 0.6 0.8 1

2

4

6

8

10

12

14

Fig. 16

0.2 0.4 0.6 0.8 1

0.02

0.04

0.06

0.08

0.1

0.12

Fig. 17

In order to make use of (4.20) we shall first establish

Lemma 1.3. For each K > 0 and n = 2, 3, . . . ,

(4.25) lim
L→∞

(Φ∗
L,n ◦ ϕ ◦ Φ∗

L,n(t)) = ΦK,n(t)
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for 0 ≤ t ≤ 1, where ϕ : [0, 1] → [0, 1] is any function such that

(4.26) lim
t→0+

log ϕ(t)

log t
= Kn.

P r o o f. Let K > 0 and n = 2, 3, . . . It follows from (4.26) and Theorem 3.1 in [P2]

that, for 0 ≤ t ≤ 1,

lim
L→∞

(ΦL,n ◦ ϕ ◦ Φ1/L,n(t)) = Φ1/K,n(t).

Hence, by Theorem 1.10, we get

Φ∗
L,n ◦ ϕ ◦ Φ∗

L,n(t) = Φ∗
1,n ◦ (ΦL,n ◦ ϕ ◦ Φ1/L,n(t)) ◦ Φ∗

1,n(t)

→ Φ∗
1,n ◦ Φ1/K,n ◦ Φ∗

1,n(t) = ΦK,n(t) as L → ∞
for 0 ≤ t ≤ 1, which ends the proof.

Now we can prove

Theorem 1.14. For each K ≥ 1, n = 2, 3, . . . and 0 ≤ t ≤ 1,

(4.27)
lim

L→∞
bn[K, L](t) = lim

L→∞
Bn[K, L](t) = ΦK,n(t),

lim
L→∞

Φ∗
1,n(bn[K, L](t)) = lim

L→∞
Φ∗

1,n(Bn[K, L](t)) = Φ∗
K,n(t).

P r o o f. Setting ϕ1(t) = tKn and ϕ2(t) = λ1−Kn
n tKn , we have

lim
t→0+

log ϕ1(t)

log t
= lim

t→0+

log ϕ2(t)

log t
= Kn, Kn = K1/(n−1).

This, in view of Lemma 1.3 and by (4.21) and (4.22), gives the desired result. The second

statement can be derived from parallel properties of Φ∗
K,n.

R e m a r k 1.9. Given K ≥ 1, we may notice that the sequences B2[K, 2i] and b2[K, 2i]

are defined by the use of four elementary functions. The passage from i to i+1 is obtained

by the dynamics of Φ2(t) = 2
√

t/(1 + t), only.

Figures 18 and 19 show the graphs of B2[K, 2i](t) and b2[K, 2i](t) for i = 1, 2, 3, 4

near t = 0 with K = 2 and K = 1.5, respectively. The graphs of B2[K, 2i](t) coincide for

i = 3 and 4 in both cases.
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In Figure 20 one may see the graphs of B2[K, 2i](t) and b2[K, 2i](t) for i = 1, 2, 3 and

K = 2.
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5. Applications. A few very simple applications of the theory presented in the

foregoing section can be obtained without any special constraints.

Theorem 1.15. For each ̺ ≥ 1 and f ∈ Q◦
R
(̺), there is a number K = K(̺) such

that

(5.1) 161−KxK ≤ f(x) ≤ 161−1/Kx1/K

for 0 ≤ x ≤ 1 and K(̺) ≤ ν(̺), where ν is given by (3.21).

P r o o f. The inequality (5.1) is an immediate consequence of Theorem 1.6 as well as

the properties (ii) and (ii′).

Theorem 1.16. For each ̺ ≥ 1 and f ∈ Q0
R
(̺),

(5.2) max
0≤t≤1

|f(t) − t| ≤ M(ν(̺)) ≤ Λ(ν(̺)).

Moreover , (5.2) is sharp for ̺ = 1.
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P r o o f. By Theorem 1.6,

max
0≤t≤1

|f(t) − t| ≤ max
0≤t≤1

max{
∣∣ΦK

(√
t
)2 − t

∣∣,
∣∣Φ1/K

(√
t
)2 − t

∣∣}

= max
0≤t≤1

[
ΦK

(√
t
)2 − t

]
= M(K) ≤ Λ(K)

with K = ν(̺), where Λ and ν are given by (2.37) and (3.21), respectively.

By Theorems 1.10 and 1.14 we have

Corollary 1.2. Given K ≥ 1, the sequences b2[K, 2i] and B2[K, 2i], i = 1, 2, . . . , of

elementary functions converge uniformly in [0, 1] to ΦK .

This gives a new, purely numerical, method to estimate ΦK and any function of it

with prescribed precision in terms of elementary functions.

From Theorem 1.3 in [P3], we have

Corollary 1.3. A bound for the error in the approximation of ΦK by B2[K, 2i] can

be expressed in the form of the inequality

max
0≤t≤1

{B2[K, 2i](t) − ΦK(t)} ≤ max{0.12i/K , 3 · 0.12i+1},

which holds for every i ≥ 1. The sequence of functions b2[K, 2i] converges to ΦK more

slowly; cf. Figures 18–20.

For every 0 ≤ t < 1, n = 2, 3, . . . , and K, L > 0, define

(5.3) λn[K, L](t) =
ΦK,n(t)

Φ∗
L,n(t)

.

The function λn[K, L] satisfies the functional identities

λn[K, L](ΦM,n(t)) = λn[KM, LM ](t)(5.4)

and

λn[K, L](Φ∗
M,n(t)) =

1

λn[M/L, M/K](t)
.(5.5)

By Theorem 1.10, Corollary 1.2 and (4.23), the inequalities

(5.6)
bn[K, M ](t)

Φ∗
1,n(bn[L, M ](t))

≤ λn[K, L](t) ≤ Bn[K, M ](t)

Φ∗
1,n(Bn[L, M ](t))

hold for every 0 ≤ t < 1, K, L ≥ 1 and M > 0.

In connection with the study of quasisymmetric functions on the real line [LV] and the

unit circle [Kr1], the distortion function λ(K) introduced by Lehto, Virtanen and Väisälä

(see [LV]) has found some applications. A generalization of λ(K) introduced by S. Agard

[Ag], namely λ(K, t), has been studied by M. K. Vamanamurthy and M. Vuorinen [VV].

We have

λ2[K, K](t)2 = λ(K, t)(5.3′)

and

λ2[K, K]
(
1
/√

2
)2

= λ(K).
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Setting M = 4 in (5.6) we get

(5.7)
(1/(1 − t))K [

(
1 +

√
t
)K −

(
1 −

√
t
)K

]4

8[
(
1 +

√
t
)2K

+
(
1 −

√
t
)2K

]

≤ λ(K, t) ≤ (2/(1 − t))K [
(
1 +

√
t
)K − 21−K

(
1 −

√
t
)K

]4

16[
(
1 +

√
t
)2K

+ 41−K
(
1 −

√
t
)2K

]
.

By (5.6) and Theorem 1.14 one can see that λ2[K, L](t) may be approximated by ele-

mentary functions.

R e m a r k 1.10. Setting n = 2, M = 1 and t = 1/
√

2 in (5.4) and in (5.5) one may see

that the well-known properties of the classical function λ (cf. [LV]) follow immediately.

Figures 21–23 show the approximation of λ2[1.5, 1.5](t), λ(K) and 1/λ[1.5, 1.5](t)

obtained from (5.6). The graphs obtained by using B2[K, 2i], i = 1, 2, 3, coincide.
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Taking advantage of (4.20) we improve the inequality (ix) of Theorem 1.2 and obtain
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Theorem 1.17. For each K ≥ 1,

(5.8) max
0≤t≤1

[ΦK(t) − t] ≤ B2[K, 4](t0) − t0,

where t0 is such that B′
2[K, 4](t0) = 1.

P r o o f. First we show that B2[K, 4] is concave. To this end, let us differentiate

B2[K, 4](t) with respect to t, 0 < t < 1. We obtain

B′
2[K, 4](t)

= 23−KK
(1 − t)K−1

[(
1 +

√
t
)K

+ 21−K
(
1 −

√
t
)K]2

· 1√
t
· 1 − 21−K

((
1 −

√
t
)/(

1 +
√

t
))K

1 + 21−K
((

1 −
√

t
)/(

1 +
√

t
))K

.

Introducing x =
(
1 −

√
t
)/(

1 +
√

t
)

and considering

f(x) =
1 + x

1 − x
· 1 − 21−KxK

1 + 21−KxK
, 0 < x < 1,

we can see that

(5.9)
d

dx
log f(x) =

2

1 − x2
− 21−KKxK−1 2

1 − 41−Kx2K
≥ 0

for 0 < x < 1 and K ≥ 1.

We shall prove that

(5.10) 1 − 41−Kx2K ≥ 21−KKxK−1(1 − x2) for 0 ≤ x ≤ 1 and K ≥ 1.

Note that for K = 1 equality occurs in (5.10). Since

∂1 =
∂

∂K
(1 − 41−Kx2K) = −8

(
x

2

)2K

log
x

2
> 0

for 0 < x ≤ 1 and K ≥ 1, and

∂2 =
∂

∂K
(21−KKxK−1(1 − x2)) =

(
x

2

)K−1

(1 − x2)

(
1 + K log

x

2

)
≤ 0

for 0 < x < 2/e and K ≥ 1, the inequality (5.10) remains true for 0 ≤ x ≤ 2/e and

K ≥ 1.
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Let 2/e ≤ x ≤ 1 and 1 ≤ K ≤ 3/2. Then

8

(
x

2

)2K

≥ 8

eK+1

(
x

2

)K−1

≥ 8

e5/2

(
x

2

)K−1

≥
(

x

2

)K−1(
1 − 4

e2

)
≥

(
x

2

)K−1

(1 − x2)

and

(5.11) − log
x

2
> 1 + K log

x

2
⇔ (K + 1) log

x

2
< −1.

Thus ∂1 − ∂2 ≥ 0 for 2/e ≤ x ≤ 1 and 1 ≤ K ≤ 3/2. Hence (5.10) holds for 2/e ≤ x ≤ 1

and 1 ≤ K ≤ 3/2.

Suppose now that K > 3/2 and 0 < x ≤ 1. Then

(5.12) 1 + K log
x

2
≤ 1 + K log

1

2
≤ 1 + log

1

23/2
< 0,

and thus ∂2 < 0 for K ≥ 3/2. In the proof of Theorem 1.2 it is shown that the left-hand

ratio of B′
2[K, 4](t) is decreasing. This fact, together with our considerations on f , shows

that B2[K, 4] is concave, and our proof is complete.

II. Quasihomographies of a circle

1. Introduction. The main purpose of this chapter is to introduce a new and, as

will be shown here, very flexible characterization of the boundary automorphisms of K-qc

automorphisms of a disc on C. Before embarking on it, it is perhaps of interest to indicate

that the boundary function of a qc automorphism of a Jordan domain D in C can be

singular. This is a remarkable feature of these boundary automorphisms. Using more

subtle tools P. Tukia ([T1], [T3]) succeeded in showing that these boundary functions are

even worse, i.e., they do not preserve sets of Hausdorff dimension 1.

On the contrary, several shortcomings of qs functions form a considerable difficulty,

which is not so much natural for boundary functions of qc automorphisms of a given

Jordan domain D in C.

We overcome these obstacles by using the original boundary condition (cf. [Le, p. 31])

without any simplification, assuming only that the domain D is bounded by a circle Γ

in C.

The very special position of circles on C with respect to the boundary value problem

for K-qc automorphisms ensures simplicity and efficiency in our research at this stage.

Given a Jc Γ on C, let D and D∗ be the complementary domains. Further, let FD(K)

and FD∗(K) be the classes of all K-qc automorphisms of D and D∗, respectively. These

classes are equivalent by conformal reflection in Γ for every K ≥ 1 if and only if Γ is a

circle on C. Therefore, assuming that Γ is a circle on C, the boundary value problem

for automorphisms in FD(K) or FD∗(K), K ≥ 1, may be regarded simultaneously as the

boundary value problem of automorphisms in

(1.1) FΓ (K) := {F ∈ FC̄(K) : F (Γ ) = Γ}.

2. Introduction to quasihomographies. Recall that in 1853 Möbius initiated the

study of an equivalent class of geometrical transformations, which he called Kreisver-
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wandtschaften. Other names are homographies, homographic transformations, fractional

linear transformations and Möbius transformations; cf. [Hl] and [SZ]. It is worth ex-

plaining that we cannot use the names quasi-Möbius or almost Möbius for they have

already been reserved for other classes of mappings introduced by J. Väisälä [Vä1] and

D. H. Hamilton [Ha], respectively.

Suppose that Γ is a circle on the extended complex plane C, i.e., a stereographic

projection of a circle on the sphere

B = {(x, y, u) : x2 + y2 + u2 − u = 0}.
Then C \ Γ = D ∪ D∗, where D and D∗ are the discs on C complementary to Γ .

Suppose that z1, z2, z3, z4 is an ordered quadruple of distinct points on Γ , and consider

the expression

(2.1) [z1, z2, z3, z4] =

{
z3 − z2

z3 − z1
:

z4 − z2

z4 − z1

}1/2

.

This expression is invariant under homographies and its values range over (0, 1). Further-

more,

[z1, z2, z3, z4]
2 = 1 − [z2, z3, z4, z1]

2

by Ptolemy’s theorem; cf. [Vo]. In view of the invariance of (2.1) under homographies, we

may replace any circle Γ of the extended complex plane C by any other. So, if necessary,

without any loss of generality, we may confine ourselves to the circle Γ = R or Γ = T .

Now, one can state

Theorem 2.1. Suppose that Γ is an arbitrary circle on C and that F is an automor-

phism of FΓ (K), K ≥ 1. Then, for any distinct points z1, z2, z3, z4 ∈ Γ ,

(2.2) Φ1/K([z1, z2, z3, z4]) ≤ [f(z1), f(z2), f(z3), f(z4)] ≤ ΦK([z1, z2, z3, z4]),

where f = F |Γ .

P r o o f. Let F be a K-quasiconformal mapping of the upper half-plane U and let x1,

x2, x3, x4 be distinct points of Γ = R. Then the upper half-plane together with these

points forms a quadrilateral D = U(x1, x2, x3, x4) mapped by F onto D′ = U(f(x1), f(x2),

f(x3), f(x4)), where f = F |R̄. By the definition of K-quasiconformal mappings,

(2.3)
1

K
M(D) ≤ M(D′) ≤ KM(D).

Let H1 and H2 be homographies of the upper half-plane onto itself such that H1(x4) =

H2(f(x4)) = ∞. Then

M(D) = M(H1(D)) =
2

π
µ

(√
H1(x3) − H1(x2)

H1(x3) − H1(x1)

)
(2.4)

=
2

π
µ([H1(x1), H1(x2), H1(x3),∞]) =

2

π
µ([x1, x2, x3, x4]),

and similarly,

(2.4′) M(D′) =
2

π
µ([f(x1), f(x2), f(x3), f(x4)]).
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Substituting these expressions into (2.3), we obtain

(2.5)
1

K
µ([x1, x2, x3, x4]) ≤ µ([f(x1), f(x2), f(x3), f(x4)]) ≤ Kµ([x1, x2, x3, x4]).

Composing (2.5) with µ−1 we arrive at (2.2); see also [Z1]. The proof is complete.

Suppose now that Γ is a circle on C. Then there is a homography H mapping Γ

onto R and H ◦ F ◦ H−1 ∈ FR̄(K) if and only if F ∈ FΓ (K).

Let us give the following

Definition. Suppose that Γ is a circle on C. By AΓ (K) we denote the family of all

sense-preserving automorphisms f of Γ such that (2.2) is satisfied for any distinct points

z1, z2, z3, z4 ∈ Γ with a given constant K ≥ 1. A function f from the class AΓ (K) is said

to be a K-quasihomography (K-qh) of Γ . Further,

K(f) = min{K : f ∈ AΓ (K)}
is called the maximal dilatation of f .

Bolow we present some basic properties of K-qh. Theorems 2.2 and 2.3 follow imme-

diately from (i) of Section I.2 and the definition of AΓ (K).

Theorem 2.2. For every circle Γ on C, and K1, K2 ≥ 1, if f1 ∈ AΓ (K1) and

f2 ∈ AΓ (K2), then f1 ◦ f2 ∈ AΓ (K1K2).

Theorem 2.3. For every circle Γ on C, and K ≥ 1, if f ∈ AΓ (K), then f−1 ∈
AΓ (K).

Theorem 2.4. For arbitrary circles Γ1, Γ2 in C, there exists a homography H such

that

(i) H(Γ1) = Γ2;

(ii) for each K ≥ 1 and f ∈ AΓ1
(K),

(2.6) SH(f) := H ◦ f ◦ H−1 ∈ AΓ2
(K),

(2.6′) SH(AΓ1
(K)) = AΓ2

(K).

P r o o f. The condition (i) is obvious, while (ii) is a consequence of the fact that each

homography preserves the cross-ratio.

Theorem 2.5. For any circle Γ on C, a function f belongs to the class AΓ (1) if and

only if f is a homography mapping Γ onto itself.

P r o o f. Assume first that f ∈ AΓ (1). By Theorem 2.4 we can reduce our proof to

the case Γ = R. Then there exists a homography h0 : R → R such that h0(f(0)) = 0,

h0(f(1)) = 1 and h0(f(∞)) = ∞. Since h0 ◦ f ∈ AR̄(1), we have

[x, 0, 1,∞]2 =
1

1 − x
= [(h0 ◦ f)(x), (h0 ◦ f)(0), (h0 ◦ f)(1), (h0 ◦ f)(∞)]2

=
1

1 − (h0 ◦ f)(x)
for x < 0.

By this argument, x = (h0 ◦ f)(x). For 0 < x < 1,

[0, x, 1,∞]2 = 1 − x = 1 − (h0 ◦ f)(x),
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and hence x = (h0 ◦ f)(x). For x > 1,

[0, 1, x,∞]2 =
x − 1

x
=

(h0 ◦ f)(x) − 1

(h0 ◦ f)(x)
,

and hence again x = (h0 ◦ f)(x).

By continuity, (h0 ◦ f)(x) = x for each x ∈ R, and thus f = h−1
0 is a homography.

The reverse implication is obvious since every homography preserves the cross-ratio

of each ordered quadruple of distinct points z1, z2, z3, z4 ∈ Γ . The proof is complete.

Problems of the kind presented in Theorem 2.4 were investigated by P. Tukia [T2]

and A. Hinkkanen ([Hi1], [Hi2]) while working with K-qc mappings and ̺-qs functions

of R, respectively.

3. Quasihomographies and quasisymmetric functions on the real line. Beur-

ling and Ahlfors [BA] showed that the boundary values of the class of all K-qc normalized

(F (∞) = ∞) automorphisms F of U can be represented uniformly by functions of the

class QR(̺) with ̺ = λ(K), where the function λ is defined in (5.3′) of Chapter I. Ob-

viously, the study of the function space QR(̺) means the study of the boundary values of

normalized K-qc automorphisms of U . By using the notion of ̺-qs functions it has been

shown (see [Ke]) that

∗ the theorem on removable singularities for K-qc mappings cannot be extended to

boundary automorphisms. Even when a given f is ̺-qs in the vicinity of a singular

point x0, it does not necessarily have to be a removable point for f ;

∗ in contrast to the reflection principle for K-qc mappings, the qs constant of the

reflected ̺-qs function may increase;

∗ every ̺-qs function f mapping (0, 1) onto itself can be extended to a ˜̺-qs function

on the real line and ˜̺ ≤ 28̺4, which is in contrast with the extension theorem for

mappings of FD,∆(K), which assumes that ∂D must be a Q-quasicircle in order

to guarantee an extension of functions of FD,∆(K) to K̃-qc automorphisms of C,

where K̃ = K̃(K, Q);

∗ the class of ̺-qs functions that are differentiable infinitely many times on an interval

(a, b) is dense in the class of ̺-qs functions on (a, b), whereas the continuously

differentiable K-qc mappings of a domain D are known to be dense in the class of

K-qc mappings of D;

∗ for each ̺ > 1, each p > 1, and each compact set E ⊂ R of positive measure, there

exists a function g, ̺-qs on R, such that
T
E

(g′(x))p dx = ∞, which contrasts with

the local p-integrability of the Jacobian of a given K-qc mapping of a domain D on

C;

∗ a strictly increasing continuous function f can be locally ̺-qs but there does not

necessarily exist any constant ̺∗ ≥ 1 such that f is globally ̺∗-qs, which contrasts

with the theorem saying that locally K-qc mappings are also globally K-qc.

Notice that not always ̺(f−1) = ̺(f) nor ̺(f ◦g) ≤ ̺(f)̺(g). For example ̺(x2) = 3,

whereas ̺(x1/2) =
√

2+1 for x > 0. Similarly, ̺(x4) = 15, whereas ̺(x2)̺(x2) = 9. These
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and other related consequences are results of the deformation (BA) only and their study

does not seem to be very much motivated by topics of K-qc theory.

In the opposite direction, there is some evidence that boundary functions of K-qc

automorphisms are more rigid in some respects when the mappings are themselves defined

in a given Jordan domain D on C.

The following two theorems concern the relationship between the classes AR̄(K) and

QR(̺). Let

(3.1) AR(K) = {f ∈ AR̄(K) : f(∞) = ∞}.
Theorem 2.6. For each K ≥ 1, there exists a constant ̺ = ̺(K) such that

(3.2) AR(K) ⊂ QR(̺) with ̺ = λ(K).

Moreover , the constant λ(K) defined by (5.3′) of Chapter I cannot be lowered.

P r o o f. Suppose that f ∈ AR(K), K ≥ 1. Then f is a strictly increasing and conti-

nuous function in R. Setting z1 = x − t, z2 = x, z3 = x + t and z4 = ∞, t > 0, we see

that (2.2) takes the form

(3.3) Φ1/K

(
1√
2

)
≤

(√
1 +

f(x) − f(x − t)

f(x + t) − f(x)

)−1

≤ ΦK

(
1√
2

)
,

from which

Φ1/K

(
1
/√

2
)2

1 − Φ1/K

(
1
/√

2
)2 ≤ f(x + t) − f(x)

f(x) − f(x − t)
≤ ΦK

(
1
/√

2
)2

1 − ΦK

(
1
/√

2
)2 .

Hence, by (iii) of Chapter I and by the functional identity

ΦK

(
1
/√

2
)2

/Φ1/K

(
1
/√

2
)2

= λ(K)

we complete the proof; see (5.3′) in Chapter I and [LV].

Theorem 2.7. For each ̺ ≥ 1, there exists a constant K = K(̺) such that

(3.4) QR(̺) ⊂ AR(K) with K ≤ χ(ν(̺)),

where χ and ν are given by (2.7) and (3.21) in Chapter I, respectively. Moreover , this

estimate is asymptotically sharp for ̺ = 1.

P r o o f. Let f ∈ QR(̺), 1 ≤ ̺ < ∞, be an arbitrary ̺-qs function of R. Let

x1, x2, x3, x4 ∈ R be a positively ordered quadruple of distinct points with yi = f(xi),

i = 1, 2, 3, 4.

Suppose first that x4 = f(x4) = ∞. This means that we may confine ourselves to

the case of three points x1 < x2 < x3. Let L1 and L2 be linear functions such that

L1(0) = x1, L1(1) = x3, L2(y1) = 0 and L2(y3) = 1. Since g = L2 ◦ f ◦L2 ∈ Q0
R
(̺) there

exists, by Theorem 2.4, a constant K = K(̺) such that g(t) ≤ ΦK

(√
t
)2

, 0 ≤ t ≤ 1.

Substituting t for (x2 − x1)/(x3 − x1), we get

(3.5) ΦK

(√
x2 − x1

x3 − x1

)2

≥ g(t) =
g(t) − g(0)

g(1) − g(0)
=

f(x2) − f(x1)

f(x3) − f(x1)
=

y2 − y1

y3 − y1
.
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In a similar way it can be shown that

(3.6) ΦK

(√
x3 − x2

x3 − x1

)2

≥ f(x3) − f(x2)

f(x3) − f(x1)
=

y3 − y2

y3 − y1
.

Since [x1, x2, x3, x4]
2 = (x3 − x2)/(x3 − x1) and [y1, y2, y3, y4]

2 = (y3 − y2)/(y3 − y1), we

have

(3.7) [y1, y2, y3, y4] ≤ ΦK([x1, x2, x3, x4])

and

(3.8) 1 − [y1, y2, y3, y4]
2 =

y2 − y1

y3 − y1
≤ ΦK

(√
x2 − x1

x3 − x1

)2

.

Thus, (3.7), (3.8), together with (iii) of Chapter I, give the inequality

[y1, y2, y3, y4] ≥
(

1 − ΦK

(√
x2 − x1

x3 − x1

)2)1/2

(3.9)

= Φ1/K

(√
x3 − x2

x3 − x1

)
= Φ1/K([x1, x2, x3, x4]).

The inequalities (3.7) and (3.9), with the rule of cyclic permutation of the positively

ordered quadruple of distinct points x1, x2, x3, x4, give the double inequality (2.2),

which holds for a quadruple such that one of the points is at infinity.

Suppose now that x1 < x2 < x3 < x4 are arbitrary points of R. Let a2 =

(x2 − x1)/(x3 − x1) and b2 = (x4 − x3)/(x4 − x2). Using (3.5), (3.6), (iii) of Chapter I

and Theorem 1.1, one can see that there exists K ′ ≤ χ(K) such that

[y1, y2, y3, y4]
2 = 1 − y2 − y1

y3 − y1
· y4 − y3

y4 − y2
≥ 1 − ΦK(a)2ΦK(b)2(3.10)

≥ 1 − ΦK′(ab)2 = Φ1/K′

(√
1 − a2b2

)2
= Φ1/K′([x1, x2, x3, x4])

2

and

[y1, y2, y3, y4]
2 ≤ 1 − Φ1/K(a)2Φ1/K(b)2 ≤ 1 − Φ1/K′(ab)2(3.11)

= ΦK′

(√
1 − a2b2

)2
= ΦK′([x1, x2, x3, x4])

2,

where χ is given by (2.7) of Chapter I. Using (3.10), (3.11) and cyclic permutation of x1,

x2, x3, x4, we arrive at (3.4) with K ′ instead of K.

Both the cases considered, together with estimates (3.20) and (3.21), give the desired

result. Since ν and χ are asymptotically sharp at ̺ = 1, the estimate (3.4) is asymptoti-

cally sharp for ̺ = 1. The proof is complete.

Theorem 2.8. Let Γ be an arbitrary circle on C, and let D, D∗ be its complementary

domains. For each K ≥ 1 and f ∈ AΓ (K), there exists a K∗-qc automorphism Ff ∈
FΓ (K∗) such that Ff |Γ = f and K∗ depends only on K.

P r o o f. Suppose that Γ = R, and f ∈ AR(K). Using the explicit Beurling–Ahlfors

extension operator

Ff (z) =
1

2

1\
0

[f(x + ty) − f(x − ty)] dt + i

1\
0

[f(x + ty) − f(x − ty)] dt,
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where z = x + iy, one may find that Ff ∈ FR(K∗), where K∗ = K∗(K) is such that

K∗(1) = 1; see [RZ2].

Suppose now that f ∈ AR̄(K). There exists a homography h such that h◦f ∈ AR(K).

Hence, Fh◦f ∈ FR(K∗) and h−1 ◦ Fh◦f is the desired mapping of the same maximal

dilatation.

To cover the case of an arbitrary circle Γ in C one can use Theorem 2.4 and the fact

that the composition of a K-qc mapping with a homography does not affect its maximal

dilatation. The proof is complete.

It seems to be more natural when working with a given boundary function f ∈ AT (K)

to use the harmonic Douady–Earle extension operator [DE], which is invariant under

AT (1). The problem is that this extension has neither an explicit formula nor a nice qc

order estimation; see [DE], [LP], [P1] and [SZ].

4. Quasihomographies and quasisymmetric functions on the unit circle. In

the case Γ = T we may easily notice that the classes AT (K) and QT (̺) differ much more

than in the case Γ = R, since we cannot obtain QT (̺) from AT (K) by setting points

z1, z2, z3, z4 at special positions on T , i.e. one cannot reduce AT (K) to QT (̺) for any

K ≥ 1. Also, the notion of quasisymmetry of T is more rigid than quasisymmetry of R;

see [Z4].

To see the problem, look at the following

Example 2.1. Consider the sequence of homographies {hn} mapping the unit disc ∆

onto itself such that

hn(1) = 1, hn(−1) = −1 and hn(i) = eiπn/(n+1), n = 1, 2, . . .

For each n = 1, 2, . . . we have hn ∈ AT (1), and

|arc(hn(1), hn(i))|
|arc(hn(i), hn(−1))| = n → ∞.

Thus there does not exist any finite ̺ ≥ 1 such that hn ∈ QT (̺) for n = 1, 2, . . . Hence

AT (1) \ QT (̺) 6= ∅
for each ̺ ≥ 1. This implies that

F∆(1)|T 6⊂ QT (̺)

for any ̺ ≥ 1 and means that the family F∞
∆ |T cannot be represented uniformly by

functions from Q∞
T =

⋃
̺≥1 QT (̺).

We begin with proving

Theorem 2.9. For each K ≥ 1 and f ∈ AT (K), there exists a constant ̺ = ̺(f, K)

such that f ∈ QT (̺) and

(4.1) ̺ ≤ λ(K) cot(ϕf/4)2,

where

(4.2) ϕf = min
z∈T

min

{
arg

f(−z)

f(z)
, 2π − arg

f(−z)

f(z)

}
.
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P r o o f. Suppose that z1, z2, z3, z4 are distinct points of T . Then

(4.3)
[z1, z2, z3, z4]

2

[z2, z3, z4, z1]2
=

|z3 − z2||z4 − z1|
|z4 − z3||z2 − z1|

.

For f ∈ AT (K), let wi = f(zi) and ζi = h(wi), i = 1, 2, 3, 4, where h is a homography

mapping T onto itself such that ζ2 = −ζ4. Consider distinct points z1, z2, z3, z4 ∈ T such

that z4 = −z2 and |z2 − z1| = |z3 − z2|. Then [z1, z2, z3, z4] = [z2, z3, z4, z1]. By the

definition of K-qh, h ◦ f ∈ AT (K) and, because of (2.2),

(4.4)
1

λ(K)
≤ |ζ3 − ζ2||ζ4 − ζ1|

|ζ4 − ζ3||ζ2 − ζ1|
≤ λ(K),

where λ(K) = ΦK

(
1
/√

2
)2

/Φ1/K

(
1
/√

2
)2

.

Let

(4.5) α = arg
ζ2 − ζ4

ζ1 − ζ4
and β = arg

ζ3 − ζ4

ζ2 − ζ4
, 0 < α, β <

π

2
.

Then

(4.6)
|ζ3 − ζ2||ζ4 − ζ1|
|ζ4 − ζ3||ζ2 − ζ1|

=
tanβ

tan α

and

(4.7)
1

λ(K)
≤ tan β

tan α
≤ λ(K).

Now, by the concavity of arctanx for x ≥ 0 and the Jensen inequality, we have

(4.8) β ≤ arctan(λ(K) tan α) ≤ λ(K) arctan(tanα) = λ(K)α

and similarly α ≤ λ(K)β. Thus

(4.9) 1/λ(K) ≤ β/α ≤ λ(K).

Let 〈z1, z2〉 = {z ∈ T : arg z1 < arg z < arg z2} and let |〈z1, z2〉| = |arg z2 − arg z1| stand

for its measure. Then, for every subarc η of T , we obtain

(4.10)
1 − |a|
1 + |a| |η| ≤ |h−1(η)| =

\
η

|(h−1)′(z)| |dz| ≤ 1 + |a|
1 − |a| |η|,

where a = |h(0)|. Since f = h−1 ◦ (h ◦ f), we have

(4.11)
|〈w2, w3〉|
|〈w1, w2〉|

=
|h−1(〈ζ2, ζ3〉)|
|h−1(〈ζ1, ζ2〉)|

≤
(

1 + |a|
1 − |a|

)2 |〈ζ2, ζ3〉|
|〈ζ1, ζ2〉|

≤ λ(K) cot

(
ϕf

4

)2

,

where ϕf is given by (4.2) (cf. [Vo], p. 13). This completes our proof.

The constant λ(K) cot(ϕf/4)2 may depend only on K when we confine ourselves to

the normalized K-qh of T .

Let

(4.12) A◦
T (K) = {f ∈ AT (K) : f(z) = z, z3 = 1}.

Then we have
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Lemma 2.1. For each K ≥ 1, f ∈ A◦
T (K) and z ∈ T ,

(4.13) |f(z) − z| ≤ |arg f(z) − arg z| ≤ 4√
3
M(K),

where

(4.14) M(K) := max
0≤t≤1

[
ΦK

(√
t
)2 − t

]
= 2Φ√

K

(
1/

√
2

)2 − 1

is such that

(4.15) M(K) = M(1/K) ≤ Λ(K);

see Chapter I, Theorem 1.3.

P r o o f. Without any loss of generality, suppose that z ∈ T is such that 0 < arg z <

2π/3 and α = arg z − π/3, |α| ≤ π/3. If zl = e2πi(l−1)/3, l = 1, 2, 3, then

(4.16) [z1, z, z2, z3]
2 =

1 −
√

3 tan(α/2)

2
.

For f ∈ A◦
T (K) and β = arg f(z) − π/3, we have

Φ1/K

((
1 −

√
3 tan(α/2)

)1/2

√
2

)2

≤ 1 −
√

3 tan(β/2)

2
(4.17)

≤ ΦK

((
1 −

√
3 tan(α/2)

)1/2

√
2

)2

.

On the other hand,

(4.18) |f(z) − z| = 2 sin
|β − α|

2
≤ |β − α| ≤ 2 tan

|β − α|
2

≤ 2

∣∣∣∣ tan
β

2
− tan

α

2

∣∣∣∣.

Then, by (4.15) and (4.17), we have

(4.19) |f(z) − z| ≤ 4√
3

max
0≤t≤1

max
{∣∣ΦK

(√
t
)2 − t

∣∣,
∣∣Φ1/K

(√
t
)2 − t

∣∣} =
4√
3
M(K),

which completes the proof.

Theorem 2.10. For each K ≥ 1, there exists a constant ̺ ≥ 1 such that A◦
T (K) ⊂

Q◦
T (̺) and

(4.20) ̺ ≤





λ(K)

(
1 + tan

((
2
/√

3
)
M(K)

)

1 − tan
((

2
/√

3
)
M(K)

)
)2

for 1 ≤ K ≤ K0,

1
3λ(K)16K−1

(
3 + 2

√
2

)2K
for K > K0,

with Λ given by Theorem 1.3, and K0, satisfying 1.326 < K0 < 1.395 and

(4.21) 1 + tan

(
2√
3
Λ(K0)

)
=

3 + 2
√

2√
3

(
1 − tan

(
2√
3
Λ(K0)

))
.

P r o o f. With the notations of Lemma 2.1 we have for z = eiπ/3, by (4.17) and (iii)

of Chapter I,

(4.22)

∣∣∣∣arg f(z) − π

3

∣∣∣∣ = β ≤ 2 arctan
(
M(K2)

/√
3
)
.



Quasihomographies in the theory of Teichmüller spaces 51

The inequality (4.22) remains the same for z = eπi and z = e5πi/3. Hence

(4.23) ϕf > min

{
2π

3
,
2π

3
− 4 arctan

(
M(K2)/

√
3
)}

=
2π

3
− 4 arctan

(
M(K2)

/√
3
)
.

If r =
(
1 −

√
3 tan α

2

)
/2, then

(4.24) tan(α/2) = (1 − 2r)/
√

3.

Setting β = π/3 − α, we get

(4.25) 1 −
√

3 tan
β

2
=

2 − 4r

2 − r
.

The properties (ii)–(iv) in Chapter I yield

cot

(
ϕf

4

)2

<

(√
3 + M(K2)/

√
3

1 − M(K2)

)2

(4.26)

=
1

3

(
1 + ΦK

(
1
/√

2
)2

1 − Φ2
K

(
1
/√

2
)

)2

<
1

3
Φ1/K

(√
2 − 1√
2 + 1

)−2

=
1

3
Φ1/K

(
1

3 + 2
√

2

)−2

≤ 1

3

(
41−K

(
1

3 + 2
√

2

)K)−2

=
1

3
16K−1

(
3 + 2

√
2

)2K
.

Applying the above estimate to (4.1) one obtains the case K > K0 in (4.20). This result

is not sharp since for K = 1 the upper bound is
(
3 + 2

√
2
)2

/3.

To get a sharp estimate, we have to use Lemma 2.1. By (4.13) we have

ϕf > min
z∈T

(π − 2|arg f(z) − arg z|) ≥ π − 2
4√
3
M(K) = π − 8√

3
M(K),

thus

(4.27) cot

(
ϕf

4

)2

≤
(

1 + tan
(
2
/√

3M(K)
)

1 − tan
(
2
/√

3M(K)
)
)2

<

(
1 + tan

(
2
/√

3Λ(K)
)

1 − tan
(
2
/√

3Λ(K)
)
)2

Now, the case 1 ≤ K ≤ K0 in (4.20) follows by applying (4.27) to (4.1), where K0 satisfies

the equation

1 + tan
((

2
/√

3
)
Λ(K)

)

1 − tan
((

2
/√

3
)
Λ(K)

) = min
1≤K<∞

4K−1

(
3 + 2

√
2

)K

√
3

=
3 + 2

√
2√

3
.

This makes our proof complete.

5. Quasisymmetric functions as quasihomographies. An opposite inclusion is

presented in

Theorem 2.11. For each ̺ ≥ 1, there exists a constant K ≥ 1 such that QT (̺) ⊂
AT (K) and

(5.1) K ≤
{

χ(ν(2C2
̺ − 1)) for 1 ≤ ̺ ≤ ̺0,

χ(ν(M̺ − 1)) for ̺ > ̺0,
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where ̺0 = (50π + 1)/(50π − 1), χ and ν are described by (2.7) of Chapter I and (3.21)

of Chapter I, respectively,

(5.2) C̺ =
64ν(̺)−1

(1 − (π/3)(̺ − 1)/(̺ + 1))ν(̺)
·

√
̺ + 1 +

√
2π(̺ − 1)

√
̺ + 1 − 4.1

√
2π(̺ − 1)

,

and

(5.3) M̺ = 1
2π247ν(̺)−4.

P r o o f. Let f ∈ QT (̺), 1 ≤ ̺ < ∞. Without any loss of generality, we may assume

that f(1) = 1 and f(−1) = −1; cf. [K2]. Let h(z) = i(1−z)/(1+z), h(T ) = R. For every

symmetric triple a − t, a, a + t ∈ R with t > 0, we have

(5.4) [∞, a − t, a, a + t]2 = 1
2 .

For each quadruple of the form ∞, a−t, a, a+t, there exists a positively ordered quadruple

of distinct points z1, z2, z3, z4 ∈ T and positive numbers α, β, γ, δ such that z1 =

h−1(∞) = −1, z2 = h−1(a− t) = e2iα+iπ , z3 = h−1(a) = e2i(α+β)+iπ and z4 = h−1(a+ t)

= e2i(α+β+γ)+iπ. Moreover, α + β + γ = π− δ. Thus, by the invariance of the cross-ratio

under homographies,

(5.5) [z1, z2, z3, z4]
2 =

sin β

sin(α + β)
· sin δ

sin(α + δ)
=

1

2
.

Without loss of generality we assume that α ≤ γ. Then α ≤ π/2. Let f(z2) = eiα′+iπ ,

f(z3) = e2i(α′+β′)+iπ and f(z4) = e2i(α′+β′+γ′)+iπ , where α′, β′, γ′ are positive and such

that there exists a positive δ′ for which α′ +β′ +γ′ = π−δ′. If g : R → R is an increasing

homeomorphism such that f(eix) = eig(x) and g is normalized (g(0) = 0, g(π) = π), then,

by a result of J. Krzyż [Kr2], g ∈ QR(̺) and

(5.6) |g(x) − x| ≤ π
̺ − 1

̺ + 1

for 0 ≤ x ≤ π.

We intend to show that for every 1 ≤ ̺ ≤ ̺0, where 2π(̺0 −1)/(̺0 +1) = 1/25, there

exists a constant C̺, 1 ≤ C̺ < ∞, such that

(5.7)
sin β′

sin(α′ + β′)
≥ 1

C̺
· sin β

sin(α + β)

for all admissible independent α, β and α′, β′ defined above. Assuming that ε2 = 2π ×
(̺ − 1)/(̺ + 1), 0 ≤ ε ≤ 1/5 < π/4, we will consider a few special cases:

(I) β < α + β ≤ ε;

(II) β ≤ ε < α + β < π − ε;

(III) ε ≤ β < α + β ≤ π − ε;

(IV) ε ≤ β ≤ π − ε ≤ α + β;

(V) π − ε ≤ β < α + β.
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(I) By (5.6), Theorem 1.6, and the inequality (ii) of Chapter I, there exists K ′,
1 ≤ K ′ ≤ ν(̺), where ν is given by (2.7) of Chapter I, such that

sin β′

sin(α′ + β′)
≥ β′

α′ + β′ ·
sin(ε + ε2)

ε + ε2
≥ Φ1/K′

(√
β

α + β

)2
sin(ε + ε2)

ε + ε2
(5.8)

≥ 161−K′

(
β

α + β

)K′

sin(ε + ε2)

ε + ε2

≥ 161−K′

(
sin β

sin(α + β)

)K′(
sin ε

ε

)K′

sin(ε + ε2)

ε + ε2
.

Since α ≤ γ, we have |z2 − z4| ≥ 1
2 |z1 − z4|, and by (5.5) we see that

(5.9) sin(α + β) ≤ 4 sinβ.

Therefore,

(5.10)
sinβ′

sin(α′ + β′)
≥ 641−K′

(
sin ε

ε

)K′

sin(ε + ε2)

ε + ε2
· sin β

sin(α + β)
.

(II) Using (5.6) and (5.9) we have

(5.11) sin β ≥ 1
4 sin(α + β) ≥ 1

4 sin ε,

hence,

(5.12)
sin β′

sin β
≥ sin(β − ε2)

sinβ
= cos ε2 − cotβ sin ε2 ≥ cos ε2 − 4

sin ε2

sin ε

and

(5.13)
sin(α′ + β′)

sin(α + β)
≤ sin(ε + ε2)

sin ε
.

Therefore,

(5.14)
sinβ′

sin(α′ + β′)
≥

(
cos ε2 − 4

sin ε2

sin ε

)
sin ε

sin(ε + ε2)
· sin β

sin(α + β)
.

(III) It follows from (5.6) that

(5.15)
sinβ′

sin β
≥ sin(ε − ε2)

sin ε
,

and furthermore, by (5.13),

(5.16)
sin β′

sin(α′ + β′)
≥ sin(ε − ε2)

sin(ε + ε2)
· sin β

sin(α + β)
.

(IV) In this case we can see that γ + δ ≤ ε, and since α ≤ γ, it follows that α <

γ + δ ≤ ε, hence α + γ + δ < 2ε. Using the same arguments as in (I), we conclude that

sin(γ′ + δ′)

sin(γ′ + δ′ + α′)
≤ γ′ + δ′

γ′ + δ′ + α′ ·
2ε + ε2

sin(2ε + ε2)
(5.17)

≤ ΦK′

(√
γ + δ

γ + δ + α

)2
2ε + ε2

sin(2ε + ε2)
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≤ 161−1/K′

(
γ + δ

γ + δ + α

)1/K′

2ε + ε2

sin(2ε + ε2)

≤ 161−1/K′

(
sin(γ + δ)

sin(γ + δ + α)

)1/K′(
ε

sin ε

)1/K′

2ε + ε2

sin(2ε + ε2)
.

Since α ≤ γ, we have |z1 − z3| ≥ 1
2 |z2 − z3|. Thus

(5.18) sin(α + β) ≥ 1
2 sin β.

Using (5.17) and (5.18), we get

sin β′

sin(α′ + β′)
=

sin(α′ + γ′ + δ′)

sin(γ′ + δ′)
(5.19)

≥ 32−1+1/K′

(
sin ε

ε

)1/K′

sin(2ε + ε2)

2ε + ε2
· sin β

sin(α + β)
.

(V) In this case we have γ + δ < α + γ + δ ≤ ε, and following (IV), we arrive at

(5.20)
sin β′

sin(α′ + β′)
≥ 32−1+1/K′

(
sin ε

ε

)1/K′

sin(ε + ε2)

ε + ε2
· sinβ

sin(α + β)
.

Hence, by (5.10), (5.14), (5.16), (5.19) and (5.20), we see that

(5.21)
sin β′

sin(α′ + β′)
≥ 1

CK′

· sin β

sin(α + β)

with

(5.22)
1

CK′

= min

{
1

C1
K′

,
1

C2
K′

,
1

C3
K′

,
1

C4
K′

,
1

C5
K′

}
= min

{
1

C1
K′

,
1

C2
K′

,
1

C3
K′

,
1

C4
K′

}
,

where Cl
K′ , l = 1, . . . , 5, are constants described by (5.10), (5.14), (5.16), (5.19) and

(5.20), respectively.

In a similar way we get

(5.23)
sin δ′

sin(α′ + δ′)
≥ 1

CK′

· sin δ

sin(α + δ)
.

Therefore, by (5.21), (5.23) and (5.5), we have the inequality

[f(z1), f(z2), f(z3), f(z4)]
2 =

sin β′

sin(α′ + β′)
· sin δ′

sin(α′ + δ′)
(5.24)

≥ 1

C2
K′

[z1, z2, z3, z4]
2 =

1

2C2
K′

for our quadruple z1, z2, z3, z4 ∈ T . Similar arguments give

[f(z2), f(z3), f(z4), f(z1)]
2 =

sinγ′

sin(β′ + γ′)
· sin α′

sin(β′ + α′)
(5.24′)

≥ 1

C2
K′

[z2, z3, z4, z1]
2 =

1

C2
K′

(
1 − 1

2

)
=

1

2C2
K′

with the same points as in (5.24).
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Let F = h ◦ f ◦ h−1. Then F is a sense-preserving homeomorphism of R onto itself.

Moreover, by (5.24) and (5.24′),
(

F (a + t) − F (a)

F (a) − F (a − t)
+ 1

)−1

=
F (a) − F (a − t)

F (a + t) − F (a − t)
(5.25)

= [∞, F (a − t), F (a), F (a + t)]2

= [h ◦ f(z1), h ◦ f(z2), h ◦ f(z3), h ◦ f(z4)]
2

= [f(z1), f(z2), f(z3), f(z4)]
2 ≥ 1

2C2
K′

and similarly
(

F (a) − F (a − t)

F (a + t) − F (a)
+ 1

)−1

=
F (a + t) − F (a)

F (a + t) − F (a − t)
(5.25′)

= [F (a − t), F (a), F (a + t),∞]2

= [f(z2), f(z3), f(z4), f(z1)]
2 ≥ 1

2C2
K′

.

Using (5.25) and (5.25′), we see that

(5.26)
1

2C2
K′ − 1

≤ F (a + t) − F (a)

F (a) − F (a − t)
≤ 2C2

K′ − 1,

hence F ∈ QR(2C2
K′ −1). Now, by Theorem 2.7, we see that there exists K, 1 ≤ K < ∞,

such that F ∈ AR(K) and K ≤ χ(ν(2C2
K′ − 1)). Thus, for any distinct z1, z2, z3, z4 ∈ T ,

[f(z1), f(z2), f(z3), f(z4)]
2 = [F ◦ h(z1), F ◦ h(z2), F ◦ h(z3), F ◦ h(z4)]

2(5.27)

≤ ΦK([h(z1), h(z2), h(z3), h(z4)])
2

= ΦK([z1, z2, z3, z4])
2,

hence f ∈ AT (K) for 1 ≤ ̺ ≤ ̺0, where ̺0 = (50π + 1)/(50π − 1).

Now let ̺ > ̺0. If 0 < β′ < π/2, then

(5.28)
sin β′

sin(α′ + β′)
≥ 2

π
· β′

α′ + β′ .

If π/2 ≤ β′ < α′ + β′ < π, then

(5.29)
sin β′

sin(α′ + β′)
≥ 1.

By applying (5.6), Theorem 13 in [Z3], Theorem 1.6 and the inequality (ii) of Chapter I,

we see that there exists K ′, 1 ≤ K ′ < ν(̺), such that

(5.30)
sin β′

sin(α′ + β′)
≥ 2

π
· β′

α′ + β′ ≥
2

π
Φ1/K′

(√
β

α + β

)2

≥ 2

π
161−K′

(
β

α + β

)K′

.

We consider the following four possibilities:

(I′) 0 < β < α + β ≤ π/2;

(II′) 0 < β < π/4 and π/2 ≤ α + β < π;

(III′) π/4 ≤ β ≤ π/2 < α + β < π;

(IV′) π/2 ≤ β < α + β < π.
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(I′) In this case,

(5.31)
β

α + β
≥ 2

π
· sin β

sin(α + β)
.

(II′) In view of α ≤ π/2,

(5.32)
β

β + α
≥ 4

3
√

2π
· sinβ

sin(α + β)
.

(III′) By (5.18),

(5.33)
β

α + β
≥ 1

8
· sin β

sin(α + β)
.

(IV′) Again by (5.18),

(5.34)
β

α + β
≥ 1

2
≥ 1

4
· sin β

sin(α + β)
.

Since

(5.35) min

{
2

π
,

4

3
√

2π
=

1

8
,
1

8
,
1

4

}

we have, by (5.30),

(5.36)
sin β′

sin(α′ + β′)
≥ 2

π
161−K′

(
1

8
· sinβ

sin(α + β)

)K′

.

In a similar way we can show that

(5.36′)
sin δ′

sin(δ′ + α′)
≥ 2

π
161−K′

(
1

8
· sin δ

sin(δ + α)

)K′

.

Following our considerations presented by (5.24), (5.24′), (5.25), (5.25′), and by (5.26)

with (5.36) and (5.36′), and Theorem 2.7, we see that F ∈ AR̄(K) and 1 ≤ K ≤
χ(ν(MK′ − 1)), where MK′ = 1

2π247K′−4.

Let us return to (5.22). For 0 ≤ ε ≤ ε0 = 1/5 we have

max

{
2ε + ε2

sin(2ε + ε2)
,

sin(ε + ε2)

sin ε cos ε2 − 4 sin ε2

}
≤ 1 + ε

1 − 4ε/ cos ε
≤ 1 + ε

1 − 4.1ε
.

Hence,

CK′ = max

{
64K′−1

(
ε

sin ε

)K′

ε + ε2

sin(ε + ε2)
,
sin(ε + ε2)

sin ε
· sin ε

sin ε cos ε2 − 4 sin ε2
,(5.37)

sin(ε + ε2)

sin(ε − ε2)
, 321−1/K′

(
ε

sin ε

)1/K′

2ε + ε2

sin(2ε + ε2)

}

≤ max

{
64K′−1

(
ε

sin ε

)K′

2ε + ε2

sin(2ε + ε2)
,

sin(ε + ε2)

sin ε cos ε2 − 4 sin ε2

}

≤ 64K′−1

(
ε

sin ε

)K′

1 + ε

1 − 4ε/cos ε
≤ 64K′−1

(
ε

sin ε

)K′

1 + ε

1 − 4.1ε

≤ 64K′−1 1
(
1 − 1

6ε2
)K′

1 + ε

1 − 4.1ε
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=
64K′−1

(1 − (π/3)(̺ − 1)/(̺ + 1))K′
·

√
̺ + 1 +

√
2π(̺ − 1)

√
̺ + 1 − 4.1

√
2π(̺ − 1)

.

Since χ(K ′) and ν(K ′) are increasing functions, we obtain the estimate (5.1) in view of

(5.2) and (5.3). This completes the proof of Theorem 2.11.

III. Distortion theorems for quasihomographies

1. Introduction. It is evident that the invariance of quasihomographies under com-

position with homographies is very challenging. Using this notion we prove a number of

distortion theorems on K-qh automorphisms of an arbitrary circle Γ in C. Pursuing this

idea and taking advantage of the fact that similarities linking the metric spaces (AΓ1
, dΓ1

)

and (AΓ2
, dΓ2

) can be achieved by the use of homographies, we obtain a quantitative es-

timate of dΓ (f(z1), f(z2)) depending on Γ and the qh constant K(f). A remarkable

feature of these distortion theorems for K-qh automorphisms is that they are all at least

asymptotically sharp for K = 1. Moreover, some of the obtained estimates are the best

or possess the best constants, which seems impossible to attain for ̺-qs functions.

The property that a family M ⊂ AΓ is closed with respect to AΓ (1) also gives a

topological characterization of K-qh automorphisms of a circle Γ in C.

The normal and compact sets of the metric space (AΓ , dΓ ) are characterized by de-

scribing sufficient conditions.

2. Similarities. Let AΓ be the family of all automorphisms of a circle Γ in C. It is

evident that (AΓ , ◦) is a group under composition. For f, g ∈ AΓ , we define

(2.1) dΓ (f, g) = sup
z∈Γ

d(f(z), g(z)),

where d is the spherical chordal metric defined by

(2.1′)
d(z, w) = |w − z|/

(√
1 + |z|2

√
1 + |w|2

)
, z, w ∈ C,

d(z,∞) = 1/
√

1 + |z|2, z, w ∈ C.

Let ÂΓ denote the family of functions f ∈ AΓ such that there exist distinct points

z1, z2, z3 ∈ Γ with

(2.2) d(zi, zj) = d(zj , zk) = d(f(zj), f(zk))

for i, j, k = 1, 2, 3.

Denote by Az1,z2,z3

Γ the subclass of ÂΓ indicated by fixing three distinct points

z1, z2, z3 ∈ Γ that remain fixed points of each automorphism f ∈ Az1,z2,z3

Γ .

Let

(2.3) A◦
T = Az1,z2,z3

T ,

where z3
i = 1, i = 1, 2, 3, and

(2.3′) A◦
R̄

= A
−1/

√
3, 1/

√
3,∞

R̄
.

The usual normalization for ̺-qs functions of R by fixing 0 and 1 does not work here

since A0,1,∞
R̄

6⊂ ÂR̄.
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Finally, for a circle Γ in C, let

(2.4) ÂΓ (K) = ÂΓ ∩ AΓ (K), A◦
Γ (K) = A◦

Γ ∩ AΓ (K), A∞
Γ =

⋃

K≥1

AΓ (K).

To have an explicit formula transforming results obtained for a subclass of ÂΓ1
(K)

onto results for the corresponding subclass of ÂΓ2
(K), we begin with

Lemma 3.1. Let Γ be a circle on C, and let S be a similarity of (AΓ , dΓ ) onto itself.

Then S is an isometry.

P r o o f. Suppose that Γ is a circle on C and that there is a constant c > 1 and a

similarity S mapping (AΓ , dΓ ) onto itself such that

dΓ (S(f), S(g)) = cdΓ (f, g)

for all f, g ∈ AΓ . If f 6= g, there exists n ∈ N such that

(2.5) dΓ (Sn(f), Sn(g)) = cndΓ (f, g) > 1.

This contradicts (2.1). If 0 < c < 1, we may consider S−1, whose constant is c−1. By

repeating the above argument we arrive at a contradiction again. The proof is finished.

Let

Tr := {z ∈ C : |z| = r }, Rt := {z ∈ C : Im z = t}.
Using this notation we prove

Lemma 3.2. For every r > 0, there exists a similarity S mapping (ATr
, dTr

) onto

(AT , dT ) with the constant

(2.6) c =
r2 + 1

2r
.

P r o o f. By (2.1) and the well-known properties of the stereographic projection of B

onto C, there exists a homography H such that H(Tr) = T1 = T and

(2.7) d(H(z1), H(z2)) = cd(z1, z2) for z1, z2 ∈ Tr,

where c is described by (2.6). Let

(2.8) SH(f) = H ◦ f ◦ H−1, f ∈ ATr
.

Then, by (2.7), we get

dT (SH(f), SH(g)) = sup
w∈T

d((H ◦ f ◦ H−1)(w), (H ◦ g ◦ H−1)(w)),(2.9)

= c sup
z∈Tr

d(f(z), g(z)) = cdTr
(f, g).

Thus, SH is a similarity mapping (ATr
, dTr

) onto (AT , dT ) with the constant c described

by (2.6).

Now we can prove

Theorem 3.1. For every circle Γ on C, there exists exactly one number r, 0 < r ≤ 1,

such that the spaces (AΓ , dΓ ) and (ATr
, dTr

) are isometric.
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P r o o f. By the definition (2.1) of dΓ , the basic properties of the stereographic pro-

jection of B onto C and the euclidean isometry of B, there is a homography H such

that H(Γ ) = Tr, 0 < r ≤ 1, and

(2.10) dΓ (H(z1), H(z2)) = dΓ (z1, z2) for z1, z2 ∈ Γ.

Hence

dTr
(SH(f), SH(g)) = sup

w∈Tr

d((H ◦ f ◦ H−1)(w), (H ◦ g ◦ H−1)(w))

= sup
w∈Tr

d((f ◦ H−1)(w), (g ◦ H−1)(w)) = sup
z∈Γ

d(f(z), g(z)) = dΓ (f, g)

for all f, g ∈ AΓ , where z = H−1(w).

Suppose now that there is r1 6= r, 0 < r1 ≤ 1, and an isometry J of (AΓ , dΓ ) onto

(ATr1
, dTr1

). By Lemma 3.2, there exists a similarity S : ATr1
→ ATr

with dTr
(S(f), S(g))

= cdTr1
(f, g) for f, g ∈ ATr1

with a constant c 6= 1, because r1 6= r. Then S−1
H ◦S ◦ I is a

similarity of (AΓ , dΓ ) onto itself with a constant c 6= 1. By Lemma 3.1, this is impossible.

Thus, the uniqueness of the constant r is proved, and the proof is complete.

By the above considerations, we may associate with every circle Γ in C exactly one

number r = r(Γ ) such that (AΓ , dΓ ) and (ATr
, dTr

) are isometric. This number is called

the spherical radius of Γ .

Theorem 3.2. For any circles Γ1, Γ2 on C, there exists a similarity S mapping

(AΓ1
, dΓ1

) onto (AΓ2
, dΓ2

) with the constant

(2.11) c =
r(Γ1) + 1/r(Γ1)

r(Γ2) + 1/r(Γ2)
.

Moreover , a similarity with a constant c1 6= c does not exist.

P r o o f. By Theorem 3.1, there exist isometries Ji of (AΓi
, dΓi

) onto (ATri
, dTri

) for

i = 1, 2. By Lemma 3.2, there exist similarities Si of (ATri
, dTri

) onto (AT , dT ) with the

constants ci = (r2
i + 1)/(2ri), i = 1, 2. Hence

(2.12) S = J−1
2 ◦ S−1

2 ◦ S1 ◦ J1

is a similarity mapping (AΓ1
, dΓ1

) onto (AΓ2
, dΓ2

) with the constant c = c1/c2. Thus we

obtain (2.11).

If there exists a similarity S1 of (AΓ1
, dΓ1

) onto (AΓ2
, dΓ2

) with a constant c1 6= c,

then S−1 ◦ S1 is a similarity of (AΓ1
, dΓ1

) onto itself with the constant c1/c 6= 1. This

contradicts Lemma 3.1. Theorem 3.2 is proved.

Corollary 3.1. For any circles Γ1, Γ2 in C, the spaces (AΓ1
, dΓ1

) and (AΓ2
, dΓ2

)

are isometric if and only if r(Γ1) = r(Γ2).

Example 3.1. By the definition of r(Γ ) it is evident that

r(Tr) =

{
r for 0 < r ≤ 1,
1/r for r ≥ 1

(2.13)

and

r(Rt) =
√

t2 + 1 − |t| for t ∈ R.(2.14)
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Corollary 3.2. The spaces (ATr
, dTr

) and (AR̄t
, dR̄t

) are isometric if and only if

(2.15) r +
1

r
= 2

√
t2 + 1.

Example 3.2. The spaces (AT , dT ) and (AR̄, dR̄) are isometric.

The main result of this section can be formulated as follows:

Theorem 3.3. For any circles Γ1, Γ2 on C, there exists a homography H such that

(i) H(Γ1) = Γ2;

(ii) d(H(z1), H(z2)) = cd(z1, z2) for each z1, z2 ∈ Γ1, with

c =
r(Γ1) + 1/r(Γ1)

r(Γ2) + 1/r(Γ2)
;

(iii) for every f ∈ AΓ1
, the mapping SH = H ◦ f ◦ H−1 is a similarity of (AΓ1

, dΓ1
)

onto (AΓ2
, dΓ2

) with the constant c as in (ii);

(iv) SH(ÂΓ1
) = ÂΓ2

;

(v) SH(AΓ1
(K)) = AΓ2

(K), K ≥ 1;

(vi) SH is an isomorphism of the groups (AΓ1
, ◦) and (AΓ2

, ◦).
P r o o f. The statements (i)–(iii) follow from the proof of Lemma 3.2 and Theorems 3.1

and 3.2. To obtain (iv), suppose that f ∈ ÂΓ1
. Then there exist distinct points zi ∈ Γ1

such that d(zi, zj) = d(zj , zk) = d(f(zj), f(zk)) for i, j, k = 1, 2, 3, i 6= j 6= k. Let

wi = H(zi), i = 1, 2, 3. Thus, by (ii), we have

d(wi, wj) = d(wj , wk) = d(SH(f)(wj), SH(f)(wk)), i, j, k = 1, 2, 3.

The condition (v) follows immediately from (iii), the definition of AΓ (K) and the fact

that each homography preserves the cross-ratio. Moreover,

SH(f ◦ g) = H ◦ (f ◦ g) ◦ H−1 = (H ◦ f ◦ H−1) ◦ (H ◦ g ◦ H−1) = SH(f) ◦ SH(g)

for each f, g ∈ AΓ1
. Thus (vi) is proved, which completes the proof.

3. Distortion theorems. First we prove the one-dimensional counterpart of the

quasiconformal version of the Schwarz Lemma.

Theorem 3.4. For each K ≥ 1 and f ∈ A0,1,∞
R̄

(K), we have:

(i) Φ1/K

(√
x

)2 ≤ f(x) ≤ ΦK

(√
x

)2
for 0 ≤ x ≤ 1;

(ii) ΦK

(
1
/√

x
)−2 ≤ f(x) ≤ Φ1/K

(
1
/√

x
)−2

for x ≥ 1;

(ii′) λ
(
1/K,

√
(x − 1)/x

)
≤ f(x) − 1 ≤ λ

(
K,

√
(x − 1)/x

)
for x ≥ 1;

(iii) −λ
(
K,

√
x/(x − 1)

)
≤ f(x) ≤ −λ

(
1/K,

√
x/(x − 1)

)
for x < 0,

where λ(K, t) is defined by (5.3′) of Chapter I. Moreover , these estimates are the best

possible.

P r o o f. For 0≤x≤1, we have [∞, 0, x, 1]2 = x. Then, by the definition of A0,1,∞
R̄

(K),

we obtain (i). For x ≥ 1, we have [∞, 0, 1, x]2 = 1/x. Thus Φ1/K

(
1
/√

x
)2 ≤ 1/f(x) ≤
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ΦK

(
1
/√

x
)2

, and hence (ii). Inequalities (ii′) follow from (ii) and from (5.3) in Chapter I.

Suppose that x < 0. The identity [x, 0, 1,∞]2 = 1/(1 − x) shows that

Φ1/K

(
1√

1 − x

)2

≤ 1

1 − f(x)
≤ ΦK

(
1√

1 − x

)2

.

Using again (5.3′) of Chapter I and (5.5) of Chapter I we arrive at (iii). Since equality may

occur for each of the estimates and each value of arguments, they are the best possible.

The proof is complete.

Using the estimate (ii) and (ii′) of Chapter I, one can easily prove

Theorem 3.5. For any K ≥ 1 and f ∈ A0,1,∞
R̄

(K), we have:

(i) 161−KxK ≤ f(x) ≤ 161−1/Kx1/K for 0 ≤ x ≤ 1;

(ii) 16−1+1/Kx1/K ≤ f(x) ≤ 16K−1xK for x ≥ 1;

(ii′)
161−K(x − 1)K

xK − 161−K(x − 1)K
≤ f(x) − 1 ≤ 161−1/K(x − 1)1/K

x1/K − 161−1/K(x − 1)1/K
for x > 1;

(iii) − 161−1/Kx1/K

(x − 1)1/K − 161−1/Kx1/K
≤ f(x) ≤ − 161−KxK

(x − 1)K − 161−KxK
for x < 0.

These inequalities are asymptotically sharp for K = 1, and the constants : 16, K, K − 1,

1/K and 1 − 1/K in (i) and (ii) cannot be lowered in this type of estimates.

R e m a r k 3.1. Using the relationship between K-qh and ̺-qs functions of R one

can automatically obtain analogs Theorems 3.4 and 3.3 for ̺-qs functions of R. These

estimates are asymptotically sharp for ̺ = 1.

R e m a r k 3.2. The inequalities of Theorem 3.5 can easily be improved by applying

the approximations on ΦK and λ2[K, L](t), presented in Section 4 of Chapter I.

Corollary 3.3. For any K ≥ 1 and f ∈ A0,1,∞
R̄

(K),

(3.1) |f(x) − x| ≤





max{161−1/Kx1/K − x, 161−1/K(1 − x)1/K − (1 − x)}
for 0 ≤ x ≤ 1,

16K−1xK − x for x > 1,
16K−1(1 − x)K − (1 − x) for x < 0.

P r o o f. (3.1) follows immediately from Theorem 3.4 if we note that for 0 ≤ x ≤ 1,

|f(x) − x| ≤ max
{
ΦK

(√
x

)2 − x, x − Φ1/K

(√
x

)2}

= max
{
ΦK

(√
x

)2 − x, ΦK

(√
1 − x

)
− (1 − x)2

}

≤ {161/K−1x1/K − x, 161/K−1(1 − x)1/K − (1 − x)}.
The other two cases follow directly from Theorems 3.4 and 3.5. The proof is finished.

Corollary 3.4. For any K ≥ 1 and f ∈ A0,1,∞
R̄

(K),

max
x

|f(x) − x| =

{
M(K) for 0 ≤ x ≤ 1,
16K−1LK − L for 1 < x ≤ L or −L + 1 ≤ x < 0.

The following lemma, with M(K) given in Theorem 1.3, will be very useful in our

considerations.
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Lemma 3.3. For any K ≥ 1 and f ∈ AR̄(K) with f(0) = 0 and f(∞) = ∞, we have

(3.2) Φ1/K

(√
x1

x2

)2

≤ f(x1)

f(x2)
≤ ΦK

(√
x1

x2

)2

for 0 < x1 < x2 or x2 < x1 < 0.

P r o o f. Use the identity [∞, 0, x1, x2]
2 = x1/x2 = [x1, x2, 0,∞] and the definition of

AR̄(K).

R e m a r k 3.3. Under the assumptions of Lemma 3.3, by Theorem 3.3 it follows that

161−K

(
x1

x2

)K

≤ f(x1)

f(x2)
≤ 161−1/k

(
x1

x2

)
and M1/K

(
x1

x2

)
≤ f(x1)

f(x2)
−x1

x2
≤ MK

(
x1

x2

)
.

Hence we have

sup

∣∣∣∣
f(x1)

f(x2)
− x1

x2

∣∣∣∣ ≤ M(K),

where the supremum is taken over all the possible x1 and x2 as in Lemma 3.3.

Now we prove

Theorem 3.6. For any K ≥ 1 and f ∈ A0,1,∞
R̄

(K), we have

(3.3) |f(x1) − f(x2)|

≤





162(1−1/K)|x2 − x1|1/K for x1, x2 ∈ [0, 1],
(16L)K−1/K|x2 − x1|1/K for x1, x2 ∈ [−L + 1, 1] ∪ [0, L],
16K−1(16ML)K−1/K |x2 − x1|1/K for x1, x2 ∈ [−L + 1, M ],

where L, M > 1. Moreover , the exponent 1/K is the best possible.

P r o o f. Let f ∈ A0,1,∞
R̄

(K) and K ≥ 1. For 0 < x1 < x2 < 1, it follows that

(3.4) [0, x1, x2,∞]2 =
x2 − x1

x2
.

By Lemma 3.3, the definition of AR̄(K) and (ii) of Chapter I, we have

|f(x2) − f(x1)| ≤ 161−1/K f(x2)

x
1/K
2

|x2 − x1|1/K ≤ 162(1−1/K)|x2 − x1|1/K .

Now let 0 < x1 < x2 ≤ L and 1 < x2. Then, by (3.2) and Theorem 3.5,

|f(x2) − f(x1)| ≤ 161−1/K f(x2)

x
1/K
2

|x2 − x1|1/K

≤ (16x2)
K−1/K |x2 − x1|1/K ≤ (16L)K−1/K |x2 − x1|1/K .

Consider the case −L + 1 ≤ x1 ≤ x2 < 1. Then

(3.5) [∞, x1, x2, 1]2 =
x2 − x1

1 − x1
.

Using (2.4), we obtain

|f(x2) − f(x1)| ≤ 161−1/K 1 − f(x1)

(1 − x1)1/K
|x2 − x1|1/K

≤ (16(1 − x1))
K−1/K |x2 − x1|1/K ≤ (16L)K−1/K |x2 − x1|1/K .
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In the case −L + 1 ≤ x1 < 0 < 1 < x2 < M , we have

(3.6) [x1, 0, 1, x2]
2 =

x2 − x1

(1 − x1)x2
.

This gives, by (2.3) and (ii) of Chapter I,

|f(x2) − f(x1)| ≤ 161−1/K 1 − f(x1)

(1 − x1)1/K

f(x2)

x
1/K
2

|x2 − x1|1/K

≤ 161−1/K16K−1(1 − x1)
K−1/K16K−1x

K−1/K
2 |x2 − x1|1/K

≤ 16K−1(16LM)K−1/K |x2 − x1|1/K .

Thus we have (3.3) and the theorem is proved.

By Theorem 2.3, for every f ∈ AΓ (K), K ≥ 1, there exists f−1 and it is also an

element of AΓ (K), where Γ is a circle in C. Applying this fact to the previous theorem

we immediately get

Corollary 3.5. Under the assumption of Theorem 3.6, we have

(3.7) |f(x2) − f(x1)|

≥





162(1−K)|x2 − x1|K for x1, x2 ∈ [0, 1],

(16L)1−K2|x2 − x1|K for x1, x2 ∈ [−L + 1, 1] ∪ [0, L],

16K−K2

(16LM)1−K2|x2 − x1|K for x1, x2 ∈ [−L + 1, M ],

where L, M > 1. Moreover , the exponent K is the best possible.

The main result of this section is

Theorem 3.7. Let Γ be a circle in C. For any f ∈ ÂΓ (K) and K ≥ 1, the inequality

(3.8) d(f(z1), f(z2)) ≤ CK

(
2

r(Γ ) + 1/r(Γ )

)1−1/K

d(z1, z2)
1/K

holds for all z1, z2 ∈ Γ with

(3.9) CK =





(
2
√

3
)−1+1/K

163(1−1/K)

(
4M(K)

(√
3
)1+1/K

+ 21−1/K

)2

, 1 ≤ K < 1.061,

(
2/

√
3
)1+1/K

163(1−1/K), 1.061 ≤ K < 1.899,

2
(√

3
)1+1/K

162(1−1/K), K ≥ 1.899,

r(Γ ) described by Theorem 3.1, and Λ given by (2.37) of Chapter I. Asymptotically,

CK → 1 as K → 1 and CK → 512
√

3 as K → ∞.

P r o o f. The proof is divided into a few steps. Confining ourselves to A0,1,∞
R̄

(K), we

obtain (3.8). Changing this normalization we arrive at (3.8) with CK given by the third

line of (3.9) within A◦
R̄
(K). Using Theorem 3.3 we extend this result to A◦

T (K). At the

next step we begin with A◦
T (K) and get the first two lines of CK in (3.9). Then, using

Theorem 3.3, we transform the obtained result to an arbitrary circle Γ in C.

Suppose that f ∈ A0,1,∞
R̄

(K), K ≥ 1, and 0 < x1 < x2. Then, by (3.4), one can see

that

(3.10) d(f(x2), f(x1)) ≤ C1
K(x2, x1)d(x2, x1)

1/K ,
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where

(3.11) C1
K(x2, x1) = 161−1/K f(x2)

x
1/K
2

· (1 + x2
2)

1/(2K)(1 + x2
1)

1/(2K)

(1 + |f(x2)|2)1/2(1 + |f(x1)|2)1/2
.

Using (ii) of Chapter I, we get

C1
K(x2, x1) ≤

(1 + x2
1)

1/(2K)

(1 + (16−1+1/Kx
1/K
1 )2)1/2

(
1 +

1

x2
2

)1/(2K)

161−1/K(3.12)

≤ 162(1−1/K)

(
1 +

1

x2
1

)1/(2K)

21/(2K) ≤ 162(1−1/K)21/K

for 1 < x1 < x2.

In the case 0 < x1 < 1 < x2, we have

(3.13) C1
K(x2, x1) ≤ 162(1−1/K)21/(2K)21/(2K) = 162(1−1/K)21/K .

Let x1 < x2 < 1. Using (3.5) we obtain

(3.14) d(f(x2), f(x1)) ≤ C2
K(x2, x1)d(x2, x1)

1/K ,

where

(3.15) C2
K(x2, x1) = 161−1/K 1 + |f(x1)|

(1 + |x1|)1/K
· (1 + |x1|2)1/(2K)(1 + |x2|2)1/(2K)

(1 + |f(x1)|2)1/2(1 + |f(x2)|2)1/2
.

By Theorem 3.4,

(3.16) C2
K(x2, x1) ≤ 161−1/K21/2 (1 + |x2|)1/K

1 + |f(x2)|
21/2 ≤ 2 · 162(1−1/K)

for x1 < x2 < 0.

In the case x1 < x2 < 1 and x2 > 0,

(3.17) C2
K(x2, x1) ≤ 161−1/K21/221/(2K) = 161−1/K

(√
2

)1+1/K
.

Let x1 < 0 < 1 < x2. Using (3.6) we get

(3.18) d(f(x2), f(x1)) ≤ C3
K(x2, x1)d(x2, x1)

1/K ,

where

C3
K(x2, x1) = 161−1/K (1 + |f(x1)|)f(x2)

(1 + |x1|)1/Kx
1/K
2

· (1 + |x1|2)1/(2K)(1 + |x2|2)1/(2K)

(1 + |f(x1)|2)1/2(1 + |f(x2)|2)1/2
(3.19)

≤ 161−1/K

(
1 +

1

x2
2

)1/(2K)

21/2 ≤ 161−1/K
(√

2
)1+1/K

.

Setting CK = max{C1
K , C2

K , C3
K}, one can see that

(3.20) CK ≤ 2 · 162(1−1/K) < 512.

Let f ∈ A0,1,∞
R̄

(K), K ≥ 1, and let l(x) = (2x − 1)/
√

3, x ∈ R. Then

(3.21)
2

3
≤ 1 + x2

1 + (l−1(x))2
≤ 2 for x ∈ R

and
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(3.22)
1√
3

d(x2, x1) ≤ d(l−1(x2), l
−1(x1)) ≤

√
3 d(x2, x1).

Let g = L(f) = l ◦ f ◦ l−1. By (3.20) we get

d(g(x2), g(x1)) = d((l ◦ f ◦ l−1)(x2), (l ◦ f ◦ l−1)(x1))(3.23)

≤
√

3 · d((f ◦ l−1)(x2), (f ◦ l−1)(x1))

≤ 2
√

3 · 162(1−1/K)d(l−1(x2), l
−1(x1))

1/K

≤ 2
√

3 · 162(1−1/K)
(√

3
)1/K

d(x2, x1)
1/K

= 2
(√

3
)1+1/K

162(1−1/K)d(x2, x1)
1/K .

Because r(T ) = r(R), and by Theorem 3.3, there is a homography h : R → T such that

(3.24) d(h(x2), h(x1)) = d(x2, x1) for x1, x2 ∈ R,

and

h(∞) = 1 = w1, h
(
−1

/√
3
)

= e2πi/3 = w2, h
(
1
/√

3
)

= e4πi/3 = w3.

Hence Sh(L(A0,1,∞
R̄

(K))) = A◦
T (K). Thus, for all f ∈ A◦

T (K), we have S−1
h (f) = h−1 ◦

f ◦ h ∈ L(A0,1,∞
R̄

(K)) and, in view of (3.23) and (3.24), we get

d(f(x2), f(x1)) = d((h−1 ◦ f ◦ h)(h−1(x2)), (h
−1 ◦ f ◦ h)(h−1(x1)))(3.25)

≤ 2 · 162(1−1/K)
(√

3
)1+1/K

d(h−1(x2), h
−1(x1))

1/K

= 2
(√

3
)1+1/K

162(1−1/K)d(x2, x1)
1/K .

By (3.25) we arrive at the third line of (3.9) for Γ = T .

Let now f ∈ A◦
T (K). It is easy to see that we may confine our considerations only to

the case where z1, z2 ∈ 〈w1, w2〉. By the definition of A◦
T (K) and by (ii) of Chapter I, we

have

(3.26) |f(z2)− f(z1)| ≤ 161−1/K |f(z1) − w1|
|z1 − w1|1/K

· |f(z2) − w2|
|z2 − w2|1/K

|z2− z1|1/K ·
(√

3
)1/K−1

.

Because

[w1, z1, z2, w2]
2 =

z2 − z1

z2 − w1
· w2 − w1

w2 − z1
,

we have

(3.27)
|f(zi) − wi|
|zi − wi|1/K

= 161−1/K |f(zi) − w3|
|zi − w3|1/K

= 2
(
1/

√
3

)1/K
161−1/K , i = 1, 2.

By (3.27) and (3.26), one can see that

(3.28) |f(z2) − f(z1)| ≤
4

(√
3

)1+1/K
163(1−1/K)|z2 − z1|1/K

for all z1, z2 ∈ T .

Noting that 2d(z1, z2) = |z2 − z1| and using the above considerations we arrive at the

second line of (3.9). To get the first row of (3.9), note that

(3.29)
|f(zi) − w3|
|zi − w3|1/K

≤ |f(zi) − zi|
|zi − w3|1/K

+ |zi − w3|1−1/K , i = 1, 2.

By Lemma 2.1,
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|f(z) − z| ≤ 4√
3
M(K)

for any f ∈ A◦
T (K), K ≥ 1, and z ∈ T . Hence

(3.30)
|f(zi) − w3|
|zi − w3|1/K

≤ 4√
3
M(K)

1
(√

3
)1/K

+ 21−1/K =
4

(√
3
)1+1/K

M(K) + 21−1/K

for i = 1, 2. Using (3.26), (3.27) and (3.30), we get

(3.31) |f(z2) − f(z1)|

≤
(√

3
)−1+1/K

163(1−1/K)

(
4

(√
3

)1+1/K
M(K) + 21−1/K

)2

|z2 − z1|1/K

and then

(3.32) d(f(z2), f(z1))

≤
(
2
√

3
)−1+1/K

163(1−1/K)

(
4

(√
3

)1+1/K
M(K) + 21−1/K

)2

d(z2, z1)
1/K .

This gives the first line of (3.9) for Γ = T .

Let f ∈ ÂT (K). There exist α, β ∈ R and g ∈ A◦
T (K) such that f(z) = eiαg(zeiβ).

We can see that (3.25), (3.28) and (3.32) hold for every f ∈ ÂT (K).

Suppose now that Γ is an arbitrary circle in C. By Theorem 3.3, there exists a

homography h : Γ → T such that

d(f(z2), f(z1)) =
1

C
d((h ◦ f)(z2), (h ◦ f)(z1))(3.33)

=
1

C
d(Sh(f)(h(z1)), Sh(f)(h(z2)))

≤ CK

C
d(h(z2), h(z1))

1/K

= C−1+1/KCKd(z2, z1)
1/K

= CK

(
2

r(Γ ) + 1/r(Γ )

)1−1/K

d(z2, z1)
1/K ,

where CK , the minimum of the obtained estimates, is given by (3.9). This completes the

proof of Theorem 3.7.

Corollary 3.6. Under the assumptions of Theorem 3.7, we have

(3.34) d(f(z2), f(z1)) ≥ C−K
K

(
r(Γ ) + 1/r(Γ )

2

)K−1

d(z2, z1)
K .

P r o o f. This follows from the fact that f−1 ∈ ÂΓ (K) if and only if f ∈ ÂΓ (K) for

every circle Γ in C and K ≥ 1.

R e m a r k 3.4. Since r(Γ ) + 1/r(Γ ) ≥ 2 for every circle Γ on C, it follovs that for

every f ∈ ÂΓ (K), K ≥ 1, the inequality

(3.35) C−K
K d(z1, z2)

K−1 ≤ d(f(z1), f(z2)) ≤ CKd(z1, z2)
1/K

holds for all z1, z2 ∈ Γ .
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4.Normal and compact families of quasihomographies. Recall that h∈AΓ (1),

where Γ is a circle on C, if and only if h is a homography mapping Γ onto itself

(cf. Theorem 2.5). Thus one may begin this chapter with

Definition 3.1. A family M ⊂ AΓ , where Γ is an arbitrary circle on C, is said to

be closed with respect to AΓ (1) if h1 ◦ f ◦ h2 ∈ M for all f ∈ M and all h1, h2 ∈ AΓ (1).

It is worth noting that this definition generalizes the notion of closed families of qs

functions introduced by A. Beurling and L. V. Ahlfors [BA].

Theorem 3.8. Suppose that Γ is a circle on C and that M is a non-empty subset

of AΓ (K), K ≥ 1. Then M is a normal set in (AΓ , dΓ ) if and only if there exists a

triple of distinct points z1, z2, z3 ∈ Γ and δ > 0 such that d(f(zi), f(zj)) ≥ δ for i 6= j,

i, j = 1, 2, 3, and for each automorphism f ∈ M .

P r o o f. Suppose that Γ = R and that M ⊂ AR̄(K) is non-empty, K ≥ 1.

We first prove the sufficiency. Let h ∈ AR̄(1) be such that h(0) = x1, h(1) = x2 and

h(∞) = x3. Moreover, let {fn} ⊂ M . Then there exists a sequence {hn} ⊂ AR̄(1) of

homographies such that {hn ◦ fn ◦ h} ⊂ A0,1,∞
R̄

(K). Making use of Theorem 3.7, with

Γ = R, we can see that there exists a subsequence {hnk
◦ fnk

◦ h} that converges in

(AR̄, dR̄) to an automorphism f ∈ A0,1,∞
R̄

(K). Because

h−1
nk

(0) = fnk
(x1), h−1

nk
(1) = fnk

(x2), h−1
nk

(∞) = fnk
(x3)

and

d(fnk
(xi), fnk

(xj)) ≥ δ for i 6= j, i, j = 1, 2, 3, k ∈ N,

and by [LV, Thm. 5.1], there exists a subsequence {h−1
nkl

} of {h−1
nk

} that converges in

(AR̄, dR̄) to a homography h0. Note that (AR̄, ◦, dR̄) is a metric group and that h0(R) = R.

Thus the sequence

fnkl
◦ h = h−1

nkl
◦ (hnkl

◦ fnkl
◦ h), l ∈ N,

converges in (AR̄, dR̄) to the automorphism h0 ◦f . Therefore {fnkl
} converges in (AR̄, dR̄)

to h0 ◦f ◦h−1 ∈ AR̄(K). The last conclusion follows from the fact that AR̄(K) is a closed

subset of the metric space (AR̄, dR̄).

For the necessity, suppose that M ⊂ AR̄(K) is a normal set in (AR̄, dR̄) and that

F : AR̄ → R is defined by

(4.1) F(f) = min{d(f(0), f(1)), d(f(1), f(∞)), d(f(∞), f(0)))}.
The function F is continuous on (AR̄, dR̄), and F(f) > 0 for each f ∈ AR̄. Since M , the

closure of M in (AR̄, dR̄), is compact, we have

(4.2) inf{F(f) : f ∈ M} ≥ inf{F(f) : f ∈ M} = δ > 0.

This completes the proof for Γ = R.

In the general case, i.e., when Γ is an arbitrary circle on C, the proof is a consequence

of the already presented proof for Γ = R and Theorem 3.3, which says that there exists

a similarity SH of (AR̄, dR̄) onto (AΓ , dΓ ) satisfying (i), (ii) and (v) of Theorem 3.3. This

finishes the proof of Theorem 3.8.

As a consequence of Theorem 3.8 we have
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Corollary 3.7. Suppose that Γ is an arbitrary circle on C and that M ⊂ AΓ (K) is

non-empty for a given constant K ≥ 1. If for each f ∈ M we have f(zi) = wi, i = 1, 2, 3,

where zi, wi are fixed points of Γ such that zi 6= zj (wi 6= wj) for i 6= j, i, j = 1, 2, 3,

then M is a normal family in (AΓ , dΓ ).

Let us note that Az1,z2,z3

Γ (K) with K ≥ 1 is closed in (AΓ , dΓ ) for every circle Γ on C.

Then, by Corollary 3.7, we have

Corollary 3.8. For every circle Γ on C, K ≥ 1 and any distinct points z1, z2, z3

∈ Γ , the set Az1,z2,z3

Γ (K) is compact in (AΓ , dΓ ).

Theorem 3.9. For every circle Γ on C and every K ≥ 1, the family ÂΓ (K) is

compact in (AΓ , dΓ ).

P r o o f. Let z1, z2, z3 ∈ Γ be as in Corollary 3.7, and let {fn} ⊂ ÂΓ (K). For each

n ∈ N, there exist points z1,n, z2,n, z3,n ∈ Γ such that

(4.3) d(zi,n, zj,n) = d(fn(zi,n), fn(zj,n)) =
√

3
r(Γ )

1 + r(Γ )2
= δ

for i 6= j, i, j = 1, 2, 3. This is a consequence of Theorem 3.3, the definition of ÂΓ and

the fact that r(T ) = 1. Moreover, for each n ∈ N, there are homographies hn ∈ AΓ (1)

described by hn(zi) = zi,n, i = 1, 2, 3. Thus, by (4.3) and Theorem 3.8, there exist

g ∈ AΓ (K), h ∈ AΓ (1), and a sequence {nk} such that

(4.4) dΓ (fnk
◦ hnk

, g) → 0 and dΓ (hnk
, h) → 0 as k → ∞.

From this and the fact that (AΓ , ◦, dΓ ) is a metric group, it follows that fnk
= (fnk

◦
hnk

) ◦ h−1
nk

converges in (AΓ , dΓ ) to the automorphism f = g ◦ h−1 ∈ AΓ (K). Moreover,

by (4.3) and (4.4), one can see that

(4.5) d(h(zi), h(zj)) = d(f(h(zi)), f(h(zj))) = d(g(zi), g(zj)) = δ

for i 6= j, i, j = 1, 2, 3. This means that f ∈ ÂΓ (K). The theorem is proved.

Lemma 3.4. For every circle Γ on C, the set A∞
Γ is dense in (AΓ , dΓ ).

P r o o f. Suppose first that Γ = T and let f ∈ AΓ . Then

(4.6) f(e2πix) = f(1)e2πiσ(x),

where σ is an increasing homeomorphism of [0, 1] onto itself. Let

(4.7) σn(x) =

(
σ

(
k + 1

n

)
− σ

(
k

n

))
(nx − k) + σ

(
k

n

)
for

k

n
≤ x ≤ k + 1

n
,

k = 0, 1, . . . , n − 1, for some n ∈ N, and

(4.8) fn(e2πix) = f(1)e2πiσn(x).

Because dT (fn, f) → 0 as n → ∞, and by Theorem 2.11, the considerations in Sec-

tion II.4, and the relation between qs functions on T and R given in (4.7), we can see

that

(4.9) fn ∈
⋃

̺≥1

QT (̺) = A∞
T ,
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where QT (̺) denotes the class of ̺-qs functions on T . This means that A∞
T is dense in

(AT , dT ). By Theorem 3.3, we can extend our considerations to the case of an arbitrary

circle Γ on C. This ends the proof.

Using the above results one can prove

Theorem 3.10. For every circle Γ in C, 0 < r < r(Γ )/(1 + r(Γ )2), 1 ≤ K < ∞ and

any g ∈ AΓ , the set

(4.10) AΓ (K) ∩ cl B(g, r)

is compact in (AΓ , dΓ ), where B(g, r) = {f ∈ AΓ : dΓ (f, g) < r}.

P r o o f. Suppose first that Γ = T , g = idT , z1 = 1, z2 = e2πi/3 and z3 = e4πi/3.

Then, for f ∈ cl B(idT , r), we have

(4.11) d(f(zi), zi) ≤ dT (f, idT ) ≤ r < 1/2 for i = 1, 2, 3.

Hence,

(4.12) d(f(zi), f(zj)) ≥ δ

for each f ∈ AT (K) ∩ cl B(idT , r), i 6= j, i, j = 1, 2, 3, where

δ =

√
3

2
(1 − 2r2) − r

√
1 − r2.

This means that AT (K) ∩ cl B(idT , r) is compact in (AT , dT ).

Let now g ∈ AT . Let r′ satisfy r < r′ < 1/2. By Lemma 3.4, there exist K ′ ≥ 1 and

h ∈ AT (K ′) such that

dT (g, h) < r′ − r.

Hence

(4.13) dT (f ◦ h−1, idT ) = dT (f, h) ≤ dT (f, g) + dT (g, h) ≤ r′ < 1/2.

Making use of Theorem 2.2 we deduce that f ◦ h−1 ∈ AT (KK ′) for all f ∈ AT (K) ∩
cl B(g, r). Let Jh(f) = f ◦ h−1, f ∈ AT . It is evident that Jh is an isometry of (AT , dT )

onto itself. By (4.13) and the fact that f ◦ h−1 ∈ AT (KK ′), it follows that the family

J−1
h (AT (K) ∩ cl B(idT , r′)) is compact and that

(4.14) AT (K) ∩ clB(g, r) ⊂ Jh(AT (KK ′) ∩ B(idT , r′)).

Thus AT (K)∩clB(g, r) is compact, being a closed subset of Jh(AT (KK ′)∩cl B(idT , r′)).

Using (i), (iii) and (v) of Theorem 3.3, one can see that our considerations remain

true for an arbitrary circle Γ in C and, consequently, we arrive at (4.10) with 0 ≤ r <

r(Γ )/(1 + r(Γ )2). The theorem is proved.

5. Topological characterization of quasihomographies

Theorem 3.11. Suppose that M ⊂ AΓ is non-empty and closed with respect to AΓ (1),

where Γ is an arbitrary circle on C. Then M ∩ ÂΓ is a normal set in (AΓ , dΓ ) if and

only if there is a constant K ≥ 1 such that M ⊂ AΓ (K).
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P r o o f. Suppose first that Γ = R and that M ⊂ AR̄ is non-empty and closed with

respect to AR̄(1) and such that M ∩ ÂR is a normal family in (AR̄, dR̄). Then the set

(5.1) M0 =
{
f ∈ M : f

(
±1

/√
3

)
= ±1/

√
3, f(∞) = ∞

}
⊂ M ∩ ÂR

is a normal family in (AR̄, dR̄). Let l(x) = (2x − 1)/
√

3, x ∈ R. Thus the mapping

L(f) = l−1 ◦ f ◦ l, defined for all f ∈ AR̄, is an automorphism of the group (AR̄, ◦) and a

homeomorphism of (AR̄, dR̄) onto itself such that

(5.2) dR̄(L(f), L(g))

= supd((l−1 ◦ f ◦ l)(x), (l−1 ◦ g ◦ l)(x))

= supd((l−1 ◦ f)(y), (l−1 ◦ g)(y))

=

√
3

2
sup

((
1 + (f(y))2

1 + (l−1(f(y)))2
· 1 + (g(y))2

1 + (l−1(g(y)))2

)1/2

d(f(y), g(y))

)
.

From this and (3.21), we get

(5.3)
1√
3

dR̄(f, g) ≤ dR̄(L(f), L(g)) ≤
√

3 dR̄(f, g).

Thus the family M0,1,∞ = L(M0) ⊂ A0,1,∞
R̄

∩ M is normal in (AR̄, dR̄). Moreover, since

M is closed with respect to AR̄(1) and since L is an automorphism of AR̄ such that

L(AR̄(1)) = AR̄(1), the family M0,1,∞ satisfies the following condition: For all f ∈ M

and h1, h2 ∈ AR̄(1),

(5.4) if h1 ◦ f ◦ h2 ∈ A0,1,∞
R̄

, then h1 ◦ f ◦ h2 ∈ M0,1,∞.

For x ∈ R, let

(5.5) α(x) = sup{f(x) : f ∈ M0,1,∞}, β(x) = inf{f(x) : f ∈ M0,1,∞}.
Since M0,1,∞ is normal, it follows that

(5.6) 0 < β(1/2) = β ≤ 1/2 ≤ α = α(1/2) < 1.

In view of (5.4), define

(5.7) fn(x) =
f(x/2n)

f(1/2n)

for x ∈ R, n = 1, 2, . . . and f ∈ M0,1,∞. Then fn ∈ M0,1,∞. Thus β ≤ fn(1/2) ≤ α and

(5.8) βn ≤ f(1/2n) ≤ αn, n ∈ N.

Hence,

(5.9) α(x) ≤ α(1/2n) ≤ αn ≤ (2x)− log2 α,

for 1/2n+1 ≤ x ≤ 1/2n and n = 1, 2, . . .

Setting K ′ =
(
− 1

2 log2 α
)−1

, we obtain

α(x) ≤ (2x)− log2 α ≤ x1/K′

, 0 ≤ x ≤ 1/4,

and

α(x) ≤ α(1/2) = α = (1/4)1/K′ ≤ x1/K′

, 1/4 ≤ x ≤ 1/2.
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Therefore

(5.10) α(x) ≤ x1/K′

for 0 ≤ x ≤ 1/2.

By (5.8),

(5.11) β(x) ≥ β(1/2n+1) ≥ βn+1 ≥ (x/2)− log2 β

for 1/2n+1 ≤ x ≤ 1/2n and n = 1, 2, . . . Setting K ′′ = −2 log2 β, we have

(5.12) β(x) ≥ xK′′

for 0 ≤ x ≤ 1/2.

Now, by (5.10), (5.12) and (ii) and (ii′) of Chapter I it follows that

(5.13) Φ1/K

(√
x

)2 ≤ f(x) ≤ ΦK

(√
x

)2

for f ∈ M0,1,∞, 0 ≤ x ≤ 1/2, with K = max{K ′, K ′′}. By the property described in

(5.4), it follows that for each f ∈ M0,1,∞, the automorphism f∗ = ω ◦ f ◦ ω belongs to

M0,1,∞, where ω(x) = 1 − x, x ∈ R. Then, by (5.13), we have

(5.14) Φ1/K

(√
1 − x

)2 ≤ f∗(1 − x) ≤ ΦK

(√
1 − x

)2
for 1/2 ≤ x ≤ 1.

Using (iii) of Chapter I with x = t2, one can see that

Φ1/K

(√
x

)2
= 1 − ΦK

(√
1 − x

)2 ≤ f(x) = 1 − f∗(1 − x)(5.15)

≤ 1 − Φ1/K

(√
1 − x

)2
= ΦK

(√
x

)2

for every 0 ≤ x ≤ 1 and K = max{K ′, K ′′}.
Let f ∈M and let x1, x2, x3, x4 ∈ R be distinct points. There are h1, h2 ∈ AR̄(1) such

that

h2(0) = x2, h2(1) = x4, h2(∞) = x1 and h1 ◦ f ◦ h2 ∈ A0,1,∞
R̄

.

By (5.4), the function f◦ = h1 ◦ f ◦h2 belongs to M0,1,∞. Setting x = h−1
2 (x3) and using

(5.13) and (5.15), we have

[f(x1), f(x2), f(x3), f(x4)]
2 = [f◦(∞), f◦(0), f◦(x), f◦(1)]2(5.16)

= [∞, 0, f◦(x), 1]2 = f◦(x) ≤ ΦK(
√

x )2

= ΦK([∞, 0, x, 1])2 = ΦK([x1, x2, x3, x4])
2.

Making use of the other estimates in (5.13) and (5.15), we see that

(5.17) Φ1/K([x1, x2, x3, x4]) ≤ [f(x1), f(x2), f(x3), f(x4)] ≤ ΦK([x1, x2, x3, x4])

for any distinct points x1, x2, x3, x4 ∈ R, with K = max{K ′, K ′′}. Thus f ∈ AR̄(K).

Suppose now that M ⊂ AR̄(K), where K ≥ 1 is a given constant. Then

(5.18) M ∩ ÂR̄ ⊂ AR̄(K) ∩ ÂR̄ = ÂR(K)

and, by Theorem 3.9, the family ÂR̄(K) is compact in (AR̄, dR̄). Thus M ∩ÂR̄ is a normal

family in (AR̄, dR̄).

Let Γ be a circle on C. By Theorem 3.3 there is a similarity SH mapping (AR̄, dR̄)

onto (AΓ , dΓ ) and satisfying the conditions (iv)–(vi) of that theorem. The mapping SH ,

being a similarity, preserves normality and, being an isomorphism, preserves closedness

with respect to AΓ (1). Then, by (iv) and (v) of Theorem 3.3, our proof remains true if

R is replaced by an arbitrary circle Γ on C. Theorem 3.11 is proved.
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IV. Quasihomographies of a Jordan curve

1. Introduction. Originally defined for plane domains, the notion of K-qc mappings

has been generalized to domains in Rn; see [Ca] and [Vä1]. Recently Väisälä [Vä2] defined

a counterpart of K-qc mappings for domains in a general Banach space. Also, K-qc

mappings are well defined between topologically equivalent Riemann surfaces.

Unfortunately, the problem of describing an adequate counterpart of 1-dimensional

K-qc mappings was open for a long time. The linearly invariant notion of ̺-quasisymmet-

ric (̺-qs) functions of line segments on R, introduced by Beurling and Ahlfors [BA], can

be considered a particular example of 1-dimensional K-qc mappings. Rotation-invariant

̺-qs automorphisms of the unit circle T , introduced by Krzyż [Kr1], cannot , in substance,

be considered 1-dimensional K-qc mappings. All the same, the family of quasisymmetric

functions of T can be identified with the family of 1-dimensional qc mappings of T ,

whereas their inner structures remain incompatible.

The notion of K-quasihomographies of a circle Γ on C, defined in Chapter II, can be

considered without constraints the 1-dimensional counterpart of K-qc mappings.

In this chapter we are going to extend the notion of K-quasihomographies to an

oriented Jc Γ on C.

The study of how different properties of K-qc mappings behave with respect to the

dimension seems to be one of the most interesting topics, particularly when the function

space is formed of K-qc mappings on Rn, n = 1, 2, . . . , or on a Banach space. This topic

becomes trivial in the case of conformal mappings for n 6= 2, which reduce to Möbius

transformations.

2. Harmonic cross-ratio. Assume that Γ is an oriented Jordan curve on C, and

D, D∗ denote the left-hand and the right-hand complementary domains, i.e., C \ Γ =

D∪D∗. The correspondence Γ → (D, D∗) is unique in these circumstances. If Γ ∗ denotes

the oriented Jc obtained from Γ by reversing the orientation, then the correspondence

Γ → Γ ∗ is a conjugation and Γ ∗ → (D, D∗)∗ = (D∗, D). Consider now a configura-

tion Γ (z1, z2, z3, z4) made up of a given oriented Jc Γ on C and a quadruple of distinct

points z1, z2, z3, z4 ∈ Γ ordered according to the orientation of Γ . The quadrilaterals

D(z1, z2, z3, z4) and D∗(z1, z2, z3, z4) are said to be conjugate. Let FD(K) and FD∗(K)

be the classes of all K-qc automorphisms of D and D∗, respectively. If Γ is a circle in C,

then FD(K) and FD∗(K) can be conformally identified for each K ≥ 1. In the case when

Γ is a Q-quasicircle, Q ≥ 1, both the classes are related by a Q2-qc reflection in Γ ,

and can be identified on the level of the universal Teichmüller space; see Theorem 4.12

below.

In the most general case when Γ is an arbitrary oriented Jc on C, we do not have any

quasiconformal relation between FD(K) and FD∗(K) preserving points of Γ . This is an

obstacle to our research on the uniform boundary value problem for K-qc automorphisms.

It means that we cannot simply start with a given and oriented Jc Γ on C and a certain

family of sense-preserving automorphisms of Γ representing boundary values of FD(K)

and FD∗(K), simultaneously.
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The idea that the starting point should be an oriented Jc Γ on C, not a Jordan

domain, when working with the boundary value problem for K-qc automorphisms, has

its strong encouragement from universal Teichmüller space theory; see [Le, p. 97].

In spite of the simplicity of Definition 1 of K@-quasiconformal mappings it is not so

easy to take advantage of this deformation when studying properties of these mappings.

To illustrate the difficulties we shall calculate the modulus of a given quadrilateral

D(z1, z2, z3, z4). To this end, note that by the Riemann mapping theorem there exists

a conformal mapping H that maps D onto ∆. The mapping H is continuous on D.

Hence H maps D(z1, z2, z3, z4) onto ∆(ζ1, ζ2, ζ3, ζ4), where ζi = H(zi) for i = 1, 2, 3, 4.

Furthermore, there exists a unique k with 0 < k < 1 and a Möbius transformation M that

maps ∆(ζ1, ζ2, ζ3, ζ4) onto U(−1/k,−1, 1, 1/k), where U is the upper half-plane. Using

the Schwarz–Christoffel transformation

S(z) :=

z\
0

[(1 − ζ2)(1 − k2ζ2)]−1/2 dζ

we map U(−1/k,−1, 1, 1/k) conformally onto the rectangle R
(
− K(k) + iK

(√
1 − k2

)
,

−K(k),K(k),K(k) + iK
(√

1 − k2
))

with the given correspondence between vertices.

Therefore we have

(2.1) m(D(z1, z2, z3, z4)) =
K

(√
1 − k2

)

2K(k)
,

which is the ratio of b = K
(√

1 − k2
)

and a = 2K(k), the sides of the rectangle R.

This clearly shows difficulties that can be encountered when studying K-qc mappings.

Obviously, the notion of modulus is determined on a given rectangle by the use of a more

general conformal invariant, namely the extremal length of the family of curves, which,

when specified, leads to the notion of the modulus without any loss of generality with

respect to the K-qc theory. Intuitively this is fairly obvious, for if we want to find the

most nearly conformal homeomorphism between pairs of rectangles on the plane whose

vertices correspond to one another, the extremal one appears to be an affine mapping

(i.e., linear quasiconformal), which reduces to a conformal mapping if and only if both

the rectangles have the same ratio of the corresponding sides.

Before determining a direct generalization of the real-valued cross-ratio, it is perhaps

necessary to recall another one-parameter configuration, namely a Jordan domain D with

one interior point a and two ordered and distinguished boundary points, i.e., D(a; z1, z2).

This configuration carries a conformal invariant ω(a, 〈z1, z2〉; D) known as the harmonic

measure of the oriented open arc 〈z1, z2〉, distinguished on the boundary ∂D by ordered

points z1, z2 ∈ ∂D as seen from the point a ∈ D. This is at the same time a harmonic

function of a ∈ D and a probability measure of the arc variable. Hence, if H maps

D(a; z1, z2) conformally onto ∆(0; ζ1, ζ2), we have

(2.2) ω(a, 〈z1, z2〉; D) = ω(0, 〈ζ1, ζ2〉; ∆) = α/π,

where 2α is the Lebesgue measure of the angle ∡(ζ1, 0, ζ2). Hence we see that

(2.3) |ζ2 − ζ1| = 2 sinπω(0, 〈ζ1, ζ2〉; ∆).
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Consider a configuration D(a; z1, z2, z3, z4) formed by the quadrilateral D(z1, z2, z3, z4)

and a distinguished point a ∈ D. This configuration is obviously characterized by three

parameters. D(a; z1, z2, z3, z4) will play an auxiliary role in our considerations of a new

conformal invariant.

Let us associate with the configuration D(a; z1, z2) the quantity

(2.4) [z1, z2]
a
D := 2 sinπω(a, 〈z1, z2〉; D),

which is an analogue of (2.3).

We associate with D(a; z1, z2, z3, z4) the real number

(2.5) {z1, z2, z3, z4}a
D :=

[z2, z3]
a
D

[z1, z3]aD
:

[z2, z4]
a
D

[z1, z4]aD
.

Then we have the following theorem.

Theorem 4.1. Let D be a Jordan domain on C. For every a, b ∈ D, the identity

(2.6) {z1, z2, z3, z4}a
D = {z1, z2, z3, z4}b

D

holds for any distinct points z1, z2, z3, z4 ∈ ∂D.

P r o o f. Let a, b ∈ D. By the Riemann mapping theorem, there are conformal map-

pings Ha and Hb that map ∆ onto D with Ha(0) = a and Hb(0) = b. Both can be

regarded as homeomorphisms of ∆ onto D. By the conformal invariance of the harmonic

measure,

[H−1
a (z′), H−1

a (z′′)]◦∆ = 2 sinπω(0, 〈H−1
a (z′), H−1

a (z′′)〉; ∆)(2.7)

= 2 sinπω(Ha(0), 〈z′, z′′〉; H(∆))

= 2 sinπω(a, 〈z′, z′′〉, D) = [z′, z′′]aD

for all z′, z′′ ∈ Γ . The equality

(2.7′) [H−1
b (z′), H−1

b (z′′)]◦∆ = [z′, z′′]bD

holds by the same argument as for (2.4). Let z1, z2, z3, z4 ∈ Γ be distinct. Setting tk =

H−1
a (zk) and rk = H−1

b (zk), k = 1, 2, 3, 4, and using (2.4) and (2.4′), we obtain

{z1, z2, z3, z4}a
D = {t1, t2, t3, t4}◦∆ = {t1, t2, t3, t4}(2.8)

and

{z1, z2, z3, z4}b
D = {r1, r2, r3, r4}◦∆ = {r1, r2, r3, r4}.(2.8′)

Since H−1
b ◦Ha is a conformal automorphism of ∆, it is a homography mapping ∆ onto

itself and thus it preserves cross-ratio. Therefore

(2.9) {r1, r2, r3, r4}
= {(H−1

b ◦ Ha)(t1), (H
−1
b ◦ Ha)(t2), (H

−1
b ◦ Ha)(t3), (H

−1
b ◦ Ha)(t4)} = {t1, t2, t3, t4}.

This completes the proof.

The above theorem implies that the quantity {z1, z2, z3, z4}a
D is constant as a function

of a ∈ D for any fixed ordered quadruple of distinct points z1, z2, z3, z4 ∈ ∂D. Hence, we

can define
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(2.10) {z1, z2, z3, z4}D := {z1, z2, z3, z4}a
D

for any a ∈ D.

Definition 4.1. Given a quadrilateral D(z1, z2, z3, z4) we associate with it the num-

ber {z1, z2, z3, z4}D, which is a conformal invariant called the harmonic cross-ratio.

As we may easily check, the harmonic cross-ratio reduces to the classical real-valued

cross-ratio if D is a disc in C, and its values range over (0, 1). We also introduce

(2.11) [z1, z2, z3, z4]D := {z1, z2, z3, z4}1/2
D .

We will call it the harmonic cross-ratio as well.

Now, several natural questions arise immediately. Before stating them, let us recall

the already known situation when with a configuration made up of a Jordan D domain

and a pair of distinct points z1, z2 ∈ D there are associated two well-known conformal

invariants, the hyperbolic distance h and the Green’s function g. In these circumstances

they are related by the identity

(2.12) tanh(h(z1, z2)) = exp(−g(z1, z2)).

In the case of a quadrilateral we also have two conformal invariants, i.e., the modulus

and the harmonic cross-ratio. Hence a natural question arises: Describe a function that

expresses the relationship. An answer is

Theorem 4.2. Consider a quadrilateral D(z1, z2, z3, z4) and let m and t denote its

modulus and harmonic cross-ratio, respectively. Then

(2.13) m = µ(t) and t = µ−1(m) = Φ1/m

(
1
/√

2
)
,

where µ is given by (2.2) of Chapter I.

P r o o f. By the Riemann mapping theorem there exists 0 < k < 1 and a conformal

mapping that maps G(z1, z2, z3, z4) onto U(−1/k,−1, 1, 1/k), where U is the upper half-

plane. Then

t =

[−1

k
,−1, 1,

1

k

]

U

=
2
√

k

1 + k
= Φ2(k) and m =

K
(√

1 − k2
)

2K(k)
=

1

2
µ(k).

Since k = Φ−1
2 (t) = Φ1/2(t), we have

m = 1
2µ(Φ1/2(t)) = 1

2µ(µ−1(2µ(t))) = µ(t),

which proves the first equality in (2.13). The second identity is a consequence of the first

one and certain identities satisfied by ΦK ; see Chapter I.

It is worth noting that the modulus of a given quadrilateral and its harmonic cross-

ratio differ by a special function, whereas the hyperbolic distance and the Green’s function

differ by an elementary function.

Another natural question which arises after introducing harmonic cross-ratio is: How

may this notion be used to define K-qc mappings? An answer is given by the following

theorem.

Theorem 4.3. A mapping F ∈ FD,D′ is K-qc if and only if

(2.14) Φ1/K(t(G)) ≤ t(F (G)) ≤ ΦK(t(G))
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for every quadrilateral G := G(z1, z2, z3, z4) such that G ⊂ D, where ΦK is given by (2.1)

of Chapter I, with K ≥ 1, and t(G) := [z1, z2, z3, z4]G.

P r o o f. The proof is an immediate consequence of the first identity in (2.13), which

transforms the condition of K-quasiconformality into (2.14). Other assumptions remain

the same.

Obviously, one may regard Theorem 4.3 as a new definition of K-quasiconformality

on the plane.

3. One-dimensional quasiconformal mappings. Suppose that Γ is an oriented

Jc on C and D, D∗ are the domains complementary with respect to Γ .

Let AΓ denote the family of all sense-preserving automorphisms of Γ . It is evident

that (AΓ , ◦) is a group under composition. For f ∈ AΓ , we call

(3.1) ‖f‖Γ = dΓ (f, idΓ )

the chordal norm of f . Then (AΓ , dΓ ) is a metric space and 0 ≤ dΓ (f, g) ≤ 1 for any

f, g∈AΓ . Let z1, z2, z3 ∈ Γ be distinct points. By Az1,z2,z3

Γ we denote the subspace of AΓ

consisting of all f ∈ AΓ that have z1, z2, z3 as fixed points. Note also that

(3.2) dΓ (f, g) = d(f ◦ g−1, id) = ‖f ◦ g−1‖Γ .

Thus, ‖f‖Γ measures the maximum chordal deviation from the identity and ‖f‖Γ = 1

if and only if f maps one point of a pair of antipodal points of C onto the other. Now we

have

Theorem 4.4. For every Jc Γ on C, (AΓ , ◦ , dΓ ) is a topological group.

P r o o f. Let f, g, u, v ∈ AΓ and ε > 0. Since each f ∈ AΓ is uniformly continuous

on Γ with respect to the dΓ -metric, there is a constant η > 0 such that, for z1, z2 ∈ Γ ,

d(f(z1), f(z2)) < ε/2 if d(z1, z2) < η.

Setting δ = min(ε/2, η) we may then see that

dΓ (f ◦ g, u ◦ v) ≤ dΓ (f ◦ g, f ◦ v) + dΓ (f ◦ v, u ◦ v)

= sup
z∈Γ

d(f(g(z)), f(u(z))) + dΓ (f, u) <
ε

2
+

ε

2
= ε

if dΓ (f, u) < δ and dΓ (g, v) < δ. This means the continuity of the composition. Hence

there exists δ > 0 such that

dΓ (u−1, f−1) = dΓ (f−1(f ◦ u−1), f−1(idΓ )) < ε

if dΓ (f ◦ u−1, idΓ ) < δ. The relation

dΓ (f ◦ u−1, idΓ ) = dΓ (f ◦ u−1, u ◦ u−1) = dΓ (f, u)

implies that dΓ (u−1, f−1) < ε if dΓ (f, u) < δ, which means the continuity of the inverse

operation. This finishes the proof.

Given two oriented Jordan curves Γ and Γ ′ on the Riemann sphere C, let AΓ,Γ ′

be the family of all homeomorphisms mapping Γ onto Γ ′. With any distinct points
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z1, z2, z3, z4 ∈ Γ ordered according to the orientation of Γ we associate the value

(3.3) [z1, z2, z3, z4]Γ := [z1, z2, z3, z4]D,

where D is the domain that is complementary to Γ on the left, and [z1, z2, z3, z4]D is the

harmonic cross-ratio of the quadrilateral D(z1, z2, z3, z4). The correspondence is unique.

Given K ≥ 1, we may state the following definition.

Definition 4.2. A sense-preserving homeomorphism f ∈ AΓ,Γ ′ is said to be a K-

quasihomography (K-qh) if

(3.4) Φ1/K([z1, z2, z3, z4]Γ ) ≤ [f(z1), f(z2), f(z3), f(z4)]Γ ′ ≤ ΦK([z1, z2, z3, z4]Γ )

for any distinct points z1, z2, z3, z4 ∈ Γ ordered according to the orientation of Γ .

We denote by AΓ,Γ ′(K) the class of all the K-qh mappings f ∈ AΓ,Γ ′ with a given

K ≥ 1. These mappings share all the basic properties of K-qc mappings mentioned

previously. Moreover, we let

A∞
Γ,Γ ′ =

⋃

K≥1

AΓ,Γ ′(K).

Given f ∈ A∞
Γ,Γ ′ , the number

(3.5) KΓ,Γ ′(f) := min{K ≥ 1 : f ∈ AΓ,Γ ′(K)}
is said to be the maximal dilatation of f . Moreover,

KΓ (f) = KΓ,Γ (f).

In these circumstances, if F ∈ F∞
D,D′(K), where D and D′ are Jordan domains on C,

then f := F |Γ is obviously an element of AΓ,Γ ′(K) for any K ≥ 1, where Γ := ∂D and

Γ ′ := ∂D′, i.e.,

(3.6) FD,D′(K)|Γ ⊂ AΓ,Γ ′(K).

Conversely, given f ∈ AΓ,Γ ′(K), where Γ and Γ ′ are oriented Jordan curves on C, and

K ≥ 1, we may find an element Ff ∈ FD,D′(K∗), where K∗ = K∗(K) but D and D′

are the left-hand domains complementary to Γ and Γ ′, respectively, such that Ff |Γ = f .

This can be achieved by the use of one of the well-known particular extensions (see [Le]);

among them the conformally invariant Douady–Earle extension seems to be preferable

(see [DE] and [SZ]).

Therefore, the family AΓ,Γ ′(K), K ≥ 1, represents uniformly the boundary values of

FD,D′(K) with the same K. Conversely, the number K∗(K) can be explicitly estimated

for any of the well-known extensions, and these estimates are asymptotically sharp, i.e.,

K∗(K) → 1 as K → 1; see [Le], [P1], [RZ2] and [SZ].

We may regard K-qh homeomorphisms as the 1-dimensional counterpart of K-qc

mappings. Conformal invariance, transformation rules, topological and algebraic proper-

ties of K-qh mappings justify the notion of 1-dimensional K-qc mappings; see [Z1], [Z2],

[Z3] and [Z6].

Some basic properties of K-quasihomographies of the class AΓ,Γ ′(K) are presented in

Theorem 4.5. For oriented Jc’s Γ , Γ ′ and Γ ′′ on C and for K1, K2 ≥ 1, if f1 ∈
AΓ,Γ ′(K1) and f2 ∈ AΓ ′,Γ ′′(K2), then f2 ◦ f1 ∈ AΓ,Γ ′′(K2K1).
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Theorem 4.6. For oriented Jc’s Γ and Γ ′ on C, and K ≥ 1, we have f ∈ AΓ,Γ ′(K)

if and only if f−1 ∈ AΓ ′,Γ (K).

The proof of Theorem 4.5 follows immediately from the composition property of ΦK

and the definition of AΓ (K). Theorem 4.6 is a consequence of similar arguments.

By the Riemann mapping theorem a number of properties of the class AΓ,Γ ′(K) can

be reduced to

(3.7) AΓ (K) := AΓ,Γ (K).

Theorem 4.7. Let Γ be an oriented Jc on C. A function f belongs to AΓ (1) if and

only if f is the boundary value of a conformal automorphism of D, where ∂D = Γ .

P r o o f. Let H map ∆ conformally onto D, and let f ∈ AΓ (1), where ∂D = Γ . The

mapping h = S−1
H (f) belongs to AT (1) if and only if it is a homography mapping T onto

itself; cf. Theorem 2.5.

4. Complete boundary transformation. It is an obvious remark that a conformal

mapping between two Jordan domains is determined by its boundary values. Therefore

one may say that conformal mappings have the boundary character.

In contrast, quasiconformal mappings have the domain character. We show this in

the examples below. Hence, the following considerations are strictly connected with the

conformal theory and the boundary values of quasiconformal mappings.

Example 4.1. The mapping F̺(z) = z − ̺(1 − |z|2) is obviously a quasiconformal

automorphism of ∆, if ̺ is sufficiently close to the origin. But F̺|T = idT .

Example 4.2. It is not easy to find a conformal mapping of the unit disc ∆ onto

an elliptic domain E(0; a, b), whereas the simplest and extremal quasiconformal mapping

is just the affine one, which obviously is not conformal if the ratio a/b of semiaxes of

E(0; a, b) is equal to 1.

Let Γi, i = 1, 2, 3, be oriented Jc’s on C, and let AΓi
denote all sense-preserving

automorphisms of Γi, i = 1, 2, 3. By Di and D∗
i we denote the corresponding domains

complementary with respect to Γi, i = 1, 2, 3. Moreover, let H , H∗, G and G∗ be conformal

mappings of D1 onto D2, D∗
1 onto D∗

2 , D2 onto D3 and D∗
2 onto D∗

3 , respectively. For

every fkl ∈ AΓ1
, k, l = 1, 2, consider the transformation SH,H∗

described by

(4.1) SH,H∗

((
f11 f12

f21 f22

))
= (Skl

H,H∗
(fkl)) =

(
H ◦ f11 ◦ H−1 H ◦ f12 ◦ H−1

∗
H∗ ◦ f21 ◦ H−1 H∗ ◦ f22 ◦ H−1

∗

)
.

Since conformal mappings between Jordan domains can be considered homeomorphisms

of their closures, the transformation SH,H∗
is well defined, and will be called here the

complete boundary transformation mapping
∏4

l=1 AΓ1
onto

∏4
l=1 AΓ2

.

It is evident that

(4.2) SG◦H,G∗◦H∗
= SG,G∗

◦ SH,H∗
,

which yields

(4.3) SH−1,H−1
∗

= S−1
H,H∗

.
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Write

f̃ =

(
f f
f f

)
, f ∈ AΓ1

,

and let GΓ1
be the collection of all such elements. Given f̃ and g̃ from GΓ1

, set

(4.4) f̃ ∗ g̃ =

(
f ◦ g f ◦ g
f ◦ g f ◦ g

)
.

Hence, (GΓ1
, ∗ ) is a group and by defining

(
f11 f12

f21 f22

)
◦

(
g11 g12

g21 g22

)
=

(
f11 ◦ g11 f12 ◦ g12

f21 ◦ g21 f22 ◦ g22

)

we can see that

(4.5) SH,H∗
(f̃ ) ◦ SH,H∗

(g̃ ) = SH,H∗
(f̃ ∗ g̃ )

for every f̃ and g̃ from GΓ1
. We have proved

Theorem 4.8. The complete boundary transformation SH,H∗
is an isomorphism be-

tween (GΓ1
, ∗ ) and (SH,H∗(GΓ1

), ◦).
Let

(4.6) SH = S11
H,H∗

, SH∗
= S22

H,H∗
, DHH∗

= S12
H,H∗

and DH∗H = S21
H,H∗

.

Define

(4.7) RΓ1,Γ2
= H ◦ H−1

∗ ;

we call RΓ1,Γ2
the conformal representation of Γ1 with respect to Γ2. Let RΓ := RT,Γ

for every Jc Γ on C. This RΓ is known as the sewing automorphism or the conformal

representation of Γ and denoted by CR[Γ ]; cf. [P4]. Notice that

RΓ1,Γ2
= {H ◦ H−1

∗ }
if H and H∗ are fixed.

Theorem 4.9. For any oriented Jc’s Γ1, Γ2 on C, and any conformal H and H∗ as

described above, the solution set of

(4.8) SH(f) = SH∗
(f)

contains infinitely many automorphisms of the form (H−1
∗ ◦ H)n, where fn means the

n-fold composition of f , and where f−n = (f−1)n, n = 0,±1,±2, . . .

P r o o f. This follows immediately, by checking that H−1
∗ ◦H satisfies (4.8). By using

(4.2) and (4.3), we complete the proof.

The transformation

(4.9) JHH∗
= SH∗

◦ S−1
H

is a self-isomorphism of AΓ2
.

It is obvious that all solutions of (4.8) form a group under composition. Denote by

R∞
Γ2,Γ1

the family of all solutions obtained in Theorem 4.10 below, and set

(4.10) R∞
Γ1,Γ2

:= SH(R∞
Γ2,Γ1

) = SH∗(R∞
Γ2,Γ1

).
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Then we may easily see that (R∞
Γ1,Γ2

, ◦) is a group generated by RΓ1,Γ2
and we call it the

fix-point group of JHH∗
.

Not without justification we may call JHH∗
a conjugation operator in AΓ2

, whose

“real line” is R∞
Γ1,Γ2

. It is very probable that the elements in R∞
Γ2,Γ1

are the only solutions

of (4.8). It is obvious that (cf. Theorem 4.5)

KΓ2
(H ◦ H−1

∗ ) = KΓ2
(H∗ ◦ H−1)(4.11)

and

KΓ∗

2
(H ◦ H−1

∗ ) = KΓ∗

2
(H∗ ◦ H−1),(4.12)

where Γ ∗
i is obtained from Γi by reversing the orientation. Moreover, each of the expres-

sions in (4.11) and (4.12) is a constant considered as a function of H and H∗.

Let now

(4.13) A∞
Γi

=
⋃

K≥1

AΓi
(K) and A∞

Γ∗

i
=

⋃

K≥1

AΓ∗

i
(K)

for i = 1, 2, 3. Obviously, (A∞
Γi

, ◦) and (A∞
Γ∗

i
, ◦) are subgroups of (AΓi

, ◦) for i = 1, 2, 3.

We have proved

Theorem 4.10. Let Γ1 and Γ2 be oriented Jc’s on C, and let D1, D∗
1 , D2, D∗

2 denote

the domains complementary to Γ1 and Γ2, respectively. Then:

(i) H(Γ1) = H∗(Γ1) = Γ2 for every H and H∗ mapping D1 and D∗
1 conformally

onto D2 and D∗
2 , respectively;

(ii) the transformations SH and SH∗
defined by (4.6) are homeomorphisms between

(AΓ1
, dΓ2

) and (AΓ2
, dΓ2

), and isomorphisms between (AΓ1
, ◦) and (AΓ2

, ◦);
(iii) SH is an isomorphism between (A∞

Γ1
, ◦) and (A∞

Γ2
, ◦), whereas SH∗

is an isomor-

phism between (A∞
Γ∗

1
, ◦) and (A∞

Γ∗

2
, ◦), such that

SH(AΓ1
(K)) = AΓ2

(K) and SH∗
(AΓ∗

1
(K)) = AΓ∗

2
(K), K ≥ 1;

(iv) the transformations DHH∗
and DH∗H are homeomorphisms between (AΓ1

, dΓ1
)

and (AΓ2
, dΓ2

). Moreover ,

DHH∗
(f) = SH(f) ◦ r = r ◦ SH∗

(f), DH∗H(f) = r−1 ◦ SH(f) = SH∗
(f) ◦ r−1

and

(DHH∗
(f))−1 = DH∗H(f−1)

for every f ∈ AΓ1
, where r = RΓ1,Γ2

for brevity;

(v) the transformation JHH∗
defined by (4.9) is an automorphism of the metric group

(AΓ2
, ◦, ̺Γ2

) and R∞
Γ1,Γ2

are fixed points of this transformation.

Moreover ,

SH = Sr ◦ SH∗
and JHH∗

= S−1
r .

5. Quasicircles. A Q-quasicircle on C is the image of a circle (say, the unit circle)

on C under a Q-qc mapping of C. Quasiconformal mappings preserve sets of measure

zero, so every quasicircle is of zero area. On the other hand, a quasicircle need not

be rectifiable. Moreover, the Hausdorff dimension of a quasicircle may take any values
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from [1, 2]; see [GV]. A considerable number of properties of quasicircles can be found

in [Ge3].

By a theorem of Ahlfors (see [Le]), a Jordan curve Γ on C is a quasicircle if and only

if there exists a constant C such that

(5.1) min
j=1,2

dia(Γj) ≤ C|z1 − z2|

for any z1, z2 ∈ Γ , where Γ1 and Γ2 denote the components of Γ \ {z1, z2}. By (5.1) the

property of a Jordan curve to be a K-quasicircle has an obvious geometrical meaning;

see [Ge3] and [Le]. If Γ is a K-quasicircle, then

(5.2) dimH(Γ ) ≤ 2 − 2

K + 1
,

where dimH(Γ ) denotes the Hausdorff dimension of Γ ; see [As]. Therefore, K-quasicircles

can be considered fractals.

Now, we shall obtain a few characterizations of quasicircles as applications of harmonic

cross-ratios and the conjugate 1-dimensional K-qh automorphisms of a given oriented Jc

Γ on C. In these characterizations, no special point in C is distinguished, which is not

always possible for several other characterizations (cf. [Ge3]), where the point at infinity

plays an essential role.

Theorem 4.11. Let Γ be an oriented Jc on C. Then Γ is a quasicircle if and only if

there exists a constant K ≥ 1 such that

(5.3) Φ1/K([z1, z2, z3, z4]Γ ) ≤ [z1, z2, z3, z4]Γ∗ ≤ ΦK([z1, z2, z3, z4]Γ )

for any distinct points z1, z2, z3, z4 ∈ Γ , where Γ ∗ is the conjugate Jc.

P r o o f. Suppose that Γ is a Q-quasicircle, Q ≥ 1. Then there is a Q2-qc reflection JΓ

in Γ . Let H and H∗ be conformal mappings of ∆ and ∆∗ onto D and D∗, respectively,

where Γ = ∂D and Γ ∗ = ∂D∗. The mapping

(5.4) F = JT ◦ H−1
∗ ◦ JΓ ◦ H

is a qc automorphism of ∆. Consider f = F |T and distinct points w1, w2, w3, w4 ∈ T .

Then we have

Φ1/Q2([w1, w2, w3, w4]) ≤ [f(w1), f(w2), f(w3), f(w4)] ≤ ΦQ2([w1, w2, w3, w4]).

Due to the conformal invariance of harmonic cross-ratios, it follows that

[w1, w2, w3, w4] = [z1, z2, z3, z4]Γ ,

where wi = H−1(zi), i = 1, 2, 3, 4. The reflection JΓ does not change the points of Γ ,

whereas

[f(w1), f(w2), f(w3), f(w4)] = [z1, z2, z3, z4]Γ∗

holds by the conformal invariance of harmonic cross-ratios. Thus we have the necessity

with K = Q2.

To prove the sufficiency let Γ be an oriented Jc on C such that the inequalities (5.3)

hold for any distinct points z1, z2, z3, z4 ∈ Γ . Consider h = H−1
∗ ◦ H on T . By (5.3) and
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the conformal invariance of the harmonic cross-ratios and the identity

[ · , · , · , · ]T = [ · , · , · , · ]T∗ ,

the double inequality

(5.5) Φ1/K([w1, w2, w3, w4]) ≤ [h(w1), h(w2), h(w3), h(w4)] ≤ ΦK([w1, w2, w3, w4])

holds for wi = H−1(zi), i = 1, 2, 3, 4. Therefore, by Theorem 2.8, there exists a K ′(K)-qc

automorphism Fh of ∆ with the boundary values given by h. Consider

(5.6) G = H∗ ◦ JT ◦ Fh ◦ H−1.

One may see that G is a sense-reversing qc mapping of D onto D∗ which is the identity

on Γ . Defining G(z) = G−1(z) for z ∈ D∗, we see that G is a K ′-qc reflection in Γ , where

K ′ ≤ min{λ3/2(K), 2λ(K)−1} with λ(K) = ΦK

(
1
/√

2
)2

/Φ1/K

(
1
/√

2
)2

. Consequently,

Γ is a quasicircle. The proof is complete.

Using the notion of conformal representation we prove

Theorem 4.12. If an oriented Jc Γ on C is a Q-quasicircle, Q ≥ 1, then RΓ ∈
AΓ (Q2) ∩ AΓ∗(Q2). Conversely, for each K ≥ 1, there is a constant Q = Q(K) such

that if RΓ ∈ AΓ (K) ∪ AΓ∗(K), then Γ is a Q(K)-quasicircle, where 1 ≤ Q(K) ≤
min{λ3/2(K), 2λ(K) − 1}.

P r o o f. Suppose that an oriented Jc Γ on C is a Q-quasicircle, Q ≥ 1. Then there is

a Q2-qc reflection in Γ . The mapping F defined by (5.4) is a Q2-qc automorphism of ∆.

Thus F |T = H−1
∗ ◦ H ∈ AT (Q2). The automorphism

(5.7) SH(H−1
∗ ◦ H) = SH∗

(H−1
∗ ◦ H) = H ◦ H−1

∗

is then an element of AΓ (Q2) ∩ AΓ∗(Q2).

Suppose now that

H ◦ H−1
∗ ∈ AΓ (K) ∪ AΓ∗(K), K ≥ 1.

The automorphism H−1
∗ ◦ H belongs to AT (K) = AT∗(K).

Hence, by Theorem 2.8, there exists a Q(K)-qc automorphism Fh of ∆ with the

boundary values given by h = H−1
∗ ◦ H . From this moment we follow the sufficiency

proof of Theorem 4.11, starting from (5.5), to obtain the sufficiency in Theorem 4.12.

This ends the present proof.

Using the notions of Section 4 of Chapter IV, we assume that Γ1 = T and that

Γ2 is denoted by Γ . So let D1 = ∆, D∗
1 = ∆∗, D2 = D and D∗

2 = D∗. Recall that

AT (K) = AT∗(K) for every K ≥ 1. It is an easy observation that now we also have

(5.8) KΓ (H∗ ◦ H−1) = KΓ∗(H∗ ◦ H−1).

This equality, together with (4.11) and (4.12), enables us to state the following

Definition 4.3. Let Γ be an oriented Jc on C. The common value described by (5.8),

(4.11) and (4.12) is denoted by KΓ .

Then, as an immediate consequence of the previous considerations and Theorem 4.12,

one obtains
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Theorem 4.13. An oriented Jc Γ on C is a quasicircle if and only if KΓ < ∞.

It is worth noting that an oriented Jc Γ on C is a circle on C if and only if

(5.9) AΓ (K) = AΓ∗(K)

for each K ≥ 1.

Two Jc’s Γ1 and Γ2 on C are said to be equivalent (Γ1 ∼ Γ2) if there is a homography H

such that Γ2 = H(Γ1). If Γ1 ∼ Γ2, then KΓ1
= KΓ2

. Let Γ be the family of all Jc’s in C,

and let

(5.10) Γ1 = Γ/∼ .

Definition 4.5. For each equivalence [Γ ] ∈ Γ1, the value

(5.11) ‖[Γ ]‖ = 1
2 log KΓ

is called the norm in Γ1.

Let Γ∞ denote the family of all Jc’s Γ in C with KΓ finite, and let Γ1, Γ2 ∈ Γ∞.

Then

(5.12) q(Γ1, Γ2) =
1

2

∣∣∣∣ log
KΓ1

KΓ2

∣∣∣∣

is a pseudometric in Γ∞.

To make q a metric we shall introduce a much weaker equivalence relation on Γ∞.

First we introduce a new equivalence relation on Γ by saying that two Jc’s Γ1 and Γ2 are

w-equivalent (Γ1 ≈ Γ2) if KΓ1
= KΓ2

. Let

Γ2 = Γ/≈ .

We denote the equivalence classes in this space by [[Γ ]] and let Γ∞
2 = Γ∞/≈. Putting

(5.13) q∗([[Γ1]], [[Γ2]]) = q(Γ1, Γ2)

one obtains

Theorem 4.14. The space (Γ∞
2 , q∗) is a metric space.

Additionally, one has

Theorem 4.15. If a Jc Γ on C is a quasicircle, then

(5.14) A∞
Γ = A∞

Γ∗ .

P r o o f. Suppose that Γ on C is a Jc, and H and H∗ are conformal mappings of ∆

and ∆∗ onto D and D∗, respectively. Assume that Γ is a Q-quasicircle, Q ≥ 1, and that

f ∈ A∞
D . Then there is K ≥ 1 such that f ∈ AD(K).

Let

(5.15) f∗ = JHH∗
(f).

By the previous considerations and Theorems 4.9 and 4.11, it follows that

(5.16) KΓ∗(f) ≤ Q4KΓ (f).
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Hence, there is a constant L, 1 ≤ L ≤ Q4K, such that f ∈ AΓ∗(L). Starting with any

f ∈ A∞
Γ∗ , and using the fact that

(5.17) J−1
HH∗

= JH∗H ,

we may obtain a similar inclusion from the identity (5.14). This ends the proof.

Conjecture. Suppose that Γ is a Jc on C for which (5.14) holds , where D and D∗

denote the complementary domains. Then Γ is a quasicircle.

V. The universal Teichmüller space

1. Introduction. The universal Teichmüller space was introduced by L. Bers in the

study of the group of qc automorphisms of a fixed domain D in C. We assume here that

D is a Jordan domain in C, and denote by F∞
D̄

the family of all qc automorphisms of D,

which are regarded as automorphisms of the closure D = D ∪ Γ , where Γ = ∂D.

Two mappings F and G in F∞
D̄

are said to be equivalent (F∼G) if they differ by a

conformal automorphism of D. The equivalence classes can be represented by normalized

qc automorphisms of D; cf. [Le].

By the existence theorem for the Beltrami equation (cf. [Bo] and [LV]), there is

a unique correspondence between the equivalence classes of the above relation and the

open unit ball of the Banach space consisting of all L∞-functions on D, whose elements

are called complex dilatations.

A much more interesting space is obtained by saying that two mappings F and G

in F∞
D̄

are equivalent (F ∼ G) if they differ by the boundary values of a conformal

automorphism of D. This boundary relation is apparently weaker than the previous one.

The space of the corresponding equivalence classes is the universal Teichmüller space

(UTS). We emphasize the fact that this equivalence relation is defined by the boundary

value of the previous relation, i.e. ∼|Γ =∼. Moreover, the corresponding equivalence

relation is induced in the unit ball of the Banach space L∞
D of complex dilatations.

However, it seems plausible that there does not exist any intrinsic characterization of

functions in L∞
D .

Let A∞
Γ denote the class of qh automorphisms of an oriented Jc Γ on C. It is obvious

that equivalence classes of the latter relation can be represented as equivalence classes of

A∞
Γ . These in turn can be represented by those normalized automorphisms in A∞

Γ that

keep three given distinct points of Γ fixed. Hence, the boundary type normalization for

the qc automorphisms from F∞
D seems to be justified, where Γ = ∂D.

Similarly to the theory of quasicircles, we define the weakest equivalence relation by

setting F ≈ G for two mappings F and G in F∞
D̄

if K(F ) = K(G). This induces a

corresponding relation in the family of complex dilatations, which divides the unit ball of

L∞ in D into spheres centered at the origin. This relation may be considered also in A∞
Γ .

It is worth noting that, in the case of D = U or of D = ∆, two equivalent automorphisms

may have different qs constants; cf. Example 2.1, p. 48.

A remarkable fact about the second relation is that it defines the UTS on the boundary

curve Γ . Therefore, the conformally invariant characterization of the class A∞
Γ , represen-
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ting boundary values of qc automorphisms of D, is important in the UTS theory. Another

important fact about this characterization is that we may define the Teichmüller distance

for automorphisms in A∞
Γ without any reference to qc extensions. This makes the space

of equivalence classes, obtained from A∞
Γ by dividing by the second equivalence rela-

tion, a metric space. This illustrates vividly the boundary character of the UTS or, more

precisely, of the universal Teichmüller metric space (UTMS).

Unfortunately, each oriented Jc Γ on C has two complementary domains. Pursuing

the idea of the pure boundary character of the UTMS, we shall complete it on the other

side of Γ .

We have already considered simultaneously the boundary value problem for qc auto-

morphisms of D and D∗, provided that Γ is a circle in C (see Chapter II). This simulta-

neous treatment is based on the fact that FD(K) and FD∗(K), K ≥ 1, may be identified

by a conformal reflection if and only if Γ is a circle in C. Hence, AΓ (K) = AΓ∗(K) for

every K ≥ 1 if and only if Γ is a circle in C.

Assuming that Γ is a quasicircle in C, one may identify F∞
D and F∞

D∗ by a qc reflection

in Γ . Moreover, we have proved that A∞
Γ = A∞

Γ∗ provided Γ is a quasicircle in C and Γ ∗

denotes Γ with the opposite orientation.

Unfortunately, if Γ is an arbitrary oriented Jc on C, there does not exist any suitable

relation between F∞
D and F∞

D∗ that preserves all points of Γ ; cf. [ST]. Hence, we shall

consider A∞
Γ and A∞

Γ∗ separately.

On the other hand, let an oriented Jc Γ on C be given, with D and D∗ the comple-

mentary domains. We shall consider the problem of distinguishing between D and D∗.
If Γ is an oriented Jc in the open complex plane C, the correspondence Γ ↔ (D, D∗) is

fairly obvious and can be achieved by assuming that the point at infinity is in D∗. This

defines the “positive” orientation of Γ .

This idea does not work if Γ is on C, which case is of our special interest. We overcome

this difficulty by assuming that Γ is on the Riemann sphere, i.e., C equipped with a fixed

conformal structure; cf. the Introduction. Given an oriented Jc Γ on the Riemann sphere

one may uniquely associate with Γ the complementary domains D and D∗ defining the

left-hand domain by D and the right-hand domain by D∗. Hence, the correspondence

Γ ↔ (D, D∗) is unique.

For an oriented Jc Γ on the Riemann sphere C, it is justified to introduce the notions

F∞
Γ , F∞

Γ∗ instead of F∞
D|Γ and F∞

D∗|Γ∗ , respectively. The already solved general boundary

value problem for qc mappings means a characterization by which (F∞
Γ ,F∞

Γ∗) is identified

with (A∞
Γ , A∞

Γ∗) on each oriented Jc Γ on the Riemann sphere. It becomes uniform if

(FΓ (K),F∞
Γ∗(K)) is represented by (AΓ (K), AΓ∗(K)) for every K ≥ 1.

Another motivation for this notion arises from the fact that the conformal mappings H

and H∗ of a given pair of complementary Jordan domains D and D∗ onto ∆ and ∆∗,
respectively, are described by the oriented unit circle T and the oriented Jc Γ as the

common boundaries of the corresponding domains.

2. The universal Teichmüller space of a circle. Suppose now that Γ is an

arbitrary circle in C. Therefore, as mentioned in the Introduction to Chapter IV, AΓ (K)=
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AΓ∗(K) for every K ≥ 1, and then

A∞
Γ = A∞

Γ∗ .

Two automorphisms f, g ∈ A∞
Γ are said to be equivalent (f ∼ g) if f ◦ g−1 ∈ AΓ (1). The

set

(2.1) TΓ = A∞
Γ /∼

of equivalence classes is the universal Teichmüller space of Γ . For f, g ∈ A∞
Γ , one defines

(2.2) τ(f, g) = 1
2 log K(f ◦ g−1).

Hence, 0 ≤ τ(f, g) ≤ log K for each f, g ∈ AΓ (K), 1 ≤ K < ∞. Suppose that fi ∼ gi for

fi, gi ∈ A∞
Γ , i = 1, 2. There exist h1, h2 ∈ AΓ (1) such that gi = hi ◦ fi, i = 1, 2. Hence

τ(g1, g2) = 1
2 log K(h1 ◦ f1 ◦ f−1

2 ◦ h−1
2 ) = 1

2 log K(f1 ◦ f−1
2 ) = τ(f1, f2).

Thus we can define

(2.3) τ∗([f ], [g]) := τ(f, g)

for any f ∈ [f ] and g ∈ [g]. This is the Teichmüller distance between two points of TΓ .

We have proved

Theorem 5.1. The space (TΓ , τ∗) is a metric space.

The importance of the fact that we may define τ∗ without any help of quasiconformal

extensions cannot be overestimated. This mainly enables us to call TΓ a boundary model

of the universal Teichmüller metric space.

Let Γ1 and Γ2 be circles in C. By Theorem 3.3, there exists a homography H such

that H(Γ1) = Γ2 and that the transformation

SH(f) = H ◦ f ◦ H−1

maps A∞
Γ1

onto A∞
Γ2

(cf. Theorem 4.11). Suppose that f, g ∈ A∞
Γ1

are equivalent (f ∼ g).

Then there exists a constant η ∈ AΓ1
(1) such that f = η ◦ g and

(2.4) SH(f) ◦ (SH(g))−1 = H ◦ f ◦ H−1 ◦ H ◦ g−1 ◦ H−1 = H ◦ η ◦ H−1 = SH(η)

is an element of AΓ2
(1). Hence SH(f) ∼ SH(g), and one can define S∗

H : TΓ1
→ TΓ2

by

setting

(2.5) S∗
H([f ]) := [SH(f)].

This yields

Theorem 5.2. For any circles Γ1, Γ2 on C, the transformation S∗
H of (TΓ1

, τ∗
1 ) onto

(TΓ2
, τ∗

2 ) is an isometry.

P r o o f. Suppose that [f ], [g] ∈ TΓ1
. Then

τ∗
2 (S∗

H([f ]), S∗
H([g])) = τ2(SH(f), SH(g))

= 1
2 log K(H ◦ f ◦ H−1 ◦ H ◦ g−1 ◦ H−1)

= 1
2 log K(H ◦ f ◦ g−1 ◦ H−1) = 1

2 log K(SH(f ◦ g−1))

= 1
2 log K(f ◦ g−1) = τ1(f, g) = τ∗

1 ([f ], [g]).
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Theorem 5.3. For every circle Γ on C, the space (TΓ , τ∗) is a complete metric

space.

P r o o f. In view of Theorems 3.3 and 5.2, we may confine our considerations to the

case Γ = T . Let wk = ei(2πk/3), k = 0, 1, 2. Consider a sequence fn ∈ A∞
T such that

τ∗([fn], [fm]) → 0 as n, m → ∞.

For each n ∈ N, there exists a function gn ∈ [fn] such that gn(wk) = wk for k = 0, 1, 2.

By the definition of τ∗, we see that

(2.6) τ(gn, gm) = τ∗([fn], [fm]) → 0 as n, m → ∞.

Thus, there exists n0 ∈ N such that τ(gn, gn0
) < 1/2 for every n ≥ n0. Hence,

(2.7) K(gn) ≤ e max{K(g1), . . . , K(gn0
)} < ∞

for each n ∈ N.

By Corollary 3.8, there exists an automorphism g ∈ A∞
T and a subsequence gnl

,

l = 1, 2, . . . , such that

(2.8) dT (gnl
, g) → 0 as l → ∞.

By (2.6), for ε > 0, there exists l0 such that

(2.9) 1
2 log K(gnk

◦ g−1
nl

) = τ(gnk
, gnl

) < ε

for k, l > l0. Fixing l > l0, we get

(2.10) K(gnk
◦ g−1

nl
) < e2ε for k > l0.

Hence

(2.11) dT (gnk
◦ g−1

nl
, g ◦ g−1

nl
) → 0 as k → ∞.

By (2.11) and (2.10), one can see that

(2.12) τ(g, gnl
) = 1

2 log K(g ◦ g−1
nl

) ≤ ε for l > l0.

This means that τ(g, gnl
) → 0 as l → ∞. Then, using (2.6), we arrive at

(2.13) τ∗([fn], [g]) = τ(gn, g) → 0 as n → ∞,

which is the desired result.

3. The universal Teichmüller space of an oriented Jordan curve. Suppose

that Γ is an oriented Jc on C and D, D∗ are its left- and right-hand domains, respectively.

Set AΓ = AΓ × AΓ . For all pairs f = (f1, f2) and g = (g1, g2) from AΓ , put

(3.1) f ◦ g = (f1, f2) ◦ (g1, g2) = (f1 ◦ g1, f2 ◦ g2).

Then (AΓ , ◦) is a group. Introducing

(3.2) dΓ (f, g) = max{dΓ (f1, g1), dΓ (f2, g2)}
one makes AΓ a metric space, so that (AΓ , ◦,dΓ ) is a metric group. Moreover, let

(3.3) A∞
Γ =

⋃

K≥1

AΓ (K), A∞
Γ∗ =

⋃

K≥1

AΓ∗(K)
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and then

(3.4) AΓ (K) = (AΓ (K), AΓ∗(K)), A
∞
Γ = (A∞

Γ , A∞
Γ∗).

Hence, (A∞
Γ , ◦) is a group as well. Note that each element of A∞

Γ is an automorphism

of Γ × Γ .

We say that two automorphisms f1, g1 ∈ A∞
Γ are equivalent (f1 ∼ g1) if f1 ◦ g−1

1 ∈
AΓ (1). Also, we say that two automorphisms f2, g2 ∈ A∞

Γ∗ are equivalent (f2 ∽∗ g2) if

f2 ◦ g−1
2 ∈ AΓ∗(1). Let

(3.5) TΓ = A∞
Γ /∼ and TΓ∗ = A∞

Γ∗/∽
∗ .

We say that

(3.6) TΓ = (TΓ , TΓ∗)

is the universal Teichmüller space of Γ .

For all pairs f = (f1, f2) and g = (g1, g2) from A∞
Γ , we define

(3.7) τΓ (f1, g1) = 1
2 log KΓ (f1 ◦ g−1

1 ), τΓ∗(f2, g2) = 1
2 log KΓ∗(f2 ◦ g−1

2 ).

and

(3.8) τΓ (f, g) = 1
4 log KΓ (f1 ◦ g−1

1 )KΓ∗(f2 ◦ g−1
2 ),

which is a pseudometric in A∞
Γ ; moreover, 0 ≤ τΓ (f, g) ≤ log K for all f, g ∈ AΓ (K).

Theorem 5.4. For an oriented Jc Γ on C and every f = (f1, f2), g = (g1, g2) ∈ A∞
Γ ,

we have, with Γ ∗ the Jc conjugate to Γ :

(i) τΓ (f, g) = 0 if and only if f ◦ g−1 ∈ AΓ (1),

(ii) dΓ∗(f, g) = dΓ (f, g),

(iii) τΓ∗(f, g) ≤ τΓ (f, g) + 2 logQ if Γ is a Q-quasicircle.

P r o o f. The identity

τΓ (f, g) = 0

is equivalent to

τΓ (f1, g1) = 0 and τΓ∗(f2, g2) = 0

and hence to

f1 ◦ g−1
1 ∈ AΓ (1) and f2 ◦ g−1

2 ∈ AΓ∗(1)

and to

f ◦ g−1 = (f1 ◦ g−1
1 , f2 ◦ g−1

2 ) ∈ AΓ (1).

Obviously, AΓ = AΓ∗ and, because of (3.2), the assertion (ii) follows. If Γ is a Q-

quasicircle, then, by Theorem 4.15, we have

AΓ (K) ⊂ AΓ∗(L1) and AΓ∗(K) ⊂ AΓ (L2),

where 1 ≤ L1 ≤ Q4K and 1 ≤ L2 ≤ Q4K, K ≥ 1. Now, (iii) follows by elementary

calculations.

If Γ is a circle, then Q = 1, and, because of (iii),

τΓ∗(f, g) = τΓ (f, g).
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The theorem is proved.

As a completion of Theorem 5.4, one may state

Corollary 5.1. We have:

(i) AΓ∗ = AΓ always ;

(ii) A∞
Γ∗ = A∞

Γ if Γ is a quasicircle in C;

(iii) TΓ∗ = TΓ if and only if Γ is a circle in C.

P r o o f. The assertion (i) is obvious; (ii) follows by Theorem 4.15. The assertion (iii)

is a result of the observation that [f ] ∈ TΓ inherits the group structure if and only if

KΓ (f) = KΓ∗(f) = 1.

Assume now that [f1], [f2], [g1] and [g2] are elements of TΓ . Then

[f1] = [f2] ⇔ f1 ∼ f2 ⇔ f1 = h1 ◦ f2

and

[g1] = [g2] ⇔ g1 ∼ g2 ⇔ g1 = h2 ◦ g2,

where h1 and h2 are elements of AΓ (1) and AΓ∗(1), respectively. Thus

f1 = (f1
1 , f1

2 ) = (h1
1 ◦ f2

1 , h1
2 ◦ f2

2 ) and g1 = (g1
1 , g1

2) = (h2
1 ◦ g2

1 , h
2
2 ◦ g2

2).

Hence

τΓ (f1, g1) = 1
4 log KΓ (h1

1 ◦ f2
1 ◦ (g2

1)
−1 ◦ (h2

1)
−1)KΓ∗(h1

2 ◦ f2
2 ◦ (g2

2)
−1 ◦ (h2

2)
−1)(3.9)

= 1
4 log KΓ (f2

1 ◦ (g2
1)−1)KΓ∗(f2

2 ◦ (g2
2)

−1) = τΓ (f2, g2).

So we can define

(3.10) τ∗Γ ([f ], [g]) = τΓ (f, g).

Evidently, this expression is well defined and independent of the representation. Thus,

we have proved

Theorem 5.5. For an oriented Jc Γ on C, the space (TΓ , τ∗Γ ) is a metric space.

Suppose now that [f ] = [g]. Then f1 ∼ g1 and f2 ∼ g2. Let H and H∗ map, as usual,

∆ and ∆∗ onto D and D∗, respectively. Define

f̃2 = JHH∗
(f1) and g̃2 = JHH∗

(g1).

Then

(3.11) f̃2 ◦ (g̃2)
−1 = JHH∗

(f1 ◦ (g1)
−1)

and, because of Theorem 4.11, f̃2 ◦ (g̃2)
−1 ∈ AΓ∗(1). Moreover, let

f̃1 = JH∗H(f2) and g̃1 = JH∗H(g2);

then

(3.11′) f̃1 ◦ (g̃1)
−1 = JH∗H(f2 ◦ (g2)

−1).

Hence one can see that f̃1 ◦ (g̃1)
−1 ∈ AΓ (1).

Let us introduce

(3.12) JHH∗
(f) = (JH∗H(f2), JHH∗

(f1)).
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As justified by the above considerations, we can define

(3.13) J∗
HH∗

([f ]) = [JHH∗
(f)].

This is a well-defined transformation of TΓ onto TΓ∗ .

Theorem 5.6. For an oriented Jc Γ on C, we have:

(i) the transformation JHH∗
defined by (3.12) is an automorphism of the metric

group (AΓ , ◦, dΓ ), and R∞
Γ are fixed points of this transformation;

(ii) (JHH∗
)−1 = JH∗H , and JHH∗

is an involution of A∞
Γ , provided Γ is a quasicircle;

(iii) J∗
HH∗

is an isometry between (TΓ , τ∗Γ ) and (TΓ∗ , τ∗Γ ).

P r o o f. The condition (i) follows from (ii) of Theorem 4.10 and by Corollary 5.1. The

identity of (ii) is a simple consequence of the definition of JHH∗
and Theorem 4.10. The

assertion (iii) follows by the definition of lτ∗
Γ and (iii) of Theorem 4.10. The identity (ii)

of Corollary 5.1 and the identity in (ii) of that theorem guarantee the second statement

of (ii). This finishes the proof.

By (iv) and (v) of Theorem 4.10 and by Theorem 4.14, it follows that DHH∗
and

DH∗H map AT (K) onto AΓ (K · KΓ ) and into AΓ∗(K · KΓ ), K ≥ 1, respectively. If, in

addition, Γ is a quasicircle in C, then both the transformations map A∞
T onto A∞

Γ = A∞
Γ∗ ;

cf. Theorem 4.16.

In order to lift DHH∗
and DH∗H to the respective UTS, assume that f, g ∈ A∞

T are

such that f ◦ g−1 ∈ AT (1). Then

DHH∗
(f) ◦ (DHH∗

(g))−1 = SH(f ◦ g−1) ∈ AΓ (1)(3.14)

and

DH∗H(f) ◦ (DH∗H(g))−1 = SH∗
(f ◦ g−1) ∈ AΓ∗(1).(3.14′)

In accordance with the previous cases, one may define D∗
HH∗

and D∗
H∗H that map TT

onto TΓ and TΓ∗ , respectively. Hence, we can set

(3.15) S∗
H,H∗

:=

(
S∗

H D∗
HH∗

D∗
H∗H S∗

H∗

)
.

Then we have a function

(3.16) S∗
H,H∗

:

(
TT TT

TT TT

)
→

(
TD TD

TD∗ TD∗ .

)
.

Let, as before, Γ1 and Γ2 be oriented Jc’s on the Riemann sphere, and let H , H∗
and G, G∗ be conformal mappings of ∆ and ∆∗ onto D1, D∗

1 and D2, D∗
2 , respectively.

Consider the transformation

(3.17) JΓ1Γ2
(f) = (JH∗G(f2), JHG∗

(f1)),

where

(3.18) JH∗G = SG ◦ S−1
H∗

and JHG∗
= SG∗

◦ S−1
H

map A∞
Γ1

onto A∞
Γ2

. By arguments related to those that we used defining τ∗ and J∗
HH∗

,

we may also define

(3.19) J∗
Γ1Γ2

([f ]) = [JΓ1Γ2
(f)].
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Then we have

R e m a r k 5.1. If Γ1 = Γ2 = Γ , one may identify G and G∗ with H and H∗, respec-

tively, and set

(3.20) JΓ := JΓΓ := JHH∗
.

Henceforth, the symbol JΓ will be used instead of JHH∗
, as more adequate in these

circumstances.

R e m a r k 5.2. By the previous arguments, one can define

(3.21) J∗
Γ = J∗

ΓΓ .

Theorem 5.7. For oriented Jc’s Γ1 and Γ2 on C, we have:

(i) JΓ1Γ2
is an isomorphism between (A∞

Γ1
, ◦) and (A∞

Γ∗

2
, ◦);

(ii) J∗
Γ1Γ2

is an isometry between (TΓ1
, τ∗Γ1

) and (TΓ∗

2
, τ∗Γ∗

2
);

(iii)(JΓ1Γ2
)−1 = JΓ2Γ1

and (J∗
Γ1Γ2

)−1 = J∗
Γ2Γ1

.

P r o o f. The condition (i) is a simple consequence of the respective condition in The-

orem 4.9. Since SΓ1Γ2
preserves the qh constant, (ii) follows by an easy calculation similar

to those we used before. The assertion (iii) can be checked immediately.

R e m a r k 5.3. If Γ is an oriented circle on C, then AΓ (K) = AΓ∗(K) for every

K ≥ 1. Hence, AΓ (K) = AΓ (K) × AΓ∗(K) can be identified with AΓ (K) on Γ . Since

KΓ (f) = KΓ∗(f) if and only if Γ is a circle on C, the metric τ∗Γ is isometric to τ∗
Γ . Hence

we may identify (TΓ , τ∗Γ ) with (TΓ , τ∗
Γ ) defined in Section V.2.

Suppose that Γ1 and Γ2 are oriented Jc’s on C with D1, D∗
1 and D2, D∗

2 the respective

left-hand and right-hand domains. Let H and H∗ map D1 and D∗
1 conformally onto D2

and D∗
2 , respectively. One may then consider the parallel transformations

SΓ1Γ2
= (SH , SH∗

)(3.22)

and

S∗
Γ1Γ2

= (S∗
H , S∗

H∗
)(3.23)

that map A∞
Γ1

and TΓ1
onto A∞

Γ2
and TΓ2

, respectively.

Further development of the ideas presented in this chapter, including the case when

Γ is a Jordan curve on a closed Riemann surface, will be presented in [Z15].

4. The space of normalized quasihomographies. In some parts of this presen-

tation we have used certain convenient normalization conditions (see Chapter III). To

simplify our examination of the universal Teichmüller space of an oriented Jc Γ on the

Riemann sphere C, and to clarify certain situations, different aspects of normalization

will be considered.

The first point to be considered is the unique correspondence between a given Jc Γ

on C and its complementary domains D and D∗. As mentioned in the introduction to

this chapter, the relation

(4.1) Γ ↔ (D, D∗)
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is obvious, provided that Γ lies in the open complex plane C, and assuming that the point

at infinity is in D∗. But this excludes cases such as Γ = R that are of special interest.

To make the relation (4.1) uniquely defined on C, we introduce two conditions:

∗ Γ is an oriented Jc on C;

∗ C is equipped with a fixed conformal structure making it the Riemann sphere.

Under these circumstances we define D and D∗ as the left-hand and right-hand comple-

mentary domains, respectively.

With this convention we adjust all notations related to the complementary domains

in terms of the given oriented Jc Γ . Hence, for example, instead of

F∞
D|Γ , F∞

D∗|Γ , KD and KD∗

one may write, respectively,

F∞
Γ , F∞

Γ∗ , KΓ and KΓ∗ .

The universal Teichmüller space TΓ of an oriented Jc Γ on the Riemann sphere

is purely of boundary character and may be considered as the boundary model of the

universal Teichmüller space.

The second aspect is normalization in the most usual sense, i.e. of representing every

element of the universal Teichmüller space of an oriented Jc Γ on the Riemann sphere

by a unique automorphism from A∞
Γ . This can be achieved by considering

∗ all automorphisms from A∞
Γ that leave three given points of Γ fixed.

The correspondence between A∞
Γ and the above-mentiond normalized subfamily is pro-

vided by the transformations SH and SH∗
, where H and H∗ map D and D∗ conformally

onto themselves. It follows that

∗ TΓ is the set of all pairs (f1, f2) of normalized quasihomographies such that f1 ∈ A∞
Γ

and f2 ∈ A∞
Γ∗ .

In this way one may simplify several problems and notions used in the previous section.

The third normalization issue arises in a very natural way when one considers real

functionals on a space of normalized K-qc automorphisms of a given domain D in C, or

normalized K-qh automorphisms of a given Jc Γ in C; see [LV] and our Chapter III. It is

easy to see that values of those functionals are related to certain normalization conditions

in the previous sense.

To make our consideration clearer, consider the following problem: Suppose that G is

a set and F : G → R is a function. Let H be a family of subsets H of G, and let

F+(H) = sup
x∈H

F (x) and F−(H) = inf
x∈H

F (x).

Then one may consider the following extremal problems:

(i) supH∈HF+(H) = F++
H

;

(ii) infH∈HF+(H) = F+−
H

;

(iii) supH∈HF−(H) = F−+
H

;

(iv) infH∈HF−(H) = F−−
H

.
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Given G, H and F , we state

Definition 5.2. A set H0∈H such that F+(H0) = F++
H

is called the extremal set of

F in H with respect to (i). The other extremal sets of F in H can be defined analogously.

A set that is extremal with respect to one of these extremal problems is called an extremal

set of F in the family H.

Given an oriented Jc Γ on C and K ≥ 1, let GK = AΓ (K) be the family of all K-qh

automorphisms of Γ . Let F : AΓ (K) → R be a functional and let HK be the family of

all Az1,z2,z3

Γ (K) normalized by fixing three given distinct points z1, z2, z3 ∈ Γ .

If there is an extremal set of F in H, it is distinguished by the triple z0
1 , z

0
2 , z0

3 ∈ Γ ,

which is called the extremal normalization of AΓ (K) with respect to F .

Given distinct points ž1, ž2, ž3 ∈ Γ , it is easy to see that for any distinct points

z1, z2, z3 ∈ Γ there exists h ∈ AΓ (1) such that ži = h(zi), i = 1, 2, 3. Therefore, instead

of extremalizing F in the previous sense, one may consider F ◦ Sh−1 on Až1,ž2,ž3

Γ (K) and

extremalize this with respect to the family of all h ∈ AΓ (1). Hence,

∗ in these circumstances, a functional F that is constant as a function of normalization

points is said to be essential .

Clearly, all essentially quasihomographical functionals must have the form

(4.2) F ([z1, z2, z3, z4]Γ , [f(z1), f(z2), f(z3), f(z4)]Γ ),

where z1, z2, z3, z4 are distinct points on Γ and f ∈ AΓ (K), K ≥ 1.

Assume now that F is also defined for a family of oriented Jc’s Γ in C. An additional

extremalization may be carried out, for instance, with respect to the family Q-quasicircles.

Problems of this kind were already considered by O. Martio and J. Sarvas [MS] and later

[PZ3].

An example is the following

Theorem 5.8. For every circle (1-quasicircle) Γ on C, f ∈ ÂΓ (K) and K ≥ 1, the

inequality

(4.3) d(f(z1), f(z2)) ≤ CKd(z1, z2)
1/K

holds for any z1, z2 ∈ Γ , where d is the chordal spherical distance and CK is a constant

described in Theorem 3.7.

P r o o f. This follows from Theorem 3.7 and the fact that r(Γ ) + 1/r(Γ ) ≥ 2.

In the family of all 1-quasicircles on C there are many extremals with respect to (4.3),

including the unit circle T and any line containing the origin. Fortunately, all these

extremals are isometrically equivalent; see Corollary 3.2.

In this way we arrive at the normalization of the family of all Jc’s Γ in C by

∗ fixing three points on C and considering all Jc’s Γ on C including these points.

The family of all normalized Q-quasicircles will be of interest subsequently; see [Z13].

Let Γ be an oriented Jc on C. For simplicity suppose it is the unit circle T . Between

the family of all normalized quasihomographies of T and the family of all normalized

quasicircles there is a unique and natural correspondence by the use of the conformal
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representation. Together with the previous considerations, this gives interesting possi-

bilities when working with functionals depending also on the family of all normalized

quasicircles.

The principle of the second and the third normalizations can be applied to the family

of quasiconformal mappings of a given Jordan domain D in C. Here one of the normalizing

points can be taken in D and one on the boundary.

5. A linearization formula. A linearization formula for the universal Teichmüller

space of an oriented Jc Γ on the Riemann sphere will now be considered. This con-

struction, based on the idea of the free abelian group, gives a possibility to extend our

considerations from the group of quasihomographies of Γ to a Banach space related to Γ .

Introducing a scalar product we make it a Hilbert space.

The aim of this consideration is to present certain constructions and very basic re-

sults showing new possibilities when working with this boundary model of the universal

Teichmüller space. For further results we refer to [Z12].

Given an oriented Jc Γ on C, let MΓ be the family of all functions mapping AΓ onto

the real line, and equal to zero except for a countable set of arguments. Thus MΓ is a

real linear space. Identifying each f ∈ AΓ with δf , where

(5.1) δf (g) =

{
1 for g = f ,
0 otherwise,

we uniquely associate with AΓ the real linear space MΓ .

Let

(5.2) M̂Γ = {ϕ : MΓ → R : ϕ is linear}.
Denote by δ̂f the element of M̂Γ which satisfies

(5.3) δ̂f (δg) =
{

1 if f = g,
0 otherwise.

For every f̂ ∈ MΓ , one has

f̂ =
∑

h∈AΓ

δ̂h(f̂)δh(5.4)

or, equivalently,

f̂ =
∞∑

n=1

δ̂hn
(f̂)δhn

.(5.4′)

Two linear subspaces M∞
Γ and M∞

Γ∗ of the space MΓ that correspond to A∞
Γ and

A∞
Γ∗ , where Γ ∗ is the Jc conjugate to Γ , will be of interest. Given f̂ ∈ M∞

Γ and
∗f̂ ∈ M∞

Γ∗ , define

‖f̂‖Γ =
∑

h∈A∞

Γ

|δ̂h(f̂)| ‖δh‖Γ(5.5)

and

‖∗f̂‖Γ∗ =
∑

h∈A∞

Γ∗

|δ̂h(∗f̂)| ‖δh‖Γ∗ ,
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where ‖δh‖Γ = KΓ (h) and ‖δh‖Γ∗ = KΓ∗(h). Both these expressions define norms. In

the product space

(5.6) M∞
Γ = M∞

Γ ×M∞
Γ∗

one can define a norm of f̂ = (f̂ , ∗f̂) ∈ M∞
Γ by

(5.7) ‖f̂‖Γ = ‖f̂‖Γ + ‖∗f̂‖Γ∗ .

Let

M̃∞
Γ = {f̂ ∈ M∞

Γ : ‖f̂‖Γ < ∞},(5.8)

M̃∞
Γ∗ = {∗f̂ ∈ M∞

Γ∗ : ‖∗f̂‖Γ∗ < ∞}(5.8′)

and

M̃∞
Γ = M̃∞

Γ × M̃∞
Γ∗ .

Theorem 5.9. Let Γ be a Jc in C. Then (M̃∞
Γ , ‖ · ‖Γ ) is a Banach space.

P r o o f. Assume that f̂n ∈ M̃∞
Γ , n = 1, 2, . . . , is a sequence such that ‖f̂n− f̂m‖Γ → 0

as m, n → ∞. Let

An = {h ∈ A∞
Γ : δ̂h(f̂n) 6= 0}.

Obviously, An is countable and hence so is A =
⋃∞

n=1 An. Let

M̃∞
Γ (A) = {f̂ ∈ M̃∞

Γ : δ̂h(f̂) = 0 for h ∈ A∞
Γ \ A}.

There is a bijection ϕ : N → A, which includes an isometry J between M̃∞
Γ (A) and the

space l1, given by

J(f̂) = (an)n∈N,

where an = δ̂J(n)(f̂)‖δJ(n)‖Γ . Hence

‖J(f̂)‖l1 = ‖(an)‖l1 =

∞∑

n=1

|an| =

∞∑

n=1

|δ̂J(n)(f̂)| ‖δJ(n)‖Γ

=
∑

h∈A
|δh(f̂)| ‖δh‖Γ =

∑

h∈A∞

Γ

|δ̂h(f̂)| ‖δ̂h‖Γ = ‖f̂‖Γ .

Therefore,

‖J(f̂n) − J(f̂m)‖l1 = ‖f̂n − f̂m‖Γ → 0 as m, n → ∞.

By the completeness of (l1, ‖ · ‖l1), there exists c = {cn}n∈N ∈ l1 such that ‖J(f̂n)−
c‖l1 → 0 as n → ∞. Hence ‖f̂n−J−1(c)‖Γ → 0 as n → ∞, and J−1(c) ∈ M̃∞

Γ (A) ⊂ M̃∞
Γ .

Since M̃∞
Γ is a subspace of the real linear space M∞

Γ , the proof is complete.

R e m a r k 5.5. Under the assumption of Theorem 5.9 one may show that (M̃∞
Γ∗ ,

‖ · ‖Γ∗) is a Banach space. Hence so is (M̃∞
Γ ,‖ · ‖Γ ).

Let LΓ be the linear quotient space obtained from M̃∞
Γ = M̃∞

Γ × M̃∞
Γ∗ when divi-

ding by the equivalence relation induced by the Teichmüller equivalence relation from

A∞
Γ to M̃∞

Γ . Obviously, this corresponds to the universal Teichmüller space TΓ . The

transformation

(5.9) TΓ → LΓ

is called the linearization of TΓ .
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Moreover, one may prove

Theorem 5.10. The space (LΓ , ‖ · ‖Γ ) is a Banach space.

Given f̂ , ĝ ∈ M∞
Γ and ∗f̂ , ∗ĝ ∈ M∞

Γ∗ , we define a scalar product as

f̂ ◦ ĝ =
∑

h∈A∞

Γ

δ̂h(f̂)δ̂h(ĝ)KΓ (h)2(5.10)

and
∗f̂ ◦ ∗ĝ =

∑

h∈A∞

Γ∗

δ̂h(∗f̂)δ̂h(∗ĝ)KΓ∗(h)2.(5.10′)

Hence, the spaces (M∞
Γ , ◦) and (M∞

Γ∗ , ◦) become unitary spaces. Observe now that

(δh ◦ δh)1/2 = ‖δh‖ =

{
KΓ (h) if h ∈ A∞

Γ ,
KΓ∗(h) if h ∈ A∞

Γ∗ .

The norms arising from the scalar multiplication are

|||f̂ |||Γ =
{ ∑

h∈A∞

Γ

|δ̂h(f̂)|2KΓ (h)2
}1/2

(5.11)

and

|||∗f̂ |||Γ∗ =
{ ∑

h∈A∞

Γ∗

|δ̂h(∗f̂)|2KΓ∗(h)2
}1/2

.(5.11′)

A simple observation shows that

(5.12) |||f̂ |||Γ ≤ ‖f̂‖Γ and |||∗f̂ |||Γ∗ ≤ ‖∗f̂‖Γ∗

for every f̂ ∈ M∞
Γ and ∗f̂ ∈ MΓ∗ .

A scalar multiplication in M∞
Γ can be defined as

(5.13) f̂ ◦ ĝ = (f̂ , ∗f̂) ◦ (ĝ, ∗ĝ) = f̂ ◦ ĝ + ∗f̂ ◦ ∗ĝ,

which leads to the corresponding norm in M∞
Γ :

(5.14) |||f̂ |||Γ = |||f̂ |||Γ + |||∗f̂ |||∗Γ .

Confining ourselves to LΓ , we have

Theorem 5.11. The space (M̃∞
Γ , ◦ ) is a Hilbert space.

Suppose now that Γ1 and Γ2 are arbitrary Jc’s on C with D1, D∗
1 , D2, D∗

2 the cor-

responding complementary domains. Moreover, let H and H∗ be conformal mappings

of D1 onto D2 and D∗
1 onto D∗

2 , respectively. One may lift the transformations Sij
H,H∗

to

a linear mapping Ŝij
H,H∗

of MΓ1
onto MΓ2

by setting

(5.15) Ŝij
H,H∗

(f̂) =
∑

h∈AΓ1

δ̂h(f̂)δSij

H,H∗
(h), i, j = 1, 2.

Following (4.1) in Section IV.4 , one may also define ŜH,H∗
.

Suppose now that Γ1 is the unit circle T , and let Γ2 be denoted by Γ . Then the norms

of Ŝij
H,H∗

, i, j = 1, 2, can be defined as sup-norms. These norms are finite if and only if
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KΓ is. Hence, we may define a norm of ŜH,H∗
. Under the assumptions of the previous

section, we may define

ĴHH∗
= Ŝ22

H,H∗
◦ (Ŝ11

H,H∗
)−1,(5.16)

ĴHH∗
= (ŜH∗H , ŜHH∗

)(5.17)

and

ĴΓ1Γ2
= (ŜH∗G, ŜHG∗

).(5.18)

In this way we arrived at the most reasonable arrangement of linear transformations

between certain Banach spaces. It is worthwhile to note that the Banach–Mazur distance

between LΓ1
and LΓ2

can be estimated. A Teichmüller-type norm may also be considered

instead of the norms introduced in this section; see [Z12]. Unfortunately, this is not

convenient when considering the sup-norms of these transformations.

Applying methods of functional analysis to these objects one may derive further results

on the universal Teichmüller space of an oriented Jordan curve Γ on the Riemann sphere.
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Birkhäuser, Basel, 1988, 1–15.

[An] G. D. Anderson, Derivatives of the conformal capacity of extremal rings, Ann. Acad.
Sci. Fenn. Ser. A I Math. 10 (1985), 29–46.

[AVV1] G. D. Anderson, M. K. Vamanamurthy and M. Vuorinen, Distortion functions

for plane quasiconformal mappings, Israel J. Math. 62 (1988), 1–16.
[AVV2] —, —, —, Conformal invariants, quasiconformal maps and special functions, in:

Quasiconformal Space Mappings: A Collection of Surveys 1960–1990, Lecture Notes
in Math. 1508, Springer, 1992, 1–19.

[AVV3] —, —, —, Inequalities for quasiconformal mappings in space, Pacific J. Math. 160
(1993), 1–18.

[AVV4] —, —, —, Conformal invariants, inequalities and quasiconformal mapps, manuscript,
1994.

[As] K. Astala, Area distortion of quasiconformal mappings, Acta Math. 173 (1994),
37–60.

[BP] J. Becker and Ch. Pommerenke, On the Hausdorff dimension of quasicircles, Ann.
Acad. Sci. Fenn. Ser. A I Math. 12 (1987), 329–334.

[Be] P. P. Belinski ı̆, General Properties of Quasiconformal Mappings, Nauka, Sibirsk.
Otdel., Novosibirsk, 1974 (in Russian).

[Be1] B. C. Berndt, Ramanujan’s Notebooks, vol. I, Springer, Berlin, 1961.
[Be2] —, Ramanujan’s Notebooks, vol. III, Springer, Berlin, 1961.
[BA] A. Beurl ing and L. V. Ahlfors, The boundary correspondence under quasiconformal

mappings, Acta Math. 96 (1956), 125–142.
[Bo] B. Bojarski, Homeomorphic solutions of Beltrami systems, Dokl. Akad. Nauk SSSR

102 (1955), 661–664 (in Russian).
[BI] B. Bojarski and T. Iwaniec, Analytical foundations of the theory of quasiconformal

mappings in R
n, Ann. Acad. Sci. Fenn. Ser. A I Math. 8 (1983), 257–324.

[BB] J. M. Borwein and P. B. Borwein, Pi and the AGM , Wiley, New York, 1987.
[Cm] P. Caraman, n-dimensional Quasiconformal (QCf ) Mappings, Editura Academiei

Romane – Abacus Press – Haessner, Bucharest – Tunbridge Wells – Newfoundland,
N.J., 1974.

[Cl] B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York
1977.



Quasihomographies in the theory of Teichmüller spaces 99
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