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Abstract

We study general Franklin systems, i.e. systems of orthonormal piecewise linear functions cor-
responding to quasi-dyadic sequences of partitions of [0, 1]. The following problems are treated:
unconditionality of the general Franklin basis in Lp, 1 < p <∞, and Hp, 1/2 < p ≤ 1; equivalent
conditions for the unconditional convergence of the Franklin series in Lp for 0 < p ≤ 1; relation
between Haar and Franklin series with identical coefficients; characterization of the spaces BMO
and Lip(α), 0 < α < 1, in terms of the Fourier–Franklin coefficients.
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1. Introduction

The classical Franklin system, introduced by Ph. Franklin in 1928 ([16]), is a complete

orthonormal system of continuous, piecewise linear functions (with dyadic knots), ob-

tained by means of Gram–Schmidt orthogonalization of Schauder functions. Since then,

it has been studied by many authors from different points of view. The basic properties of

this system, including exponential estimates for the Franklin functions and Lp-stability

on dyadic blocks, have been obtained by Z. Ciesielski in [5] and [6]. These properties

have turned out to be an important tool in further investigations of the Franklin system.

It is known that this system is a basis in C[0, 1] and Lp for 1 ≤ p < ∞; moreover, the

coefficients of a function in the Franklin basis give a linear isomorphism between the space

of functions satysfying the Hölder condition in Lp norm with exponent α, 0 < α < 1+1/p,

1 ≤ p ≤ ∞, and the appropriate sequence space ([5], [6]). The unconditionality of this

basis in Lp, 1 < p < ∞, has been proved by S. V. Bochkarev in [1]. P. Wojtaszczyk has

obtained a characterization of the BMO space in terms of the coefficients of a function

in the Franklin basis and has proved that this system is an unconditional basis in the

real Hardy space H1 ([29]; see [8] for a simplified proof). The unconditionality of the

Franklin basis in real Hardy spaces Hp, 1/2 < p ≤ 1, has been obtained by P. Sjölin and

J. Strömberg ([27]); they have also proved that for this range of p, the Hp quasi-norm of

f ∈ Hp is equivalent to the Lp quasi-norm of the square function of the Franklin series

with coefficients an = (f, fn). Z. Ciesielski and Sun-Yung A. Chang have proved that

f ∈ H1 iff its Fourier–Franklin series is unconditionally convergent in L1 (cf. [4]). The

equivalence of the Franklin system with the Haar system and higher order orthonormal

spline systems in Lp and Hp spaces has also beeen studied (see [7], [11], [26], [27]), and

results concerning the boundedness of the translation operator are known as well (see for

example [10], [17], [25]).

One of the authors of this paper has studied the unconditional convergence of Franklin

series in Lp for 0 < p ≤ 1 ([18]–[21]). He has proved that the unconditional convergence

of Franklin series in Lp is equivalent to each of the following conditions:

(i) the square function of the series is in Lp, and

(ii) the maximal function of the series is in Lp.

Moreover, the Franklin series converges unconditionally in Lp iff the Haar series with

identical coefficients converges unconditionally in Lp. Analogous results concerning the

convergence of Franklin series in Lorentz spaces can be found in the recent paper [22].

It should be mentioned that Franklin’s construction has been later generalized to

higher order spline functions, periodic splines, splines on R and for functions of several
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variables and defined on smooth compact manifolds; here one should mention names like

Z. Ciesielski, J. Domsta, T. Figiel, P. Oswald, J. Strömberg.

In the present paper we study some of the above problems for general Franklin systems

corresponding to quasi-dyadic sequences of partitions of the interval [0, 1]. By a quasi-

dyadic sequence of partitions we mean a sequence of partitions {Pj : j ≥ 0} such that

P0 = {0, 1}, Pj ⊂ Pj+1 and Pj+1 is obtained form Pj by adding 2j new points (one

new point between two consecutive points of Pj), and the corresponding Franklin system

is a sequence of orthonormal piecewise linear functions with knots from the sequence of

partitions Pj (see Section 2.2 and Definition 2.1 in Section 2.3 for the precise formulation).

It follows from [5] that if limj→∞ |Pj| = 0 (|Pj | denotes the diameter of the partition

Pj), then the corresponding Franklin system is a basis in C[0, 1] and Lp, 1 ≤ p < ∞.

The main results of the present paper are the following. We prove that if the sequence of

partitions is weakly regular (see Definition 2.2 for the weak, strong and strong periodic

regularity of a quasi-dyadic sequence of partitions), then the corresponding Franklin

system is an unconditional basis in Lp for 1 < p <∞ (Theorem 3.1). Next we show that if

the sequence of partitions is strongly regular, then the Franklin system is an unconditional

basis in Hp for 1/2 < p ≤ 1 (Theorem 4.2). Moreover, we prove that strong regularity of

the sequence of partitions is a necessary condition for the corresponding Franklin system

to be a basis in Hp for 1/2 < p ≤ 1 (Theorems 5.1 and 5.3). The question of the

unconditional convergence of the Franklin series in Lp for 0 < p ≤ 1 is studied as well.

We prove (see Theorem 4.1) that the unconditional convergence of the Franklin series in

Lp is equivalent to each of the following conditions:

(i) the square function of the series is in Lp, and

(ii) the maximal function of the series is in Lp.

For 1/2 < p ≤ 1, all these conditions are equivalent to the fact that the series under

consideration is a Fourier–Franklin series of some element of Hp (see Theorem 4.2).

Further, we compare the Franklin series and the Haar series with identical coefficients.

We prove that, under suitable regularity of the sequence of partitions, the square functions

of the Franklin and Haar series are equivalent in Lp, 0 < p <∞ (Propositions 6.1, 6.2; the

Haar system under consideration corresponds to the same sequence of partitions as the

Franklin system — for a detailed description see Section 2.4). As a consequence, under

the assumption of strong periodic regularity of the sequence of partitions, we deduce

that the Haar and Franklin systems are equivalent bases in Lp, 1 < p < ∞, while for

0 < p ≤ 1 the Franklin series converges unconditionally in Lp iff the Haar series with the

same coefficients converges unconditionally in Lp. Moreover, we get the boundedness of

the associated translation operator in Lp, 1 < p < ∞ (for both the Haar and Franklin

systems), and in Hp, 1/2 < p ≤ 1 (for the Franklin system) — see Corollary 6.4. Finally,

we obtain a characterization of the spaces BMO and Lip(α), 0 < α < 1, in terms of

the coefficients in the Franklin system corresponding to a strongly regular sequence of

partitions — Theorems 7.1 and 7.2; recall that the spaces BMO and Lip(α) are the dual

spaces to H1 and Hp, 1/2 < p < 1, α = 1/p− 1, respectively (cf. for example [13]).

It should be mentioned that analogous properties of the Haar system corresponding

to a quasi-dyadic sequence of partitions (i.e. the unconditionality of the Haar system in
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Lp for 1 < p < ∞ and equivalence of the square and the maximal functions of a Haar

series in Lp for 0 < p ≤ 1) follow from general results on martingale transforms (see

[2], [3]). For the reader’s convenience, we recall these properties of the Haar system in

Section 2.4.

The paper is organized as follows. In Section 2 we define the Franklin system corre-

sponding to a quasi-dyadic sequence of partitions and summarize the properties of the

Franklin and Haar systems needed for the purpose of this paper. In Section 3, we prove

that the Franklin system corresponding to a weakly regular sequence of partitions is an

unconditional basis in Lp for 1 < p < ∞. In Section 4, for the Franklin system corre-

sponding to a strongly regular sequence of partitions, we discuss conditions equivalent

to the unconditional convergence of the Franlin series in Lp for 0 < p ≤ 1, and the un-

conditionality of this system in Hp, 1/2 < p ≤ 1, is proved. In Section 5 we prove that

strong regularity of the quasi-dyadic sequence of partitions is a necessary condition for

the corresponding Franklin system to be a basis in Hp, 1/2 < p ≤ 1. In Section 6 the

Franklin and Haar series with identical coefficients are discussed and results concerning

the translation operators are formulated. Finally, in Section 7 we give a characterization

of the spaces BMO and Lip(α) with 0 < α < 1 in terms of the Fourier–Franklin coeffi-

cients of a function — again for the Franklin system corresponding to a strongly regular

sequence of partitions.

1.1. Notation

Function spaces and Hp spaces . For the reader’s convenience, we recall the definitions

of the spaces we work with.

By Lp, 0 < p <∞, we denote the Lebesgue space of real-valued functions defined on

[0, 1] for which ‖f‖p = (
T1
0
|f(u)|p du)1/p <∞. If 0 < p < 1, then ‖f‖p is not a norm, but

then the space Lp is equipped with the metric ̺(f, g) = ‖f − g‖p
p. Recall that Lp with

this metric is a complete space.

By C[0, 1] we denote the space of continuous functions on [0, 1], and for 0 < α < 1,

by Lip(α) ⊂ C[0, 1] we mean the subspace of functions satisfying the Hölder condition

with exponent α. It is well known that Lip(α), with the norm

(1.1) ‖f‖Lip(α) = ‖f‖∞ + sup
0≤x,y≤1

|f(x) − f(y)|
|x− y|α ,

is a non-separable Banach space.

We need also the BMO space, i.e. the space of functions of bounded mean oscillation.

If f ∈ L1, then f ∈ BMO iff

(1.2) ‖f‖BMO = |(f, 1)| + sup
Γ

(
1

|Γ |
\
Γ

|f(u) − fΓ |2 du
)1/2

<∞.

where the supremum is taken over all subintervals Γ ⊂ [0, 1] and fΓ = 1
|Γ |

T
Γ
f(v) dv (|Γ |

denotes the length of the inerval Γ ); for equivalent definitions of the BMO space we refer

to [13]. It is known that BMO is a non-separable Banach space.

Next, we recall the definition of real Hardy spaces on [0, 1], denoted by Hp, 1/2 <

p ≤ 1. We use the atomic definition, introduced in [12], and developed in [13]; for more

details, we refer to [13].
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First, recall the definition of p-atoms: a function a : [0, 1] → R is called a p-atom

(1/2 < p ≤ 1) iff either a = 1, or there is an interval Γ ⊂ [0, 1] such that supp a ⊂ Γ ,

sup|a| ≤ |Γ |−1/p and
T1
0
a(u) du = 0; note that if a is a p-atom, then ‖a‖p ≤ 1.

For p = 1, a function f ∈ L1 is said to belong to H1 iff there are 1-atoms aj and

real coefficients cj , j ∈ N, with
∑∞

j=1 |cj | < ∞, such that f =
∑∞

j=1 cjaj . The norm

in H1 is defined as ‖f‖H1 = inf(
∑∞

j=1 |cj |), where the infimum is taken over all atomic

decompositions of f ; H1 with this norm is a Banach space.

The space Hp with 1/2 < p < 1 is defined as a subspace of the dual of Lip(α) with

α = 1/p− 1: f ∈ (Lip(α))∗ is said to belong to Hp if it admits an atomic decomposition

f =
∑∞

j=1 cjaj , where aj are p-atoms and the real coefficients cj satisfy
∑∞

j=1 |cj |p <∞;

it should be noted that this condition implies the convergence of the series
∑∞

j=1 cjaj in

the norm of (Lip(α))∗. For f ∈ Hp we put ‖f‖Hp = inf(
∑

n |cn|p)1/p, with the infimum

taken over all atomic decompositions of f . For p < 1, ‖ · ‖Hp is not a norm, but ̺(f, g) =

‖f − g‖p
Hp is a metric on Hp, and Hp with this metric is complete; thus, (Hp, ‖ · ‖p

Hp) is a

Fréchet space. Moreover, a linear functional L on Hp is continuous iff there is a constant

CL such that |Lf | ≤ CL‖f‖Hp for all f ∈ Hp; similarly, a linear operator T : Hp → Hp

is continuous iff it is bounded, i.e. there is a constant CT such that ‖Tf‖Hp ≤ CT ‖f‖Hp

for all f ∈ Hp.

The spaces BMO and Lip(α) are identified with the duals of H1 and Hp, α = 1/p−1,

respectively; cf. [13], Theorem B. More precisely: if g ∈ BMO, f ∈ H1 and f =
∑∞

j=1 cjaj

is an atomic decomposition of f , then the formula

Lg(f) = lim
n→∞

n∑

j=1

cj

1\
0

g(u)aj(u) du

defines a continuous linear functional on H1, and each continuous linear functional on

H1 is of this form; moreover, the norm of Lg in (H1)∗ is equivalent to ‖g‖BMO.

The dual of Hp, 1/2 < p < 1, is identified with Lip(α), where α = 1/p − 1: if

g ∈ Lip(α), f ∈ Hp and f =
∑∞

j=1 cjaj is an atomic decomposition of f , then the

formula

Lg(f) =

∞∑

j=1

cj

1\
0

g(u)aj(u) du

defines a continuous linear functional on Hp, and each continuous linear functional on

Hp is of this form; moreover, the “norm” of Lg in (Hp)∗ is equivalent to ‖g‖Lip(α).

To shorten the notation, if f ∈ H1 and g ∈ BMO, or f ∈ Hp and g ∈ Lip(α) with

α = 1/p− 1, we denote by (f, g) the value of the functional Lg on f .

In Sections 3 and 4, the unconditional convergence of Franklin series in spaces Lp,

1 < p < ∞ and Hp, 1/2 < p ≤ 1, is studied. The unconditional convergence of a series∑∞
n=1 xn in a metric space (X, ̺) means that for each permutation σ of N, the series∑∞
n=1 xσ(n) is convergent in (X, ̺). It is known that if (X, ̺) is a complete linear metric

space, then the series
∑∞

n=1 xn is unconditionally convergent if and only if the series∑∞
n=1 εnxn converges in (X, ̺) for each choice of the coefficients εn ∈ {−1, 1} (cf. for

example [24], Theorem 1 in Chapter 1).
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Though ‖ · ‖Hp is not a norm for 1/2 < p < 1, we use for the Hp spaces the same

terminology as for Banach spaces; in particular, by a basis in Hp we mean a sequence

of elements yn ∈ Hp, n ∈ N, such that for each f ∈ Hp there is a unique sequence of

coefficients bn(f) such that f =
∑∞

n=1 bn(f)yn, with the series convergent in the metric

‖ ·− ·‖p
Hp , and a basis is called unconditional if for each f ∈ Hp, the series

∑∞
n=1 bn(f)yn

is unconditionally convergent in Hp.

Quasi-dyadic sequences of partitions. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of

partitions of [0, 1]. By this we mean that P0 = {0, 1}, and

Pj = {tj,i : 0 ≤ i ≤ 2j}, Pj ⊂ Pj+1 for j ≥ 0,

0 = tj,0 < . . . < tj,2j = 1, tj+1,2k = tj,k for all j ≥ 0 and k = 0, . . . , 2j,

i.e. Pj+1 is obtained from Pj by adding one point in each interval (tj,k−1, tj,k), k =

1, . . . , 2j. For j ≥ 0 and 1 ≤ k ≤ 2j, we put Ij,k = [tj,k−1, tj,k], and I◦j,k = (tj,k−1, tj,k) is

the interior of Ij,k. Moreover, we let

Ij = {Ij,k : 1 ≤ k ≤ 2j} and I =
⋃

j≥0

Ij .

The elements of Ij are called intervals of rank (or order) j.

Maximal and square functions. For f ∈ L1, M(f, ·) denotes the Hardy–Littlewood

maximal function of f over [0, 1], and M∗(f, ·) is the maximal function corresponding to

the sequence of quasi-dyadic partitions {Pj : j ≥ 0}, i.e.

M∗(f, x) = sup
I∋x
I∈I

1

|I|
\
I

|f(u)| du.

It is well known that the operator M is of type (p, p) for p > 1 and of weak type (1, 1)

(cf. for example Theorem 1.3.1 in [28]). Clearly, M∗ has the same properties.

For a given sequence of quasi-dyadic partitions {Pj : j ≥ 0}, the corresponding

Franklin system, as introduced in Definition 2.1 below, is denoted by {fn : n ≥ 0}.
For a sequence of real numbers (an)n≥0, the square function P and the maximal

function S of the Franklin series with coefficients (an)n≥0 are defined by the respective

formulae

P (·) =
( ∞∑

n=0

a2
nfn(·)2

)1/2

and S(·) = sup
m≥0

∣∣∣
m∑

n=0

anfn(·)
∣∣∣.

Moreover, for f ∈ Lp, 1 ≤ p ≤ ∞, or f ∈ Hp, 1/2 < p ≤ 1, we denote by Pf and

Sf the square function and the maximal function of the Franklin series with coefficients

an = (f, fn), i.e. an are the Fourier coefficients of f with respect to the Franklin system

corresponding to {Pj : j ≥ 0} (note that the fn’s are Lipschitz functions, and therefore

they define continuous linear functionals on Hp, 1/2 < p ≤ 1).

Abbreviations . To shorten the notation, we use the following abbreviations. For a, b∈
R, we put a ∨ b = max(a, b), a ∧ b = min(a, b). We write A ∼ B if there are positive

constants C1, C2 such that C1A ≤ B ≤ C2B. The letters C, Cp, Cγ,p etc. denote various

constants, the value of which may vary from line to line; the subscripts indicate the

parameters on which the particular constant depends.
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By χA we denote the indicator of a set A ⊂ [0, 1], Ac is the complement of A in [0, 1]

and |A| denotes the Lebesgue measure of A.

2. Definition and properties of general Franklin systems

2.1. Piecewise linear functions. We start with recalling some known facts concer-

ning piecewise linear functions, which are needed for the purpose of this paper.

Let π = {ti : 0 ≤ i ≤ n} be a partition of [0, 1], 0 = t0 < . . . < tn = 1; for later

convenience, we also put t−1 = 0 and tn+1 = 1,

λi = ti − ti−1 for 0 ≤ i ≤ n+ 1, νi =
λi + λi+1

2
for 0 ≤ i ≤ n.

Let Sπ be the space of piecewise linear, continuous functions on [0, 1] with knots π.

Moreover, let Ni, 0 ≤ i ≤ n, be the B-splines of order 2 corresponding to the partition

π, i.e. Ni is the unique function from Sπ satisfying Ni(tj) = δi,j . Note that suppNi =

[ti−1, ti+1],
∑n

i=0Ni(t) = 1 for each t ∈ [0, 1], ‖Ni‖1 = νi and

(2.1) (Ni, Nj) =





(λi + λi+1)/3 for i = j,
λi+1/6 for i = j − 1,
λi/6 for i = j + 1,
0 for |i− j| > 1.

Moreover, any function f ∈ Sπ can be written in the form f =
∑n

i=0 aiNi, where ai =

f(ti), so the functions {Ni : 0 ≤ i ≤ n} are a basis in Sπ .

Let Gπ = [(Ni, Nj) : 0 ≤ i, j ≤ n] be the Gram matrix of the system {Ni : 0 ≤ i ≤ n},
and define G−1

π = Aπ = [ai,j : 0 ≤ i, j ≤ n]. In Proposition 2.1 we list some estimates for

ai,j , which are needed later on.

Proposition 2.1. Let π={ti : 0≤ i≤ n} be a partition of [0, 1], and let Aπ = [ai,j :

0 ≤ i, j ≤ n] be the inverse of the Gram matrix Gπ defined above. Then the entries of the

matrix Aπ satisfy the following conditions :

3
2 ≤ ai,i · νi ≤ 2 for 0 ≤ i ≤ n,(2.2)

ai,j = aj,i and ai,j = (−1)i+j |ai,j | for 0 ≤ i, j ≤ n,(2.3)

2|ai−1,j | ≤ |ai,j | for 0 < i ≤ j ≤ n,(2.4)

2|ai+1,j | ≤ |ai,j | for 0 ≤ j ≤ i < n,(2.5)

|ai,j | ≤
2

2|i−j|
· 1

maxi≤k≤j νk
, 0 ≤ i ≤ j ≤ n.(2.6)

Moreover ,

|ai,j |
(

3
2λi + 2λi+1

)
≤ |ai+1,j |λi+1 ≤ 2|ai,j |(λi + λi+1) for 0 ≤ i < j,(2.7)

|ai,j |
(
2λi + 3

2λi+1

)
≤ |ai−1,j |λi ≤ 2|ai,j |(λi + λi+1) for j < i ≤ n.(2.8)

Proof. Properties (2.2)–(2.6) can be found for example in [9] and [24], or they are

straightforward consequences of estimates given there, so their proof is omitted.
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To check (2.7), note that for i < j,

λiai−1,j + 2(λi + λi+1)ai,j + λi+1ai+1,j = 0.

This together with (2.3) gives

2(λi + λi+1)|ai,j | = λi+1|ai+1,j | + λi|ai−1,j | ≥ λi+1|ai+1,j |.
On the other hand, applying (2.4) we get

2(λi + λi+1)|ai,j | = λi+1|ai+1,j | + λi|ai−1,j | ≤ λi+1|ai+1,j | + 1
2λi|ai,j |,

which gives the remaining inequality in (2.7).

Inequalities (2.8) are obtained analogously.

It should be noted that, for fixed j, formulae (2.4), (2.5) and the fact that ai,j and

ai+1,j have opposite signs follow just from the system of equations
∑n

i=0 ai,j(Ni, Nk) =

δj,k, k = 0, . . . , n, and these properties are sufficient to get (2.7) and (2.8). We refer to

this fact in the proof of Lemma 5.2.

In the sequel, we need the Lp-stability of the functions Ni, which can be checked by

straightforward calculation:

Proposition 2.2. Let π be a partition of [0, 1], f ∈ Sπ, f =
∑n

i=0 aiNi. Then for all

1 ≤ p ≤ ∞,

(
1

p+ 1

)1/p

·
( n∑

i=0

|ai|pνi

)1/p

≤ ‖f‖p ≤
( n∑

i=0

|ai|pνi

)1/p

.

2.2. Franklin functions. Let (π, π̃) be a pair of partitions of [0, 1] such that π̃ ⊂ π

and π is obtained from π̃ by adding one knot τ , τ 6= 0, 1. Then there is a unique, up to

sign, function ϕ ∈ Sπ such that ϕ ⊥ Sπ̃ (in L2) and ‖ϕ‖2 = 1; the sign of ϕ is chosen in

such a way that ϕ(τ) > 0.

The function ϕ is called the Franklin function corresponding to the pair of parti-

tions (π, π̃).

Let us formulate some properties of the Franklin function.

Let π = {ti : 0 ≤ i ≤ n}; as τ ∈ π, we have τ = tk for some 0 < k < n. Then

π̃ = {ti : 0 ≤ i ≤ n, i 6= k}, and for convenience we denote by Ñi, i 6= k, the B-splines

corresponding to π̃. Observe that

Ñi = Ni for i < k − 1 and i > k + 1,

Ñk−1 = Nk−1 +
λk+1

λk + λk+1
Nk and Ñk+1 = Nk+1 +

λk

λk + λk+1
Nk.

Define

(2.9) wi = − λk+1

λk + λk+1
ai,k−1 + ai,k − λk

λk + λk+1
ai,k+1,

where Aπ = [ai,j : 0 ≤ i, j ≤ n] is the inverse of the Gram matrix Gπ , and introduce the

function

(2.10) g =
n∑

i=0

wiNi.



12 G. Gevorkyan and A. Kamont

Clearly, g ∈ Sπ, and it can be checked by straightforward calculation that (g, Ñi) = 0

for all i 6= k, whence g ⊥ Sπ̃. Formula (2.9) and properties of ai,j from Proposition 2.1

imply the following:

|wi| =
λk+1

λk + λk+1
|ai,k−1| + |ai,k| +

λk

λk + λk+1
|ai,k+1|,(2.11)

wi = (−1)k−i|wi|, so in particular g(τ) = wk > 0,(2.12)

ak,k ≤ wk ≤ 3
2ak,k,

1
2ak+l,k+l ≤ |wk+l| ≤ 3

2ak+l,k+l for l = ±1(2.13)

(to check (2.13), note that

|aj,k| =
λk|aj,k−1| + λk+1|aj,k+1|

2(λk + λk+1)

for j 6= k), which gives

(2.14)
3

4

1

νi
≤ |wi| ≤ 3

1

νi
for i = k − 1, k, k + 1.

Thus, we have ϕ = g/‖g‖2. Moreover, these formulae for |wi| (cf. (2.11), (2.14)), decay

of |ai,j | from Proposition 2.1 (cf. (2.3)–(2.6)) and Lp stability of B-splines from Proposi-

tion 2.2 imply

(2.15) 1
8µ

1−1/p ≤ ‖g‖p ≤ 15µ1−1/p for 1 ≤ p ≤ ∞,

where µ = 1/νk−1 + 1/νk + 1/νk+1.

As a consequence of formulae (2.9)–(2.15) and Proposition 2.1, we get the following

pointwise estimates for the Franklin function ϕ:

Proposition 2.3 (Pointwise estimates for the Franklin function). Let (π, π̃) be a pair

of partitions as above, and let ϕ be the Franklin function corresponding to (π, π̃). Define

ξi = ϕ(ti), i.e. ϕ =
∑n

i=0 ξiNi, and µ = 1/νk−1 + 1/νk + 1/νk+1. Then

1
120µ

1/2−1/p ≤ ‖ϕ‖p ≤ 120µ1/2−1/p for 1 ≤ p ≤ ∞,

ξi = (−1)i+k|ξi|, i = 0, . . . , n,

1

20

µ−1/2

νi
≤ |ξi| ≤ 24

µ−1/2

νi
, i = k − 1, k, k + 1;

for i ≤ k − 1,

|ξi−1| ≤
|ξi|
2
, |ξi| ≤

48

2|i−k|

µ−1/2

maxi≤l≤k−1 νl
≤ 96|i− k|

2|i−k|

µ−1/2

tk − ti−1
,

|ξi−1|
(

3
2λi−1 + 2λi

)
≤ |ξi|λi ≤ 2|ξi−1|(λi−1 + λi);

and for i ≥ k + 1,

|ξi+1| ≤
|ξi|
2
, |ξi| ≤

48

2|i−k|

µ−1/2

maxk+1≤l≤i νl
≤ 96|i− k|

2|i−k|

µ−1/2

ti+1 − tk
,

|ξi+1|
(
2λi+1 + 3

2λi+2

)
≤ |ξi|λi+1 ≤ 2|ξi+1|(λi+1 + λi+2).

The pointwise estimates from Proposition 2.3 imply the following decay of norms of

the Franklin function on the intervals from the partition π:
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Proposition 2.4 (Decay of norms of the Franklin function on intervals). Let (π, π̃) be

a pair of partitions as above, and let ϕ be the Franklin function corresponding to (π, π̃).

Then for i < k − 1 we have

3(
√

2 − 1)

ti\
ti−1

|ϕ(u)| du ≤
ti+1\
ti

|ϕ(u)| du,

2 max
ti−1≤t≤ti

|ϕ(t)| ≤ max
ti≤t≤ti+1

|ϕ(t)|,

and for i > k + 1,

3(
√

2 − 1)

ti+1\
ti

|ϕ(u)| du ≤
ti\

ti−1

|ϕ(u)| du,

2 max
ti≤t≤ti+1

|ϕ(t)| ≤ max
ti−1≤t≤ti

|ϕ(t)|.

Proof. Consider the case i < k−1. By Proposition 2.3, ξi = ϕ(ti) and ξi+1 = ϕ(ti+1)

have opposite signs and |ξi| ≤ 1
2 |ξi+1|, which implies

mi+1 =

ti+1\
ti

|ϕ(u)| du =
λi+1

2

|ξi|2 + |ξi+1|2
|ξi| + |ξi+1|

≥ (
√

2 − 1)λi+1|ξi+1|

and

mi =

ti\
ti−1

|ϕ(u)| du ≤ λi|ξi|
2

.

Therefore, using the estimates from Proposition 2.3 we get

mi+1

mi
≥ 2(

√
2 − 1)

λi+1|ξi+1|
λi|ξi|

≥ (
√

2 − 1)
3λi + 4λi+1

λi
≥ 3(

√
2 − 1).

The bound for maxti−1≤t≤ti
|ϕ(t)| is a straightforward consequence of Proposition 2.3.

The case i > k + 1 is treated analogously.

Remark. The constants appearing in Propositions 2.3 and 2.4 are not sharp. More-

over, estimates analogous to those from Proposition 2.4 (i.e. with constants independent

of the pair of partitions (π, π̃)) can be obtained for integrals of |ϕ(·)|p for 1 < p < ∞.

However, for 0 < p < 1, estimates of this type do not hold.

2.3. Sequences of partitions and Franklin functions. Let {Pj : j ≥ 0} be a

quasi-dyadic sequence of partitions, with

Pj = {tj,i : 0 ≤ i ≤ 2j}.
Define π1 = P0, and for n ≥ 2, n = 2j + k with 1 ≤ k ≤ 2j ,

πn = Pj ∪ {tj+1,2l−1 : 1 ≤ l ≤ k},(2.16)

tn = tj+1,2k−1, {n} = [tj+1,2k−2, tj+1,2k] = [tj,k−1, tj,k],(2.17)

with {0} = {1} = [0, 1],

(2.18) {n−} = [tj+1,2k−3, tj+1,2k−1], {n+} = [tj+1,2k−1, tj+1,2k+2],

where for convenience we put tj,−1 = 0 and tj,2j+1 = 1.
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Note that πn is obtained from πn−1 (n ≥ 2) by adding exactly one point tn. The

Franklin system corresponding to the quasi-dyadic sequence of partitions {Pj : j ≥ 0} is

defined as follows:

Definition 2.1. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions, and for

n ≥ 1, let πn be as in (2.16). Then the Franklin system {fn : n ≥ 0} corresponding to

{Pj : j ≥ 0} is the following family of functions:

f0 = 1, f1(t) = 2
√

3(t− 1/2),

and for n ≥ 2, fn is the Franklin function corresponding to (πn, πn−1).

Note that this definition guarantees ‖fn‖2 = 1 and (fn, fm) = 0 for n 6= m.

For a partition π, denote by Qπ the orthogonal (in L2) projection onto Sπ. Note that

Qπ is simultaneously a continuous linear operator on Lp, 2 ≤ p ≤ ∞, and can be uniquely

extended to a continous linear operator on Lp, 1 ≤ p < 2, and Hp, 1/2 < p ≤ 1; these

extensions are denoted by Qπ as well. Clearly,

Qπn
f =

n∑

i=0

(f, fi)fi.

Next, we list the properties of the projections Qπ which are needed for our purpose.

For the proofs, we refer to [5] and [9].

Theorem 2.5. (i) For any partition π and f ∈ Lp, 1 ≤ p ≤ ∞,

‖Qπf‖p ≤ 3‖f‖p.

Moreover , for each f ∈ L1 we have

|Qπf(·)| ≤ 64M(f, ·).
(ii) Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions satisfying limn→∞ |πn|

= 0. Then for all f ∈ Lp with 1 ≤ p < ∞, or f ∈ C[0, 1] for p = ∞ we have

limn→∞ ‖f−Qπn
f‖p = 0. Consequently, the Franklin system {fn : n ≥ 0} corresponding

to {Pj : j ≥ 0} is a basis in Lp, 1 ≤ p <∞, and C[0, 1].

Moreover , if f ∈ L1 and u is a weak Lebesgue point of f , then f(u) = limn→∞Qπn
f(u).

2.3.1. Regularity of sequences of partitions. Recall that for a quasi-dyadic sequence

of partitions {Pj : j ≥ 0},
Ij,k = [tj,k−1, tj,k], λj,k = |Ij,k| = tj,k − tj,k−1, k = 1, . . . , 2j.

When we pass from Pj to Pj+1, then the interval Ij,k is split into two intervals Ij+1,2k−1

and Ij+1,2k with disjoint interiors, i.e. we have

Ij,k = Ij+1,2k−1 ∪ Ij+1,2k, λj,k = λj+1,2k−1 + λj+1,2k.

Now, we introduce the weak, strong and strong periodic regularity of a quasi-dyadic

sequence of partitions.

Definition 2.2. Let γ ≥ 1 and let {Pj : j ≥ 0} be a quasi-dyadic sequence of

partitions of [0, 1].
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(i) We say that the sequence {Pj : j ≥ 0} satisfies the weak regularity condition with

parameter γ if for all j ≥ 1 and k = 1, . . . , 2j−1,

1

γ
≤ λj,2k−1

λj,2k
≤ γ.

(ii) We say that the sequence {Pj : j ≥ 0} satisfies the strong regularity condition

with parameter γ if for all j ≥ 0 and k = 1, . . . , 2j − 1,

1

γ
≤ λj,k+1

λj,k
≤ γ.

(iii) We say that the sequence {Pj : j ≥ 0} satisfies the strong periodic regularity

condition with parameter γ if for all j ≥ 0 and k = 1, . . . , 2j ,

1

γ
≤ λj,k+1

λj,k
≤ γ,

where by definition λj,2j+1 = λj,1.

Clearly, the sequence Pj = {k/2j : 0 ≤ k ≤ 2j} of dyadic partitions satisfies the strong

periodic regularity condition with γ = 1. Another example of a strongly periodically

regular quasi-dyadic sequence of partitions is the sequence of Chebyshev knots on [0, 1],

i.e. with tj,k = (1 + cos((2j − k)π/2j)
)
/2 = sin2(kπ/2j+1). The best approximation by

spline functions with these knots appears to be closely related with the Ditzian–Totik

modulus of smoothness with the step-weight function w(x) =
√
x(1 − x) and the best

approximation by algebraic polynomials (see [23] for details and more examples).

In the sequel, the following estimates for the length of the intervals Ij,k are used

frequently:

Proposition 2.6. Let γ ≥ 1 and let {Pj : j ≥ 0} be a quasi-dyadic sequence of

partitions of [0, 1].

(i) Let the sequence {Pj : j ≥ 0} satisfy the weak regularity condition with parame-

ter γ. Then for all j ≥ 0 and k = 1, . . . , 2j ,

1

γ + 1
|Ij,k| ≤ |Ij+1,2k−1 |, |Ij+1,2k| ≤

γ

γ + 1
|Ij,k|.

Consequently, if for some j, k,m, l we have Im,l ⊂ Ij,k, then

(
1

γ + 1

)m−j

|Ij,k| ≤ |Im,l| ≤
(

γ

γ + 1

)m−j

|Ij,k|.

(ii) Let the sequence {Pj : j ≥ 0} satisfy the strong regularity condition with parame-

ter γ and αγ = log2 γ. Then for all j ≥ 0 and 1 ≤ k, l ≤ 2j,

γ−2(|k − l| + 1)−αγ |Ij,k| ≤ |Ij,l| ≤ γ2(|k − l| + 1)αγ |Ij,k|.
Proof. The inequalities from (i) are straightforward consequences of Definition 2.2(i).

To check (ii), let 1 ≤ k, l ≤ 2j , k 6= l, and choose µ, 0 ≤ µ ≤ j − 1, such that

2µ ≤ |k − l| < 2µ+1. Let a, b be such that

Ij,k ⊂ Ij−µ,a and Ij,l ⊂ Ij−µ,b.
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Then |a−b| ≤ 2, and by strong regularity γ−2|Ij−µ,b| ≤ |Ij−µ,a| ≤ γ2|Ij−µ,b|, so applying

(i) we obtain

|Ij,l| ≤
(

γ

γ + 1

)µ

|Ij−µ,b| ≤ γ2

(
γ

γ + 1

)µ

|Ij−µ,a| ≤ γ2+µ|Ij,k|,

and we get (ii) by the choice of µ.

2.4. Sequences of partitions and general Haar systems. For a partition π =

{ti : 0 ≤ i ≤ m} of [0, 1], let Hπ be the space of functions constant on each interval

[ti−1, ti), 1 ≤ i ≤ m, and continuous at 1. For a pair of partitions (π, π̃) such that π is

obtained from π̃ by adding one point, there is a unique (up to sign) function h ∈ Hπ with

h ⊥ Hπ̃ and ‖h‖2 = 1; it is called the Haar function corresponding to (π, π̃).

Now, let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions of [0, 1], and let the

partitions πn, n ≥ 1, be as defined in (2.16). The Haar system {hn : n ≥ 1} corresponding

to {Pj : j ≥ 0} is defined as follows: h1 = 1, and for n ≥ 2, hn is the Haar function

corresponding to (πn, πn−1). It can be calculated that for n = 2j + k,

(2.19) hn(u) =





√
λj+1,2k

λj+1,2k−1

1√
λj,k

for u ∈ [tj+1,2k−2, tj+1,2k−1),

−
√
λj+1,2k−1

λj+1,2k

1√
λj,k

for u ∈ [tj+1,2k−1, tj+1,2k),

0 otherwise,

and for 1 ≤ p ≤ ∞,

(2.20)
1√
2
(λj+1,2k−1 ∧ λj+1,2k)1/p−1/2 ≤ ‖hn‖p ≤ 2(λj+1,2k−1 ∧ λj+1,2k)1/p−1/2.

Therefore, if the sequence {Pj : j ≥ 0} of partitions is weakly regular with parameter γ,

then for 1 ≤ p ≤ ∞,

(2.21)
1√

2(1 + γ)
|{n}|1/p−1/2 ≤ ‖hn‖p ≤ 2

√
1 + γ|{n}|1/p−1/2

and moreover,

(2.22)
1√
γ
|{n}|−1/2 ≤ |hn(u)| ≤ √

γ|{n}|−1/2 on {n}.

Consider a quasi-dyadic sequence {Pj : j ≥ 0} of partitions and the corresponding

Haar system {hn : n ≥ 1}. Note that for any sequence (an)n≥1 of real coefficients,

the sequences {SH
m : m ≥ 1} and {SH

2j : j ≥ 0}, where SH
m =

∑m
n=1 anhn, are martin-

gales with respect to the σ-fields generated by the appropriate Haar functions. Clearly, if

an = (f, hn) for all n ∈ N and some f ∈ Lp, 1 ≤ p < ∞, then the SH
m ’s are partial sums

of the Fourier–Haar series of f , and for f ∈ L2, SH
m is the orthogonal projection of f onto

the space spanned by h1, . . . , hm. Therefore, the results concerning the unconditional

convergence of the Haar series follow from known results from martingale theory. The

properties of Haar series which are needed later on (cf. Section 6) are summarized in

Propositions 2.7 and 2.8. To formulate these propositions, we introduce the following
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notation: for a sequence (an)n≥1 of real numbers, PH and SH denote the square and

maximal functions of the corresponding Haar series, i.e.

PH(·) =
( ∞∑

n=1

a2
nhn(·)2

)1/2

, SH(·) = sup
m≥1

∣∣∣
m∑

n=1

anhn(·)
∣∣∣.

Moreover, for f ∈ L1, we denote by PHf , SHf the functions defined by the above

formulae with the coefficients an = (f, hn).

If {Pj : j ≥ 0} is a quasi-dyadic sequence of partitions of [0, 1] such that |Pj | → 0 as

j → ∞, then the corresponding Haar system is a basis in Lp for all 1 ≤ p <∞. Combining

this with D. L. Burkholder’s result concerning martingales (cf. [2], Theorem 9), and

Doob’s inequality for submartingales (cf. for example [14], Theorem 3.4 in Chapter VII),

we have

Proposition 2.7. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions of [0, 1]

such that |Pj| → 0 as j → ∞, and let {hn : n ≥ 1} be the corresponding Haar system.

Then {hn : n ≥ 1} is a basis in Lp for all 1 ≤ p <∞. This basis is unconditional in each

Lp for 1 < p <∞, and for each p, 1 < p <∞, and f ∈ Lp,

‖f‖p ∼ ‖PHf‖p ∼ ‖SHf‖p,

with implied constants depending on p only.

Under the additional assumption of weak regularity of the sequence of partitions under

consideration, applying Theorem 5.1 from [3], we get

Proposition 2.8. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions of [0, 1]

satisfying the weak regularity condition with parameter γ, and let {hn : n ≥ 1} be the

corresponding Haar system. Then, for each sequence (an)n≥1 of real coefficients and p,

0 < p ≤ 1, the following conditions are equivalent :

(1) PH(·) ∈ Lp,

(2) SH(·) ∈ Lp,

(3) the series
∑∞

n=1 anhn converges unconditionally in Lp.

2.5. Technical lemmas. For later reference, we present the formulation of Proposi-

tions 2.3 and 2.4 for sequences of Franklin functions.

Proposition 2.9. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions satisfying

the weak regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. For n ≥ 2, n = 2j + k with 1 ≤ k ≤ 2j, let tn and {n} be as in (2.17).

Then there is a constant Cγ , depending only on γ, such that

1

Cγ
|{n}|1/p−1/2 ≤ ‖fn‖p ≤ Cγ |{n}|1/p−1/2 for 1 ≤ p ≤ ∞,(2.23)

1

Cγ
|{n}|−1/2 ≤ fn(tn) ≤ Cγ |{n}|−1/2,(2.24)

|fn(tj+1,2k−2)| ≤ Cγ |{n}|−1/2, |fn(tj+1,2k)| ≤ Cγ |{n}|−1/2;(2.25)
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for i ≤ 2k − 2,

(2.26) fn(tj+1,i) = (−1)2k−1−i|fn(tj+1,i)|, |fn(tj+1,i−1)| ≤ 1
2 |fn(tj+1,i)|,

(2.27) |fn(tj+1,i)| ≤ Cγ
|{n}|−1/2

2|2k−1−i|
≤ Cγ

|{n}|−1/2

2|k−i/2|
,

(2.28) |fn(tj+1,i)| ≤ Cγ
|2k − 1 − i|
2|2k−1−i|

|{n}|1/2

tj+1,2k−1 − tj+1,i−1
,

(2.29)

tj+1,i\
0

|fn(u)| du ≤ 3
√

2 − 3

3
√

2 − 4

tj+1,i\
tj+1,i−1

|fn(u)| du

≤ 3
√

2 − 3

3
√

2 − 4
(3
√

2 − 3)−|i−2k+2|‖fn‖1

and for i ≥ 2k, i = 2l,

fn(tj+1,i) = (−1)k−1−i/2|fn(tj+1,i)|, |fn(tj+1,i+2)| ≤ 1
2 |fn(tj+1,i)|,(2.30)

|fn(tj+1,i)| ≤ Cγ
|{n}|−1/2

2|k−i/2|
,(2.31)

|fn(tj+1,i)| ≤ Cγ
|k − i/2 − 1|

2|k−i/2|

|{n}|1/2

tj+1,i+2 − tj+1,2k−1
,(2.32)

1\
tj+1,i

|fn(u)| du ≤ 3
√

2 − 3

3
√

2 − 4

tj+1,i+2\
tj+1,i

|fn(u)| du(2.33)

≤ 3
√

2 − 3

3
√

2 − 4
(3
√

2 − 3)−|k−i/2|‖fn‖1.

Proof. By definition, fn is the Franklin function corresponding to (πn, πn−1). Denote

by µn the number µ from Proposition 2.3 chosen for π = πn and π̃ = πn−1; then we have

µn

2
=

1

|{n−}|
+

1

|{n}| +
1

|{n+}|
,

with {n−} and {n+} given by (2.18). Note that formulae (2.18) and the definition of

weak regularity imply |{n−}| ≥ |{n}|/(γ + 1) and |{n+}| ≥ |{n}|/(γ + 1). Thus

2

|{n}| ≤ µn ≤ 4γ + 6

|{n}| ,

and now Proposition 2.9 is a consequence of Propositions 2.3 and 2.4.

Lemma 2.10. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions. Let n = 2j+k,

m = 2j + l with 1 ≤ k < l ≤ 2j. Then there are two constants α, β, depending on n and

m, such that

fn(u) = αfm(u) for u ≤ tj+1,2k−2 and fn(u) = βfm(u) for u ≥ tj+1,2l.

Proof. By definition, fn ∈ Sπn
, fn ⊥ Sπn−1 and fm ∈ Sπm

, fm ⊥ Sπm−1 . Denote

Nn = {i : tj+1,i ∈ πn}, Nm = {i : tj+1,i ∈ πm}, and let Nn,i, i ∈ Nn, and Nm,i, i ∈ Nm,

be the corresponding B-splines. Thus, fn =
∑

i∈Nn
aiNn,i with ai = fn(tj+1,i) and

fm =
∑

i∈Nm
biNm,i with bi = fm(tj+1,i). Consider the functions fn, fm on [0, tj+1,2k−2].
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Clearly, for i ≤ 2k− 3 we have Nn,i = Nm,i on [0, 1], and in addition Nn,2k−2 = Nm,2k−2

on [0, tj+1,2k−2]; moreover, the functions Nn,i = Nm,i with 0 ≤ i ≤ 2k − 3 belong

to both πn−1 and πm−1. Therefore, formula (2.1) for inner products of B-splines and

the orthogonality conditions imply that both (ai)0≤i≤2k−2 and (bi)0≤i≤2k−2 satisfy the

following system of equations:
{

2x0 + x1 = 0,
λj+1,ixi−1 + 2(λj+1,i + λj+1,i+1)xi + λj+1,i+1xi+1 = 0 for 1 ≤ i ≤ 2k − 3.

Since this is a system of 2k − 2 equations with 2k − 1 variables, the dimension of the

space of its solutions is 1. Since both (ai)0≤i≤2k−2 and (bi)0≤i≤2k−2 are non-zero, this

implies that there is a constant α such that ai = αbi for all 0 ≤ i ≤ 2k−2. This property

and the representation of fn and fm imply that fn = αfm on [0, tj+1,2k−2].

The existence of a constant β such that fn = βfm on [tj+1,2l, 1] follows by analogous

arguments.

Lemma 2.11. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. Let 0 < p ≤ 1. Then there is a constant Cγ,p such that for I ∈ I,

(2.34)
\
Ic

∑

{n}⊂I

|{n}|p/2|fn(u)|p du ≤ Cγ,p|I|,

and moreover , for all n ≥ 0,

(2.35)

1\
0

|fn(u)|p du ≤ Cγ,p|{n}|1−p/2.

Proof. To prove (2.34), let I ∈ Ij0 . Note that if {n} ⊂ I then n = 2j + m

with j ≥ j0 and {n} = [tj,m−1, tj,m] (cf. (2.17)). Let I = Ij0,k = [tj0,k−1, tj0,k] =

[tj,2j−j0 (k−1), tj,2j−j0k]. Thus, {n} ⊂ I means that 2j−j0(k − 1) < m ≤ 2j−j0k, so we

get for u ∈ Ij,l with l > 2j−j0k (cf. the decay of fn — Proposition 2.9, formulae (2.30)

and (2.31))
∑

2j<n≤2j+1

{n}⊂I

|{n}|p/2|fn(u)|p ≤ Cγ,p

∑

2j−j0 (k−1)<m≤2j−j0 k

2−p|m−l|

≤ Cγ,p2
−p|2j−j0k−l|.

As the sequence of partitions is strongly regular, applying the above inequality and

Proposition 2.6(ii), we obtain

1\
tj0,k

∑

2j<n≤2j+1

{n}⊂I

|{n}|p/2|fn(u)|p du ≤ Cγ,p

2j∑

l=2j−j0k+1

|Ij,l|2−p|2j−j0k−l|

≤ Cγ,p|Ij,2j−j0k|
2j∑

l=2j−j0k+1

(l − 2j−j0k)αγ

2p|2j−j0k−l|

≤ Cγ,p

(
γ

γ + 1

)j−j0

|I|,
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which gives

1\
tj0,k

∑

n⊂I

|{n}|p/2|fn(u)|p du ≤
∞∑

j=j0

1\
tj0,k

∑

2j<n≤2j+1

{n}⊂I

|{n}|p/2|fn(u)|p du

≤ Cγ,p|I|
∞∑

j=j0

(
γ

γ + 1

)j−j0

≤ Cγ,p|I|.

By analogous arguments we obtain

tj0,k−1\
0

∑

{n}⊂I

|{n}|p/2|fn(u)|p du ≤ Cγ,p|I|,

which implies inequality (2.34).

Inequality (2.35) follows from (2.34) (with I = {n}) and the fact that\
{n}

|fn(u)|p du ≤ Cγ |{n}|1−p/2,

which in turn is an immediate consequence of the estimate for the supremum norm of

the Franklin function (cf. Proposition 2.9, formula (2.23)).

Next, we formulate some technical estimates which are used frequently; their proofs

are elementary and therefore the details are omitted.

Proposition 2.12. Let {Pj : j≥0} be a quasi-dyadic sequence of partitions satisfying

the strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. For n ≥ 2, n = 2j + k with 1 ≤ k ≤ 2j, let {n} and tn = tj+1,2k−1 be as

in (2.17). Then there is a constant Cγ , depending only on γ, such that

(2.36)
1

Cγ
|{n}|−1/2 ≤ |fn(tj+1,2k−2)|, |fn(tj+1,2k−1)|, |fn(tj+1,2k)| ≤ Cγ |{n}|−1/2.

Moreover , let 0 < α ≤ 1. Then there is a positive constant Cγ,α, depending only on γ

and α, such that for all n and A ⊂ {n} with |A| ≥ α|{n}|,\
A

f2
n(u) du ≥ Cγ,α.

Proof. To get (2.36), apply the lower estimates for the values |fn(tj+1,2k−2)| and

|fn(tj+1,2k)| from Proposition 2.3 and strong regularity of the sequence of partitions.

The remaining part of Proposition 2.12 is a straightforward consequence of (2.36).

Proposition 2.13. Let 0 < α ≤ 1. Then there is a positive constant Cα, depending

only on α, such that for any interval [a, b], A ⊂ [a, b] with |A| ≥ α(b− a) and a function

f linear on [a, b],

max
u∈[a,b]

|f(u)| ≤ Cα max
u∈A

|f(u)| and
\

[a,b]

|f(u)| du ≤ Cα

\
A

|f(u)| du.
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Proposition 2.14. Let the quasi-dyadic sequence {Pj : j ≥ 0} of partitions satisfy

the weak regularity condition with parameter γ, E ⊂ [0, 1] and

B = {u ∈ [0, 1] : M∗(χE , u) > 1/(2γ + 2)}.
Let I ∈ I, and let I−, I+ be the intervals in I obtained by splitting I. If I 6⊂ B then

|I− ∩ Ec| ≥ 1

2γ
|I−| and |I+ ∩ Ec| ≥ 1

2γ
|I+|.

3. Franklin series in Lp, < p <∞

The main result of this section is the following:

Theorem 3.1. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

weak regularity condition with parameter γ. Then the corresponding Franklin system is

an unconditional basis in Lp for all 1 < p <∞.

For the proof of Theorem 3.1 we need some auxiliary results. We start with a technical

lemma.

Lemma 3.2. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the weak

regularity condition with parameter γ. Let I ∈ I and let ϕ be a function such that

suppϕ ⊂ I, sup |ϕ| ≤ 1

|I| ,
\
I

ϕ(u) du = 0.

Moreover , let an = (ϕ, fn). Then there is a constant Cγ , depending only on γ, such that\
Ic

∞∑

n=0

|anfn(u)| du ≤ Cγ .

Proof. First, observe that the conditions imposed on ϕ imply a0 = 0 and |a1| ≤√
3 (recall that f0 and f1 do not depend on the specific sequence of partitions — cf.

Definition 2.1), so it is enough to consider the sum beginning with n = 2.

Since I ∈ I, we have I = Ij0,k for some j0 ≥ 0 and 1 ≤ k ≤ 2j0 . To estimateT
Ic

∑∞
n=0 |anfn(u)| du, we split it into several parts.

First, consider
∑j0

j=0

∑2j+1

n=2j+1 |an|‖fn‖1. To simplify the notation, let I−= Ij0+1,2k−1,

I+ = Ij0+1,2k and τ = tj0+1,2k−1. Note that if n ≤ 2j0 +k−1, then fn is linear on I, and

for 2j0 + k ≤ n ≤ 2j0+1 the function fn is linear on both subintervals I− and I+. The-

refore, denoting by ξn, ζn the value of the derivative of fn on (I−)◦, (I+)◦ respectively

(clearly, ξn = ζn for n ≤ 2j0 + k − 1) and using the properties of ϕ we get

|an| =
∣∣∣
1\
0

ϕ(u)fn(u) du
∣∣∣ =

∣∣∣
\
I

ϕ(u)
(
fn(u) − fn(τ)

)
du

∣∣∣(3.1)

≤ 1

|I|
(
|ξn|

\
I−

|u− τ | du + |ζn|
\

I+

|u− τ | du
)

=
|ξn| · |I−|2 + |ζn| · |I+|2

2|I| .
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To estimate |ξn|, let n = 2j+l with 1 ≤ l ≤ 2j , j ≤ j0, and let ∆j be the unique interval of

order j+ 1 containing I−; as ∆j ∈ Ij+1, we have ∆j = Ij+1,kj
for some kj ; moreover, fn

is linear on∆j . Applying the pointwise estimates for fn from Proposition 2.9 (inequalities

(2.27), (2.31)) we get

sup
u∈∆j

|fn(u)| ≤ Cγ2−|l−kj/2||{n}|−1/2,

which gives

(3.2) |ξn| ≤ Cγ2−|l−kj/2||{n}|−1/2 1

|∆j |
.

Using the estimates for length of intervals from Proposition 2.6(i) we get

|ξn| ≤ Cγ2−|l−kj/2||{n}|−1/2

(
γ

γ + 1

)j0−j
1

|I−| ,

and by similar arguments (note that I+ ⊂ ∆j for j < j0),

|ζn| ≤ Cγ2−|l−kj/2||{n}|−1/2

(
γ

γ + 1

)j0−j
1

|I+| .

These estimates for |ξn|, |ζn| and (3.1) give

|an| ≤ Cγ2−|l−kj/2||{n}|−1/2

(
γ

γ + 1

)j0−j

.

As ‖fn‖1 ≤ Cγ |{n}|1/2 (cf. Proposition 2.9, (2.23)), the last inequality gives

2j+1∑

n=2j+1

|an| ‖fn‖1 ≤ Cγ

(
γ

γ + 1

)j0−j 2j∑

l=1

2−|l−kj/2| ≤ Cγ

(
γ

γ + 1

)j0−j

,

which implies

(3.3)

j0∑

j=0

2j+1∑

n=2j+1

|an| ‖fn‖1 ≤ Cγ

j0∑

j=0

(
γ

γ + 1

)j0−j

≤ Cγ .

Now, let n = 2j + l with 1 ≤ l ≤ 2j and j > j0. Then, by the properties of ϕ we have

(3.4) |an| ≤
\
I

|ϕ(u)| |fn(u)| du ≤ 1

|I|
\
I

|fn(u)| du.

Recall that I = [tj0,k−1, tj0,k] = [tj+1,2j+1−j0 (k−1), tj+1,2j+1−j0k]. Consider n such that

tn ∈ I, i.e. {n} ⊂ I, or equivalently 2j+1−j0(k − 1) < 2l − 1 < 2j+1−j0k. (It should

be noted that we cannot use Lemma 2.11, which has been obtained for strongly regular

partitions and 0 < p ≤ 1; now we obtain an analogous estimate for weakly regular

partitions, but for p = 1 only.) Then
T
I
|fn(u)| du ≤ ‖fn‖1, and using the decay of the

integrals of |fn| from Proposition 2.9 (cf. (2.29), (2.33)) we obtain\
Ic

|fn(u)| du =

t
j+1,2j+1−j0 (k−1)\

0

|fn(u)| du+

1\
t
j+1,2j+1−j0 k

|fn(u)| du

≤ 3
√

2 − 3

3
√

2 − 4
(θ|2

j+1−j0 (k−1)−2l+2| + θ|l−2j−j0 k|)‖fn‖1,
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where θ = 1/(3(
√

2 − 1)) < 1. Moreover, for these n’s we have (cf. formula (2.23) in

Proposition 2.9 and Proposition 2.6(i))

‖fn‖2
1 ≤ Cγ |{n}| ≤ Cγ

(
γ

γ + 1

)j−j0

|I|.

By (3.4) we have |an| ≤ |I|−1‖fn‖1, so applying the last two inequalities we get
∑

2j<n≤2j+1

tn∈I

|an|
\
Ic

|fn(u)| du ≤ Cγ

|I|
∑

2j<n≤2j+1

tn∈I

(θ|2
j+1−j0 (k−1)−2l+2| + θ|l−2j−j0k|)‖fn‖2

1

≤ Cγ

(
γ

γ + 1

)j−j0 ∑

l∈N

θl,

which means that

(3.5)
∑

2j<n≤2j+1

tn∈I

|an|
\
Ic

|fn(u)| du ≤ Cγ

(
γ

γ + 1

)j−j0

.

Now, consider n = 2j + l with 2l − 1 < 2j+1−j0 (k − 1), i.e. tn < tj+1,2j+1−j0 (k−1).

Let Jj be the interval from Ij with left end coinciding with the left end of I. Since

Jj ⊂ I, Proposition 2.6(i) implies that |Jj | ≤ (γ/(γ + 1))j−j0 |I|. Applying for these n’s

the estimates for the integral and pointwise decay of |fn| from Proposition 2.9 (cf. (2.33)

and (2.31)), we get\
I

|fn(u)| du ≤ 3
√

2 − 3

3
√

2 − 4

\
Jj

|fn(u)| du(3.6)

≤ 3
√

2 − 3

3
√

2 − 4
|Jj | |fn(tj+1,2j+1−j0 (k−1))|

≤ Cγ

(
γ

γ + 1

)j−j0

2−|l−2j−j0 (k−1)||{n}|−1/2|I|.

Clearly,
T
Ic |fn(u)| du ≤ ‖fn‖1, so the above inequlities, (3.4) and the estimate for ‖fn‖1

(cf. (2.23)) give

∑

2j<n≤2j+1

tn<t
j+1,2j+1−j0 (k−1)

|an|
\
Ic

|fn(u)| du ≤ Cγ

(
γ

γ + 1

)j−j0 ∑

l∈N

2−l ≤ Cγ

(
γ

γ + 1

)j−j0

.

By analogous arguments we check that

∑

2j<n≤2j+1

tn>t
j+1,2j+1−j0 k

|an|
\
Ic

|fn(u)| du ≤ Cγ

(
γ

γ + 1

)j−j0

.

The last two inequalities and (3.5) give

2j+1∑

n=2j+1

\
Ic

|an| |fn(u)| du ≤ Cγ

(
γ

γ + 1

)j−j0

,
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and summing over j > j0 we get
∞∑

n=2j0+1

\
Ic

|an| |fn(u)| du ≤ Cγ

∞∑

j=j0

(
γ

γ + 1

)j−j0

≤ Cγ .

This and (3.3) complete the proof.

As a consequence of Lemma 3.2 we get

Lemma 3.3. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the weak

regularity condition with parameter γ. Let T ⊂ I be a subset such that I◦ ∩ Ĩ◦ = ∅ for

all I, Ĩ ∈ T , I 6= Ĩ, and let B =
⋃

I∈T I. Let ψ be a function such that

sup |ψ| ≤ b, suppψ ⊂ B, ∀I∈T

\
I

ψ = 0,

where b is some nonnnegative number. Then there is a constant Cγ , depending only on

γ, such that for any function ψ satisfying the above conditions ,\
Bc

∞∑

n=0

|anfn(u)| du ≤ Cγb|B|,

where an = (ψ, fn).

Proof. Note that Bc ⊂ ⋂
I∈T I

c; put ψI = ψχI and aI,n = (ψI , fn). Since the

functions ψI satisfy the hypothesis of Lemma 3.2, we get\
Bc

∞∑

n=0

|aI,nfn(u)| du ≤
\
Ic

∞∑

n=0

|aI,nfn(u)| du ≤ Cγb|I|,

and summing over I ∈ T we obtain\
Bc

∞∑

n=0

|anfn(u)| du ≤
∑

I∈T

\
Bc

∞∑

n=0

|aI,nfn(u)| du ≤ Cγb
∑

I∈T

|I| = Cγb|B|.

Theorem 3.4. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

weak regularity condition with parameter γ. Let 1 < p < 2 and f ∈ Lp, f =
∑∞

n=0 anfn.

Let ε = (εn)n≥0 with εn ∈ {−1, 1} and

Tεf =
∞∑

n=0

εnanfn.

Then there is a constant Cγ,p, depending only on γ and p, such that for each f ∈ Lp and

each sequence ε,

‖Tεf‖p ≤ Cγ,p‖f‖p.

Proof. Let f ∈ Lp, 1 < p < 2. For x ∈ [0, 1], define

Φ(x) = sup
I:x∈I∈I

∣∣∣∣
1

|I|
\
I

f(u) du

∣∣∣∣.

First, observe that Φ(x) ≤ M(f, x). Since for p > 1 the operator M(f, ·) is of type (p, p),

this inequality implies

‖Φ‖p ≤ ‖M(f, ·)‖p ≤ Cp‖f‖p.



On general Franklin systems 25

For m ∈ Z let

Bm = {x ∈ [0, 1] : Φ(x) > 2m}.
Note that the set Bm is a sum of some intervals from I, and let Tm be the set of maximal

intervals from I contained in Bm; thus we have

Bm =
⋃

I∈Tm

I, with I◦ ∩ Ĩ◦ = ∅ for I, Ĩ ∈ Tm, I 6= Ĩ .

Note that Bm+1 ⊂ Bm; moreover, for each pair of different intervals from I, either their

interiors are disjoint or one is included in the other, which implies that for each interval

I ∈ Tm+1 there is a unique J ∈ Tm such that I ⊂ J . It is also clear that

(3.7)
∑

m∈Z

2mp|Bm| ≤ Cp‖Φ‖p
p ≤ Cp‖f‖p

p.

Now, let

Fm(x) =





f(x) for x 6∈ Bm,
1

|I|
\
I

f(u) du for x ∈ I, I ∈ Tm.

We check that there is a constant Cγ such that ‖Fm‖∞ ≤ Cγ2m for all m. Indeed, if

x 6∈ Bm, then Φ(x) ≤ 2m, which means that
∣∣∣∣

1

|J |
\
J

f(u) du

∣∣∣∣ ≤ 2m

for all J ∈ I with x ∈ J , and this implies |f(x)| ≤ 2m a.e. on Bm. On the other hand, if

I ∈ Tm is an interval of rank j, I∗ is the unique interval of rank j − 1 containing I and

I ′ is the other interval of rank j contained in I∗, then by maximality of I, neither I∗ nor

I ′ is included in Bm, which implies
∣∣∣∣

1

|I ′|
\
I′

f(u) du

∣∣∣∣ ≤ 2m and

∣∣∣∣
1

|I∗|
\
I∗

f(u) du

∣∣∣∣ ≤ 2m.

These inequalities and weak regularity of the sequence of partitions give
∣∣∣∣

1

|I|
\
I

f(u) du

∣∣∣∣ ≤
1

|I|
(∣∣∣
\
I∗

f(u) du
∣∣∣ +

∣∣∣
\
I′

f(u) du
∣∣∣
)
≤ 2m |I∗| + |I ′|

|I| ≤ (2γ + 1)2m.

Thus, for all m ∈ Z we have ‖Fm‖∞ ≤ (2γ + 1)2m.

Define ψm = Fm+1 − Fm; then

(3.8) ‖ψm‖∞ ≤ 3(2γ + 1)2m and suppψm ⊂ Bm.

Let us prove that the function ψm and set Bm satisfy the assumptions of Lemma 3.3 with

constant bm = 3(2γ+ 1)2m. It remains to check that
T
I
ψm(u) du = 0 for all I ∈ Tm, but

this follows from the fact that for I ∈ Tm the set I ∩Bm+1 can be written as the union of

some intervals from Tm+1, and from the formulae for Fm and Fm+1; the technical details

are omitted. Moreover, the function ψm is constant on the intervals I ∈ Tm+1, which

together with the previous property implies that (ψm, ψm′) = 0 for m 6= m′.

Note that by (3.7) and (3.8) we have f =
∑∞

m=−∞ ψm, with the series convergent

in Lp. Thus, putting am,n = (ψm, fn), we obtain an =
∑∞

m=−∞ am,n and εnan =
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∑∞
m=−∞ εnam,n. For l ∈ Z let

El =
{
u ∈ [0, 1] :

∣∣∣
∞∑

n=0

εnanfn(u)
∣∣∣ > 2l

}
,

Xl = {u ∈ [0, 1] :
∣∣∣

∞∑

n=0

εn

( ∑

m≤l−1

am,n

)
fn(u)

∣∣∣ > 2l−1
}
,

Yl =
{
u ∈ [0, 1] :

∣∣∣
∞∑

n=0

εn

( ∑

m≥l

am,n

)
fn(u)

∣∣∣ > 2l−1
}
.

Note that El ⊂ Xl∪Yl. Let us estimate |Xl| and |Yl|. First, using Chebyshev’s inequality,

estimates (3.8) for ‖ψm‖∞ and the orthogonality of the functions ψm, we obtain

|Xl| =
∣∣∣
{
u ∈ [0, 1] :

∣∣∣
∞∑

n=0

εn

( ∑

m≤l−1

am,n

)
fn(u)

∣∣∣
2

> 22l−2
}∣∣∣

≤ 1

22l−2

∞∑

n=0

( ∑

m≤l−1

am,n

)2

=
1

22l−2

∥∥∥
∑

m≤l−1

ψm

∥∥∥
2

2
=

1

22l−2

∑

m≤l−1

‖ψm‖2
2

≤ Cγ

22l

∑

m≤l−2

‖ψm‖2
∞|Bm| ≤ Cγ

22l

∑

m≤l−1

22m|Bm|.

On the other hand, the functions ψm and the sets Bm satisfy the assumptions of Lem-

ma 3.3, so using this lemma we get

|Yl| ≤ |Bl| +
∣∣∣
{
u ∈ Bc

l :

∞∑

n=0

∑

m≥l

|am,n| |fn(u)| > 2l−1
}∣∣∣

≤ |Bl| +
1

2l−1

\
Bc

l

∞∑

n=0

∑

m≥l

|am,n| |fn(u)| du

≤ |Bl| +
1

2l−1

∑

m≥l

\
Bc

m

∞∑

n=0

|am,n| |fn(u)| du

≤ Cγ

2l

∑

m≥l

2m|Bm|.

Thus, we have

|El| ≤ Cγ

(
1

22l

∑

m≤l−1

22m|Bm| + 1

2l

∑

m≥l

2m|Bm|
)
.

Using this estimate and (3.7) we obtain (recall that 1 < p < 2)

‖Tεf‖p
p ≤ Cp

∑

l∈Z

2lp|El|

≤ Cγ,p

( ∑

l∈Z

2l(p−2)
∑

m≤l

22m|Bm| +
∑

l∈Z

2l(p−1)
∑

m≥l

2m|Bm|
)
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≤ Cγ,p

( ∑

m∈Z

22m|Bm|
∑

l≥m

2l(p−2) +
∑

m∈Z

2m|Bm|
∑

l≤m

2l(p−1)
)

≤ Cγ,p

∑

m∈Z

2mp|Bm| ≤ Cγ,p‖f‖p
p.

Proof of Theorem 3.1. Recall that for each p, 1 ≤ p < ∞, the system {fn : n ≥ 0} is

a basis in Lp. As an orthonormal system, it is an unconditional basis in L2. Its uncondi-

tionality in Lp for 1 < p < 2 follows from Theorem 3.4, and then the unconditionality in

Lp for 2 < p <∞ is obtained by a duality argument.

As a consequence of Theorem 3.4, using a well-known argument based on Khinchin’s

inequality and the maximal inequality from Theorem 2.5(i), we obtain

Corollary 3.5. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

weak regularity condition with parameter γ and 1 < p <∞. Then for f ∈ Lp we have

‖f‖p ∼ ‖Pf‖p ∼ ‖Sf‖p,

with implied constants depending only on p and γ.

Moreover , for a real sequence (an)n≥0, the following conditions are equivalent :

(1) The series
∑∞

n=0 anfn is unconditionally convergent in Lp.

(2) There is f ∈ Lp such that an = (f, fn) for all n ≥ 0.

(3) P (·) = (
∑∞

n=0 a
2
nf

2
n(·))1/2 ∈ Lp.

(4) S(·) = supm≥0 |
∑m

n=0 anfn(·)| ∈ Lp.

4. Franklin series in Lp, 0 < p ≤ 1, and Hp, 1/2 < p ≤ 1

Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions and let {fn : n ≥ 0} be the

corresponding Franklin system. Let 0 < p <∞ and let a = (an)n≥0 be a given sequence

of real numbers. Consider the following conditions:

(A) P (·) = (
∑∞

n=0 a
2
nf

2
n(·))1/2 ∈ Lp.

(B) The series
∑∞

n=0 anfn converges unconditionally in Lp.

(C) S(·) = supm≥0 |
∑m

n=0 anfn(·)| ∈ Lp.

For 1 < p < ∞, we have already proved the equivalence of (A)–(C) under the as-

sumption of weak regularity of the sequence of partitions under consideration — cf. Co-

rollary 3.5. In this section, we study the relations of the above conditions for 0 < p ≤ 1.

Under the assumption of strong regularity of the sequence of partitions, we prove the

following:

Theorem 4.1. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. Then, for each p, 0 < p ≤ 1, conditions (A), (B) and (C) are equivalent.

Moreover, we study the convergence of the Franklin series in Hp, 1/2 < p ≤ 1. We

obtain the following result:
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Theorem 4.2. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. Let 1/2<p≤ 1 be given. Then the system {fn : n≥ 0} is an uncondi-

tional basis in Hp. Moreover , for f ∈ Hp,

(4.1) ‖f‖Hp ∼ ‖Pf‖p ∼ ‖Sf‖p ∼ sup
ε

∥∥∥
∞∑

n=0

εn(f, fn)fn

∥∥∥
p
,

with the supremum taken over ε = (εn)n≥0 with εn ∈ {−1, 1}, and with implied constants

depending only on p and γ. In addition, for the system {fn : n ≥ 0}, conditions (A)–(C)

are equivalent to

(D) There is f ∈ Hp such that an = (f, fn) for all n ≥ 0.

(E) The series
∑∞

n=0 anfn converges unconditionally in Hp.

The proofs of Theorems 4.1 and 4.2 are split into several lemmas. First, we state and

prove the lemmas, and the proofs of the theorems are presented at the end of this section.

The technique of the proofs is similar to that in [21]. For the convenience of the reader

and for the sake of completeness, we present them in detail.

Lemma 4.3. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the strong

regularity condition with parameter γ and let 1/2 < p ≤ 1. Then there is a constant Cγ,p,

depending only on p and γ, such that for every p-atom ϕ,

‖Sϕ‖p ≤ Cγ,p, ‖Pϕ‖p ≤ Cγ,p.

Proof. It is clear that for ϕ = 1, we have ‖Sϕ‖p = ‖Pϕ‖p = 1.

Now, let ϕ be a p-atom such that for some interval Γ ⊂ [0, 1],

suppϕ ⊂ Γ, sup |ϕ| ≤ |Γ |−1/p,

1\
0

ϕ(x) dx = 0.

For the interval Γ , let

j0 = min{j : there is I ∈ Ij with I ⊂ Γ}.
Let Ij0,k0 be an interval of rank j0 included in Γ ; it follows from the choice of j0 that

there can be at most two such intervals — it is possible that one of Ij0,k0−1, Ij0,k0+1 is

also included in Γ . Define

J =
⋃

|k−k0|≤2

Ij0,k.

By the choice of j0 we have Γ ⊂ J , and strong regularity implies

(4.2) |Γ | ∼ |J | ∼ |Ij0,k| for |k − k0| ≤ 2.

Note that ‖ϕ‖2
2 ≤ |Γ |1−2/p. Using (4.2) and Hölder’s inequality with exponents 2/p and

2/(2 − p) we get

(4.3)
\
J

(Pϕ(u))p du ≤ |J |1−p/2
(\

J

(Pϕ(u))2 du
)p/2

≤ ‖ϕ‖p
2|J |1−p/2 ≤ Cγ,p.
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Since Sϕ(u) ≤ 64M(ϕ, u) (cf. Theorem 2.5(i)) and the operator M is of type (2, 2), we

have ‖Sϕ‖2 ≤ C‖ϕ‖2, so a similar argument gives

(4.4)
\
J

(Sϕ(u))p du ≤ Cγ,p.

To estimate the corresponding integrals over Jc, note that

(4.5) (Pϕ(u))p ≤
∞∑

n=0

|anfn(u)|p and (Sϕ(u))p ≤
∞∑

n=0

|anfn(u)|p,

where an = (ϕ, fn), and therefore it is enough to prove

(4.6)
\

Jc

∞∑

n=0

|anfn(u)|p du ≤ Cγ,p.

The idea of the remaining part of the proof is similar to the proof of Lemma 3.2. First,

consider n ≤ 2j0 . Then fn is linear on each interval Ij0,k; denote by ξn,k the value of the

derivative of fn on I◦j0,k and let τ ∈ Γ . Since Γ ⊂ J and ϕ is an appropriate p-atom, by

strong regularity we get

(4.7) |an| =
∣∣∣
\
J

ϕ(u)(fn(u) − fn(τ)) du
∣∣∣ ≤ Cγ |Γ |2−1/p

∑

|k−k0|≤2

|ξn,k|.

For |k − k0| ≤ 2 and j ≤ j0, let ∆j,k ∈ Ij with Ij0,k ⊂ ∆j,k, and let mk be such that

∆j,k =Ij,mk
; let n = 2j + l. Then we get (by arguments analogous to those used to obtain

inequality (3.2) in the proof of Lemma 3.2)

|ξn,k| ≤ Cγ2−|l−mk||{n}|−1/2 1

|∆j,k|
.

Note that for |k−k0| ≤ 2 we have |mk−mk0 | ≤ 2, so by strong regularity |∆j,k| ∼ |∆j,k0 |;
thus, the last inequality and (4.7) give

|an| ≤ Cγ2−|l−mk0
||{n}|−1/2 |Γ |2−1/p

|∆j,k0 |
.

Since
T1
0
|fn(u)|p du ≤ Cγ,p|{n}|1−p/2 (cf. (2.35) in Lemma 2.11), the above inequality,

Proposition 2.6(ii) and (4.2) imply

2j+1∑

n=2j+1

1\
0

|anfn(u)|p du ≤ Cγ,p|Γ |2p−1
2j∑

l=1

2−p|l−mk0
| |Ij,l|1−p

|Ij,mk0
|p

≤ Cγ,p
|Γ |2p−1

|Ij,mk0
|2p−1

2j∑

l=1

(|l −mk0 | + 1)αγ(1−p)

2p|l−mk0
|

≤ Cγ,p

(
γ

γ + 1

)(j0−j)(2p−1) |Γ |2p−1

|Ij0,k0 |2p−1

≤ Cγ,p

(
γ

γ + 1

)(j0−j)(2p−1)

.
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Thus, since p > 1/2, by summing over j ≤ j0 − 1 we get

(4.8)
2j0∑

n=0

1\
0

|anfn(u)|p du ≤ Cγ,p.

Consider now n > 2j0 . Then we have

(4.9) |an| ≤ |Γ |−1/p
\
J

|fn(u)| du.

If {n} ⊂ J , then this inequality and the estimate for ‖fn‖1 from Proposition 2.9 (cf.

inequality (2.23)) give

|an| ≤ |Γ |−1/p‖fn‖1 ≤ Cγ |{n}|1/2|Γ |−1/p.

Applying the last inequality, Lemma 2.11 (cf. inequality (2.34)) and (4.2) we get

(4.10)
\

Jc

∑

{n}⊂J

|anfn(u)|p du ≤ Cγ,p.

Finally, for j ≥ j0, the arguments including the decay of the L1-norms of fn over in-

tervals from the partition πn (i.e. inequalities (2.29) and (2.33) in Proposition 2.9; see

also inequalities (3.6) in the proof of Lemma 3.2), the estimate for
T1
0
|fn(u)|p du from

Lemma 2.11 (i.e. inequality (2.35)), the estimates for the length of the intervals from

Proposition 2.6(i)–(ii) and (4.2) give

∑

2j<n≤2j+1

{n}6⊂J

1\
0

|fn(u)|p du
(\

J

|fn(u)| du
)p

≤ Cγ,p

(
γ

γ + 1

)j−j0

|Γ |,

which, together with (4.9), implies\
Jc

∑

n>2j0

{n}6⊂J

|anfn(u)|p du ≤ Cγ,p.

The last inequality, together with (4.8) and (4.10), gives (4.6). Lemma 4.3 now follows

from inequalities (4.3)–(4.6).

As a consequence of Lemma 4.3, we get

Lemma 4.4. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the strong

regularity condition with parameter γ and let 1/2 < p ≤ 1. Then there is a constant Cγ,p,

depending only on p and γ, such that for all f ∈ Hp,

‖Sf‖p ≤ Cγ,p‖f‖Hp , ‖Pf‖p ≤ Cγ,p‖f‖Hp .

Lemma 4.5. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the strong

regularity condition with parameter γ. Let (an)n≥0 be a sequence of real coefficients such

that S(·) = supm≥0 |
∑m

n=0 anfn(·)| ∈ L1. Then there is f ∈ H1 such that an = (f, fn)

for all n ≥ 0. Moreover , there is a constant Cγ , depending only on γ, such that

‖f‖H1 ≤ Cγ‖S‖1.
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Remark. Later on, we obtain a version of Lemma 4.5 for 1/2 < p < 1 as well (cf.

Lemma 4.9). However, the present version, for p = 1, is needed for the proof of Lemma 4.8

(i.e. the implication (C)⇒(A)), which in turn is used in the proof of Lemma 4.9.

Proof of Lemma 4.5. Since S ∈ L1, there is a function f ∈ L1 such that an = (f, fn),

n ≥ 0 — this follows from the Dunford–Pettis theorem (i.e. relative weak compactness

in L1 of a uniformly integrable subset, cf. for example [30]). Moreover, note that ‖f‖1 ≤
‖S‖1. It remains to check that f ∈ H1.

For convenience, let ‖S‖1 = 1. Put E0 = B0 = [0, 1], and for r ≥ 1,

Er = {u ∈ [0, 1] : S(u) > 2r}, Br =

{
u ∈ [0, 1] : M∗(χEr

, u) >
1

2γ + 2

}
.

Since M∗ is of weak type (1, 1), we have |Br| ≤ Cγ |Er|.
Consider now the following decompositions of Br:

(4.11) Br =
⋃

I∈Tr

I =
⋃

ν

Γr,ν ,

with the last union countable, where Tr is the family of maximal intervals from I included

in Br, and each Γr,ν is an interval which is a union of some intervals from Tr, and no two

Γr,ν ’s have a common endpoint. As for each I ∈ Tr+1 there is J ∈ Tr such that I ⊂ J , it

follows that for each Γr+1,ν there is Γr,µ with Γr+1,ν ⊂ Γr,µ.

Now, define the following sequence of functions: g0(u) =
T1
0
f(t) dt, and for r ≥ 1,

(4.12) gr(u) =





f(u) for u 6∈ Br,

1

|Γr,ν |
\

Γr,ν

f(t) dt for u ∈ Γr,ν .

Next, we prove that

(4.13) |gr(u)| ≤ Cγ2r.

Once we have proved (4.13), we obtain the following representation of f :

f = g0 +

∞∑

r=0

(gr+1 − gr) = g0 +

∞∑

r=0

∑

ν

br,ν,

with br,ν = (gr+1 − gr)χΓr,ν
. Then the functions

ar,ν =
br,ν

Cγ2r|Γr,ν |
are 1-atoms; in fact,

1\
0

br,ν(u) du =
\

Γr,ν∩Br+1

gr+1(u) du+
\

Γr,ν\Br+1

gr+1(u) du−
\

Γr,ν

gr(u) du

=
\

Γr,ν\Br+1

f(u) du+
∑

µ:Γr+1,µ⊂Γr,ν

\
Γr+1,µ

f(u) du−
\

Γr,ν

f(u) du = 0,

and now it is easy to check that the ar,ν ’s satisfy the conditions for 1-atoms. Since ar,ν ’s
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are 1-atoms, we obtain

‖f‖H1 ≤
∣∣∣
1\
0

f(u) du
∣∣∣ + Cγ

∞∑

r=0

∑

ν

2r|Γr,ν |

≤ ‖S‖1 + Cγ

∞∑

r=0

2r|Br| ≤ ‖S‖1 + Cγ

∞∑

r=0

2r|Er| ≤ Cγ‖S‖1.

Therefore, it remains to prove (4.13). First, note that |f(u)| ≤ S(u). For u ∈ Bc
r and

given m ≥ 0, let J ∈ I be such that u ∈ J and Sm =
∑m

n=0 anfn is linear on J ; then

J 6⊂ Br, so by the definition of Br we have

|J ∩Ec
r | ≥

2γ + 1

2γ + 2
|J |.

Since on Ec
r we have |Sm(·)| ≤ 2r, by Proposition 2.13 we get |Sm(·)| ≤ Cγ2r on J , which

implies S(·) ≤ Cγ2r and |gr(·)| ≤ Cγ2r on Bc
r .

Consider now |gr(·)| on Br, and let Γr,ν be one of the intervals in the second repre-

sentation of Br in (4.11). Let

j0 = min{j : there is I ∈ Ij such that I ⊂ Γr,ν}

and let Ij0 be an interval of rank j0 included in Γr,ν ; note that there are at most two

adjacent intervals with this property, and by strong regularity |Ij0 | ∼ |Γr,ν |. Moreover,

denote by tL, tR the left and right endpoints of Γr,ν , and let IL
j , IR

j be intervals of rank

j ≥ j0 containing tL and tR respectively; in case one of the points tL, tR is a point from the

partition Pj , the corresponding interval is chosen in such a way that it is not contained in

Γr,ν . Note that IL
j+1 ⊂ IL

j , IR
j+1 ⊂ IR

j . By strong regularity we have |IL
j0
| ∼ |IR

j0
| ∼ |Γr,ν |,

and therefore, by Proposition 2.6(i),

(4.14) |IL
j | ≤ Cγ

(
γ

γ + 1

)j−j0

|Γr,ν |, |IR
j | ≤ Cγ

(
γ

γ + 1

)j−j0

|Γr,ν |.

Now, we have

(4.15)
\

Γr,ν

f(u) du =
\

Γr,ν

2j0∑

n=0

anfn(u) du +

∞∑

j=j0

\
Γr,ν

2j+1∑

n=2j+1

anfn(u) du.

Let us estimate the first term in the sum (4.15). The interval IL
j0

is not included in Γr,ν ,

and as the intervals Γr,· do not have common endpoints, it follows that IL
j0

is not included

in Br; therefore, by the definitions of the sets Er and Br, we get

|IL
j0 ∩Ec

r | >
2γ + 1

2γ + 2
|IL

j0 |,

and for u ∈ IL
j0

∩ Ec
r we have |∑2j0

n=0 anfn(u)| ≤ 2r; as the function
∑2j0

n=0 anfn(·) is

linear on IL
j0 , Proposition 2.13 implies that |∑2j0

n=0 anfn(u)| ≤ Cγ2r on IL
j0 . The same

argument gives |∑2j0

n=0 anfn(u)| ≤ Cγ2r on IR
j0

. Moreover, note that, by the choice of
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j0, for J ∈ Ij0−1 with Ij0 ⊂ J we have J 6⊂ Br; therefore, by Proposition 2.14 we have

|Ij0 ∩ Ec
r | ≥ (1/(2γ))|Ij0 |, and by the same argument as previously, |∑2j0

n=0 anfn(u)| ≤
Cγ2r on Ij0 . The intervals Ij0 , I

L
j0
, IR

j0
cover Γr,ν , so we get

(4.16)
∣∣∣
\

Γr,ν

2j0∑

n=0

anfn(u) du
∣∣∣ ≤ Cγ2r|Γr,ν |.

Consider now
∑2j+1

n=2j+1 anfn(u), j ≥ j0, on IL
j ; as IL

j 6⊂ Br, by Proposition 2.14 we

have |IL
j,− ∩ Ec

r | ≥ (1/(2γ))|IL
j,−| and |IL

j,+ ∩ Ec
r | ≥ (1/(2γ))|IL

j,+|, where IL
j,−, I

L
j,+ are

intervals of rank j + 1 included in IL
j . Since

∑2j+1

n=2j+1 anfn(u) is linear on both IL
j,− and

IL
j,+, by Proposition 2.13 we get

∣∣∣
2j+1∑

n=2j+1

anfn(u)
∣∣∣ ≤ Cγ2r on IL

j ,

and by the same argument we obtain an analogous estimate on IR
j . Now, let Φj be the

unique function from SPj
equal to 1 on Γr,ν \(IL

j ∪IR
j ), and equal to 0 on (Γr,ν ∪IL

j ∪IR
j )c.

Since all the functions fn with n > 2j are orthogonal to Φj , we obtain (cf. (4.14))

∣∣∣
\

Γr,ν

2j+1∑

n=2j+1

anfn(u) du
∣∣∣ =

∣∣∣
\

Γr,ν

2j+1∑

n=2j+1

anfn(u) du−
1\
0

( 2j+1∑

n=2j+1

anfn(u)
)
Φj(u) du

∣∣∣

≤
\

IL
j

∣∣∣
2j+1∑

n=2j+1

anfn(u)
∣∣∣ du+

\
IR

j

∣∣∣
2j+1∑

n=2j+1

anfn(u)
∣∣∣ du

≤ Cγ2r(|IL
j | + |IR

j |) ≤ Cγ2r

(
γ

γ + 1

)j−j0

|Γr,ν |,

which gives

∞∑

j=j0

∣∣∣
\

Γr,ν

2j+1∑

n=2j+1

anfn(u) du
∣∣∣ ≤

∞∑

j=j0

Cγ2r

(
γ

γ + 1

)j−j0

|Γr,ν | ≤ Cγ2r|Γr,ν |.

The above inequality, (4.15), (4.16) and (4.12) give |gr(·)| ≤ Cγ2r on Γr,ν , and the proof

of Lemma 4.5 is complete.

Lemma 4.6. Let the quasi-dyadic sequence of partitions {Pj : j≥0} satisfy the strong

regularity condition with parameter γ and 0 < p ≤ 1. Let (an)n≥0 be a sequence of real

coefficients. Then (A) implies (B) and (C). Moreover , there is a constant Cγ,p, depending

only on p and γ, such that

sup
ε

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
p
≤ Cγ,p‖P‖p, ‖S‖p ≤ Cγ,p‖P‖p,

where the supremum is taken with respect to all sequences ε = (εn)n≥0 with εn ∈ {1,−1}.
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Proof. For convenience, let ‖P‖p = 1. Define E0 = [0, 1],

Er =
{
u ∈ [0, 1] :

∞∑

n=0

a2
nf

2
n(u) > 2r

}
, r = 1, 2, . . . ,

Br =

{
u ∈ [0, 1] : M∗(χEr

, u) >
1

2γ + 2

}
, r = 0, 1, 2, . . . ,

and let Tr be the set of maximal intervals from I included in Br. First, we prove the

following technical estimate:

(4.17)
\
Ic

∑

{n}⊂I
{n}6⊂Br+1

|anfn(u)|p du ≤ Cγ,p2
rp/2|I| for I ∈ Tr.

Indeed, if {n} 6⊂ Br+1 then Proposition 2.14, the definition of Er+1, Proposition 2.13

and the decay of |fn| (cf. Proposition 2.9, inequalities (2.26) and (2.30)) imply that

‖anfn‖∞ ≤ Cγ2(r+1)/2. Using the bound for ‖fn‖∞ from Proposition 2.9 (inequality

(2.23)) we get |an| ≤ Cγ2r/2|{n}|1/2. Applying this estimate and Lemma 2.11 (inequality

(2.34)) we obtain (4.17).

Now, for I ∈ Tr let

ψI =
∑

{n}⊂I
{n}6⊂Br+1

anfn.

We check that this formula defines an L2 function. As for {n} 6⊂ Br+1 we have

|{n} ∩ Ec
r+1| ≥

2γ + 1

2γ + 2
|{n}|,

by Proposition 2.12 it follows that
T
{n}∩Ec

r+1
f2

n(u) du ≥ Cγ . Therefore, we obtain (cf. the

definition of Er+1)

‖ψI‖2
2 =

∑

{n}⊂I
{n}6⊂Br+1

a2
n ≤ Cγ

∑

{n}⊂I
{n}6⊂Br+1

a2
n

\
{n}∩Ec

r+1

f2
n(u) du

≤ Cγ

\
I\Er+1

∑

{n}⊂I
{n}6⊂Br+1

a2
nf

2
n(u) du ≤ Cγ2r|I|.

Thus, we have

(4.18) ‖ψI‖2 ≤ Cγ2r/2|I|1/2 for I ∈ Tr.

We are ready to prove the unconditional convergence of
∑∞

n=0 anfn. Let ε = (εn)n≥0

with εn ∈ {−1, 1} and

ψI,ε =
∑

{n}⊂I
{n}6⊂Br+1

εnanfn for I ∈ Tr.

The series defining ψI,ε converges in L2, so it converges in Lp as well (recall that 0 < p

≤ 1). Therefore, it is sufficient to prove that there is a constant Cγ,p such that
∞∑

r=0

∑

I∈Tr

‖ψI,ε‖p
p ≤ Cγ,p.
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To estimate ‖ψI,ε‖p
p, note that by the Hölder inequality (with exponents 2/p and

2/(2 − p)) and (4.18) we get\
I

|ψI,ε(u)|p du ≤
(\

I

|ψI,ε(u)|2 du
)p/2

|I|1−p/2 = ‖ψI‖p
2 |I|1−p/2 ≤ Cγ,p2

rp/2|I|.

Moreover, as for p ≤ 1,

|ψI,ε(u)|p ≤
∑

{n}⊂I
{n}6⊂Br+1

|anfn(u)|p,

by (4.17) we have \
Ic

|ψI,ε(u)|p du ≤ Cγ,p2
rp/2|I|.

Thus, ‖ψI,ε‖p
p ≤ Cγ,p2

rp/2|I|, which implies (cf. the definitions of the sets Er and Br)

∞∑

r=0

∑

I∈Tr

‖ψI,ε‖p
p ≤ Cγ,p

∞∑

r=0

∑

I∈Tr

2rp/2|I| ≤ Cγ,p

∞∑

r=0

2rp/2|Br|

≤ Cγ,p

∞∑

r=0

2rp/2|Er| ≤ Cγ,p‖P‖p
p ≤ Cγ,p,

which in turn implies the unconditional convergence of the series
∑∞

n=0 anfn in Lp.

Moreover, note that the last chain of inequalities also implies

sup
ε

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
p

p
≤ Cγ,p.

It remains to estimate ‖S‖p; clearly,

S(u) ≤
∞∑

r=0

∑

I∈Tr

SψI(u), which implies S(u)p ≤
∞∑

r=0

∑

I∈Tr

SψI(u)
p.

The maximal inequality from Theorem 2.5(i) implies that ‖SψI‖2 ≤ C‖ψI‖2; moreover,

SψI(u)
p ≤

∑

{n}⊂I
{n}6⊂Br+1

|anfn(u)|p.

Therefore, similar arguments to those used for estimating ‖ψI,ε‖p
p give

‖SψI‖p
p ≤ Cγ,p2

rp/2|I|,
so summing over r ≥ 0 and I ∈ Tr we get

‖S‖p
p ≤ Cγ,p,

which completes the proof of Lemma 4.6.

Lemma 4.7. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the strong

regularity condition with parameter γ and 0 < p ≤ 1. Let (an)n≥0 be a sequence of real

coefficients. Then (B) implies (A). Moreover , there is a constant Cp, depending only on p,
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such that

‖P‖p ≤ Cγ,p sup
ε

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
p
,

where the supremum is taken over all sequences ε = (εn)n≥0 with εn ∈ {1,−1}.
Proof. Denote by {rn : n ≥ 1} the sequence of Rademacher functions. Khinchin’s

inequalities state that for each p, 0 < p < ∞, there are constants Ap, Bp (finite and

positive) such that for any sequence (cn)n≥1 of real coefficients with
∑∞

n=1 |cn|2 <∞,

Ap

( ∞∑

n=1

|cn|2
)1/2

≤
∥∥∥

∞∑

n=1

cnrn

∥∥∥
p
≤ Bp

( ∞∑

n=1

|cn|2
)1/2

(cf. for example [31], Chapter V, Theorem 8.4). The unconditional convergence of∑∞
n=0 anfn in Lp implies that for each ε = (εn)n≥0 with εn ∈ {−1, 1}, the series∑∞
n=0 εnanfn converges in Lp (cf. [24]). This in turn implies that

lim
m→∞

sup
ε

∥∥∥
∞∑

n=m

εnanfn

∥∥∥
p

p
= 0 and sup

ε

∥∥∥
∞∑

n=0

εnanfn

∥∥∥
p

p
= Mp <∞.

Now, a standard argument gives P ∈ Lp and ‖P‖p
p ≤ CpM

p.

Lemma 4.8. Let the quasi-dyadic sequence {Pj : j ≥ 0} of partitions satisfy the strong

regularity condition with parameter γ and 0 < p ≤ 1. Let (an)n≥0 be a sequence of real

coefficients. Then (C) implies (A). Moreover , there is a constant Cγ,p, depending only

on p and γ, such that

‖P‖p ≤ Cγ,p‖S‖p.

Proof. Suppose ‖S‖p = 1, and put E0 = [0, 1],

Er = {u ∈ [0, 1] : S(u) > 2r}, r = 1, 2, . . . ,

Br =

{
u ∈ [0, 1] : M∗(χEr

, u) >
1

2γ + 2

}
, r = 0, 1, 2, . . .

Consider the following decompositions of Br:

(4.19) Br =
⋃

I∈Tr

I =
⋃

ν

Γr,ν ,

with the last union countable, where Tr is the family of maximal intervals from I included

in Br, and each Γr,ν is an interval which is a union of some intervals from Tr, and no two

Γr,ν ’s have a common endpoint. As for each I ∈ Tr+1 there is J ∈ Tr such that I ⊂ J , it

follows that for each Γr+1,ν there is Γr,µ with Γr+1,ν ⊂ Γr,µ.

Let us begin with some auxiliary calculations.

Auxiliary calculations — functions ζr, ϕr,ν and Φ. Denoting by jI the rank of the

interval I ∈ I, we define

ζr(u) =





0 if u 6∈ Br,∑

j≥jI

∑

n:2j<n≤2j+1

{n}6⊂Br

|anfn(u)| for u ∈ I with I ∈ Tr.
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In the sequel, the following estimate is needed: there is a constant Cγ such that

(4.20)

1\
0

ζr(u) du ≤ Cγ2r|Br|.

Indeed, we have

1\
0

ζr(u) du =
∑

I∈Tr

\
I

∑

j≥jI

∑

n:2j<n≤2j+1

{n}6⊂Br

|anfn(u)| du.

Observe that if {n} 6⊂ Br then Proposition 2.14, the definition of Er, Proposition 2.13 and

the decay of fn (cf. Proposition 2.9, inequalities (2.26) and (2.30)) imply that ‖anfn‖∞ ≤
Cγ2r; this estimate and inequality (2.23) give |an| ≤ Cγ2r|{n}|1/2. Moreover, if {n} 6⊂ Br

then {n} 6⊂ I for I ∈ Tr. Denote by I−j , I
+
j , j ≥ jI , the intervals of rank j included in I

and containing the left and right endpoints of I, respectively. Using the estimates from

Proposition 2.9: the decay of integrals of Franklin functions (i.e. inequalities (2.29) and

(2.33)) and the pointwise decay of Franklin functions (inequalities (2.27) and (2.31)), the

above estimate for |an|, and the estimate for the length of I−j , I
+
j from Proposition 2.6(i),

we get

∑

j≥jI

\
I

∑

n:2j<n≤2j+1

{n}6⊂Br

|anfn(u)| du ≤ 3
√

2 − 3

3
√

2 − 4

∑

j≥jI

( \
I−

j

+
\

I+
j+1

) ∑

n:2j<n≤2j+1

{n}6⊂Br

|anfn(u)| du

≤ Cγ2r
∑

j≥jI

(|I−j | + |I+
j+1|) ≤ Cγ2r|I|,

so summing over I ∈ Tr we obtain (4.20).

Now, let Γr,ν be as in the second representation of Br in (4.19); let jr,ν be the minimal

rank of an interval from Tr included in Γr,ν ; moreover, put

Jr,ν,j =
⋃

I∈Ij

I⊂Γr,ν

I for j ≥ jr,ν .

Note that {Jr,ν,j : j ≥ jr,ν} is an increasing sequence of intervals and

Γr,ν =
⋃

j≥jr,ν

Jr,ν,j .

Moreover, if 2j < n ≤ 2j+1 and {n} ⊂ Γr,ν , then {n} ⊂ Jr,ν,j . Now, put

σr,ν,j,m(u) =
∑

n:2j<n≤2j+1∧m
{n}⊂Γr,ν

anfn(u), m ≥ 1,

ϕr,ν(u) =






0 if u ∈ Jr,ν,jr,ν
,

j−1∑

i=jr,ν

max
m

|σr,ν,i,m(u)| if u ∈ Jr,ν,j \ Jr,ν,j−1,

∞∑

i=jr,ν

max
m

|σr,ν,i,m(u)| if u 6∈ Γr,ν .
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In the sequel, the following estimate is needed: there is a constant Cγ such that

(4.21)

1\
0

ϕr,ν(u) du ≤ Cγ2r|Γr,ν |.

To check this inequality, note that

1\
0

ϕr,ν(u) du =

∞∑

j=jr,ν

\
Jc

r,ν,j

max
m

|σr,ν,j,m(u)| du.

To estimate the terms appearing in the sum on the right-hand side of the above equal-

ity, let ∆−
j , ∆+

j be the intervals of rank j ≥ jr,ν with the right endpoint of ∆−
j be-

ing the left endpoint of Jr,ν,j and the left endpoint of ∆+
j being the right endpoint of

Jr,ν,j . As ∆−
j+1, ∆

+
j 6⊂ Br, and σr,ν,j,m(·) is linear on these intervals, by Proposition 2.13

we get |σr,ν,j,m(·)| ≤ Cγ2r on ∆−
j+1 and ∆+

j . Denote by Jc,L
r,ν,j , J

c,R
r,ν,j the left-hand part

and right-hand part of Jc
r,ν,j , respectively. Consider the function σr,ν,j,m(·) on Jc,R

r,ν,j . By

Lemma 2.10, for all m this is a multiple of some Franklin function fn with 2j < n ≤ 2j+1

and {n} ⊂ Jr,ν,j ; this implies that maxm |σr,ν,j,m(·)| on this set is a multiple of |fn|,
and therefore the estimates for integrals of Franklin functions from Proposition 2.9 (i.e.

inequality (2.33)) imply\
Jc,R

r,ν,j

max
m

|σr,ν,j,m(u)| du ≤ 3
√

2 − 3

3
√

2 − 4

\
∆+

j

max
m

|σr,ν,j,m(u)| du ≤ Cγ2r|∆+
j |.

The integral over Jc,L
r,ν,j is treated analogously, which gives\

Jc,L
r,ν,j

max
m

|σr,ν,j,m(u)| du ≤ Cγ2r|∆−
j+1|.

Proposition 2.6(i) and strong regularity of the sequence of partitions imply that

|∆−
j |, |∆+

j | ≤ Cγ

(
γ

γ + 1

)j−jr,ν

|Γr,ν |,

and we get

∞∑

j=jr,ν

\
Jc

r,ν,j

max
m

|σr,ν,j,m(u)| du ≤
∞∑

j=jr,ν

Cγ2r

(
γ

γ + 1

)j−jr,ν

|Γr,ν | ≤ Cγ2r|Γr,ν |,

which proves (4.21).

Define

Φr = ζr +
∑

ν

ϕr,ν .

It follows from (4.20) and (4.21) that

(4.22)

1\
0

Φr(u) du ≤ Cγ2r|Br|.
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Auxiliary calculations — functions ψr. Now, introduce the auxiliary functions

ψr =
∑

{n}⊂Br

{n}6⊂Br+1

anfn =
∑

{n}⊂Br

anfn −
∑

{n}⊂Br+1

anfn =
∑

{n}6⊂Br+1

anfn −
∑

{n}6⊂Br

anfn.

We want to estimate Sψr. First, note that for u 6∈ Br,

∣∣∣
∑

{n}⊂Br

n≤m

anfn

∣∣∣ ≤
∑

ν

∣∣∣
∑

{n}⊂Γr,ν

n≤m

anfn

∣∣∣ ≤
∑

ν

∞∑

j=jr,ν

|σr,ν,j,m(u)| ≤
∑

ν

ϕr,ν(u) ≤ Φr(u).

As u 6∈ Br implies u 6∈ Br+1, the above inequality and the second representation of ψr

give

(4.23) Sψr(u) ≤ Φr(u) + Φr+1(u) for u 6∈ Br.

Moreover, on Bc
r we have S(·) ≤ Cγ2r (cf. the analogous statement in the proof of

Lemma 4.5), so for u 6∈ Br we get
∣∣∣

∑

n≤m
{n}6⊂Br

anfn(u)
∣∣∣ ≤

∣∣∣
∑

n≤m

anfn(u)
∣∣∣ +

∣∣∣
∑

n≤m
{n}⊂Br

anfn(u)
∣∣∣

≤ Cγ2r +
∑

ν

∣∣∣
∑

n≤m
{n}⊂Γr,ν

anfn(u)
∣∣∣

≤ Cγ2r +
∑

ν

ϕr,ν(u) ≤ Cγ2r + Φr(u),

which gives

(4.24) S
( ∑

{n}6⊂Br

anfn, u
)
≤ Cγ2r + Φr(u) for u 6∈ Br.

On the other hand, if u ∈ Br then u ∈ I for some I ∈ Tr; now, if m ≤ 2jI then

∣∣∣
∑

n≤m
{n}6⊂Br

anfn(u)
∣∣∣ ≤

∣∣∣
m∑

n=0

anfn(u)
∣∣∣ +

∣∣∣
∑

n≤m
{n}⊂Br

anfn(u)
∣∣∣.

The first term on the right-hand side is bounded by Cγ2r, by the definition of Er, Br

and maximality of I. Moreover, if {n} ⊂ Br and n ≤ 2jI then {n} 6⊂ I and the second

term can be bounded by
∑

ν ϕr,ν(u), which gives
∣∣∣

∑

n≤m
{n}6⊂Br

anfn(u)
∣∣∣ ≤ Cγ2r + Φr(u).

For m > 2jI we write

∣∣∣
∑

n≤m
{n}6⊂Br

anfn(u)
∣∣∣ ≤

∣∣∣
2jI∑

n=0

anfn(u)
∣∣∣ +

∣∣∣
∑

n≤2jI

{n}⊂Br

anfn(u)
∣∣∣ +

∣∣∣
∑

2jI <n≤m
{n}6⊂Br

anfn(u)
∣∣∣.
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As previously, the first two terms are bounded by Cγ2r and
∑

ν ϕr,ν(u), respectively,

while the third term is bounded by ζr(u). Thus, we obtain

(4.25) S
( ∑

{n}6⊂Br

anfn, u
)
≤ Cγ2r + Φr(u) for u ∈ Br.

Applying (4.24) and (4.25) and using the third representation of ψr we get

(4.26) Sψr(u) ≤ Cγ2r + Φr(u) + Φr+1(u) for u ∈ Br.

Therefore, (4.23) and (4.26) now give

Sψr(u) ≤ Cγ2rχBr
(u) + Φr(u) + Φr+1(u).

Integrating the above inequality and using (4.22) we get

1\
0

Sψr(u) du ≤ Cγ2r|Br|.

Applying Lemmas 4.5 and 4.4 we get the following bound for ‖Pψr‖1:

(4.27)

1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u)

)1/2

du ≤ Cγ2r|Br|.

Final part of the proof of Lemma 4.8. We need a bound of ‖Pψr‖p
p. First, using (4.27)

and Hölder’s inequality with exponents 1/p and 1/(1 − p), we get\
Br

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u)

)p/2

du ≤ |Br|1−p
( \

Br

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u)

)1/2

du
)p

≤ Cγ,p2
rp|Br|.

It remains to estimate the integral over Bc
r. For {n} 6⊂ Br+1 we have ‖anfn‖∞ ≤ Cγ2r

(by definition of Br+1, Er+1 and Propositions 2.13 and 2.14). The estimate for ‖fn‖∞ (cf.

inequality (2.23) in Proposition 2.9) now gives |an| ≤ Cγ2r|{n}|1/2, so applying inequality

(2.34) from Lemma 2.11 we get for I ∈ Tr\
Ic

∑

{n}⊂I
{n}6⊂Br+1

|anfn(u)|p du ≤ Cγ,p2
rp|I|.

Using this inequality we obtain\
Bc

r

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u)

)p/2

du ≤
∑

I∈Tr

\
Bc

r

∑

{n}⊂I
{n}6⊂Br+1

|anfn(u)|p du

≤
∑

I∈Tr

\
Ic

∑

{n}⊂I
{n}6⊂Br+1

|anfn(u)|p du

≤ Cγ,p

∑

I∈Tr

2rp|I| ≤ Cγ,p2
rp|Br|.
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Thus, we have
1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u)

)p/2

du ≤ Cγ,p2
rp|Br|,

and summing over r ≥ 0 we obtain

1\
0

( ∞∑

n=0

a2
nf

2
n(u)

)p/2

du ≤
∞∑

r=0

1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u)

)p/2

du

≤ Cγ,p

∞∑

r=0

2rp|Br| ≤ Cγ,p.

Lemma 4.9. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the strong

regularity condition with parameter γ and 1/2 < p ≤ 1. Let (an)n≥0 be a sequence of real

coefficients such that S(·) = supm≥0 |
∑m

n=0 anfn(·)| ∈ Lp. Then there is f ∈ Hp such

that f =
∑∞

n=0 anfn, with the series convergent in Hp. Moreover , there is a constant

Cγ,p, depending only on p and γ, such that

‖f‖Hp ≤ Cγ,p‖S‖p,

Proof. First, consider a sequence (an)n≥0 with a finite number of non-zero terms.

Then, since fn ∈ Hp, we have h =
∑∞

n=0 anfn ∈ Hp∩C[0, 1], and moreover, by arguments

analogous to those used in the proof of Lemma 4.5, we check that there is a constant

Cγ,p, depending only on p and γ, such that

‖h‖Hp ≤ Cγ,p‖S‖p.

Now, let (an)n≥0 be an arbitrary sequence with S ∈ Lp. Since S ∈ Lp, Lemma 4.8

gives P ∈ Lp. Thus, P is finite a.e.; define Pm = (
∑∞

n=m a2
nf

2
n)1/2. Observe that Pm ց 0,

which in turn gives ‖Pm‖p → 0 as m → ∞. Consider the sequence hk =
∑k

n=0 anfn.

Combining Lemma 4.6, the decay of ‖Pm‖p and the part of Lemma 4.9 just proved for

finite sequences, we find that hk is a Cauchy sequence in Hp, and by completeness of Hp,

there is f ∈ Hp with f = limk→∞ hk. Moreover, combining the above calculations with

Lemmas 4.6 and 4.8, we get

‖f‖Hp = lim
k→∞

‖hk‖Hp ≤ Cγ,p sup
k≥0

‖Shk‖p

≤ Cγ,p sup
k≥0

‖Phk‖p ≤ Cγ,p‖P‖p ≤ Cγ,p‖S‖p.

Now, we are ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. Theorem 4.1 is a consequence of Lemmas 4.6, 4.7 and 4.8.

Proof of Theorem 4.2. Let f ∈ Hp and an = (f, fn), n ≥ 0. Put smf =
∑m

n=0 anfn.

By Lemmas 4.9, 4.6 and 4.4 we have

‖smf‖Hp ≤ Cγ,p‖S(smf)‖p ≤ Cγ,p‖P (smf)‖p ≤ Cγ,p‖Pf‖p ≤ Cγ,p‖f‖Hp .

If f is a continuous function then smf → f in the uniform norm, which implies that

smf → f inHp. As the continuous functions are dense inHp, this and the last inequalities
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imply that smf → f in Hp for all f ∈ Hp. Moreover, (·, fn) is a continuous linear

functional on Hp, which implies that if f =
∑∞

n=0 bnfn, with the series convergent in Hp,

then bn = (f, fn). Thus, the system {fn : n ≥ 0} is a basis in Hp. Its unconditionality

follows from Lemmas 4.4, 4.6 and 4.9.

Equivalences (4.1) now follow from Lemmas 4.4, 4.6, 4.7 and 4.9.

Finally, the equivalence of conditions (A)–(E) follows from the unconditionality of the

basis {fn : n ≥ 0} in Hp, Theorem 4.1 and the lemmas just mentioned.

5. The necessity of strong regularity in Hp, 1/2 < p ≤ 1

The main result of this section is the following:

Theorem 5.1. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions and 1/2 <

p ≤ 1. If the sequence {Pj : j ≥ 0} does not satisfy the strong regularity condition, then

the corresponding Franklin system is not a basis in Hp.

The proof is based on the following lemma:

Lemma 5.2. Let ε > 0 and let π = {τi : 0 ≤ i ≤ m} be a partition of [0, 1] such

that there exist three consecutive intervals Λk−1, Λk, Λk+1, where Λl = [τl−1, τl], with the

following property: either

|Λk+1| ≤ ε|Λk−1| and |Λk| ≤ ε|Λk−1|,
or

|Λk−1| ≤ ε|Λk+1| and |Λk| ≤ ε|Λk+1|.
Let Qπ be the orthogonal (in L2) projection onto Sπ and for given p, 1/2 < p ≤ 1, define

‖Qπ‖Hp = sup
f∈Hp

‖Qπf‖Hp

‖f‖Hp

.

Then for each p, 1/2 < p ≤ 1, there are εp and Cp, depending on p only, such that for

all partitions π satisfying the above condition with 0 < ε ≤ εp,

‖Qπ‖H1 ≥ C1 log(1/ε) in case p = 1,

‖Qπ‖Hp ≥ Cpε
1−1/p in case 1

2 < p < 1.

Proof. For convenience, let λl = |Λl|. Suppose that the first set of inequalities is

satisfied, i.e.

(5.1) λk+1 ≤ ελk−1 and λk ≤ ελk−1.

We consider in detail the case when none of the intervals Λk−1, Λk, Λk+1 touches the

boundary of [0, 1]; the other cases, i.e. k = 2 or k = m− 1, require only minor technical

changes, and the detailed calculations are omitted.

Consider the function

ϕ(u) =

{
1/λk for u ∈ Λk = [τk−1, τk],
−1/λk for u ∈ (τk−1 − λk, τk−1),
0 otherwise.
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Since 2−1/pλ
1−1/p
k ϕ is a p-atom, we have

(5.2) ‖ϕ‖Hp ≤ 21/pλ
1/p−1
k .

Let us estimate ‖Qπϕ‖Hp from below. For this purpose, we use the following fact (an

analog of a part of Theorem 11 of [15]):

Let 1/2 < p ≤ 1 and ψ(u) = max(0, 1 − |u|), ψζ(u) = (1/ζ)ψ(u/ζ). For f ∈ Hp,

define

f∗(u) = sup
ζ>0

|(f, ψζ(u− ·))|.

Then there is a constant Cp, depending on p only, such that

(5.3) ‖f∗‖p ≤ Cp‖f‖Hp .

Since Qπϕ ∈ Sπ , we have Qπϕ =
∑m

i=0 aiNi, and as Qπ is the orthogonal projection

onto Sπ, the coefficients ai satisfy the equations
∑m

i=0 ai(Ni, Nj) = (ϕ,Nj), j = 0, . . . ,m.

By straightforward calculation we get

(ϕ,Nj) =





0 for j ≤ k − 3 and j ≥ k + 1,
−λk

2λk−1
for j = k − 2,

λk − λk−1

2λk−1
for j = k − 1,

1

2
for j = k.

Thus, the equations for the ai’s take the following form (cf. formula (2.1) for (Ni, Nj)):

(5.4)

{ 2a0 + a1 = 0,
λiai−1 + 2(λi + λi+1)ai + λi+1ai+1 = 0 for i ≤ k − 3 or i ≥ k + 1,
am−1 + 2am = 0

and

(5.5)






λk−2ak−3 + 2(λk−2 + λk−1)ak−2 + λk−1ak−1 = −3
λk

λk−1
,

λk−1ak−2 + 2(λk−1 + λk)ak−1 + λkak = 3
λk − λk−1

λk−1
,

λkak−1 + 2(λk + λk+1)ak + λk+1ak+1 = 3.

Arguments analogous to those used in the proof of Proposition 2.1 now give:

(5.6) for i ≥ k :

{
aiai+1 ≤ 0,(
2λi+1 + 3

2λi+2

)
|ai+1| ≤ λi+1|ai| ≤ 2(λi+1 + λi+2)|ai+1|,

(5.7) aiai+1 ≤ 0, |ai| ≤ 1
2 |ai+1| for i ≤ k − 3.

Further, note that ‖ϕ‖1 = 2; as ‖Qπϕ‖1 ≤ 3‖ϕ‖1 (see Theorem 2.5 (i)), we have

2

5
λk−1 max(|ak−1|, |ak−2|) ≤

τk−1\
τk−2

|Qπϕ(u)| du ≤ 6,

so

(5.8) max(|ak−1|, |ak−2|) ≤ 15/λk−1
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and by (5.1)

|ak−1|λk ≤ 15ε.

As ak+1 and ak have opposite signs and |ak+1| ≤ 1
2 |ak| (cf. (5.6)), the last equation in

(5.5) can be written as

η + 2λkak + ξλk+1ak = 3,

with |η| ≤ 15ε and 3/2 ≤ ξ ≤ 2. Thus, if ε ≤ 1/15 then

(5.9)
1

λk + λk+1
≤ ak.

Let yi, k ≤ i ≤ m, be the point from Λi for which Qπϕ(yi) = 0; in addition, let

ym+1 = τm = 1 and in case ak−1 > 0, put yk = τk−1. Denote

∆i =

yi+1\
yi

Qπϕ(u) du =
1

2
ai(yi+1 − yi) for k ≤ i ≤ m.

Now, Qπϕ is positive on (yk+2l, yk+2l+1), and negative on (yk+2l+1, yk+2l+2); this follows

from the fact that ak > 0, (5.6) and the choice of the yi’s, and we have

(5.10) ∆k+2l ≥ 0, ∆k+2l+1 ≤ 0 for l ≥ 0.

Further, for l ≥ 0,

∆k+2l ≥
yk+2l+1\
τk+2l

Qπϕ(u) du =
|ak+2l|

2

|ak+2l|λk+2l+1

|ak+2l| + |ak+2l+1|
,

|∆k+2l+1| ≤
|ak+2l+1|

2

( |ak+2l+1|λk+2l+1

|ak+2l| + |ak+2l+1|
+ λk+2l+2

)
.

These inequalities and (5.6) imply that for l ≥ 0,

(5.11) ∆k+2l ≥ 9
8 |∆k+2l+1|.

If in addition ε < 1/60, then |ak−1| ≤ 1
2ak (cf. (5.1), (5.8) and (5.9)), which implies

τk − yk ≥ 2
3λk. Since |ak+1| ≤ 1

2ak by (5.6), which gives yk+1 − τk ≥ 2
3λk+1, by the

definition of ∆k, (5.9) and (5.11) we have

(5.12) ∆k ≥ 1
3 and ∆k +∆k+1 ≥ 1

27 for ε ≤ 1
60 .

Now, we can estimate ‖(Qπϕ)∗‖p from below. Choose ̺ with ̺ ≥ λk + λk+1, and

consider u = τk−1 − ̺. Clearly, (Qπϕ)∗(u) ≥ |
T1
0
Qπϕ(s)ψ3̺(u − s) ds|. Note that the

choice of ̺ guarantees ψ3̺(u− yk+1) ≥ ψ3̺(u− τk+1) ≥ 1/(9̺). Since ψ is increasing and

nonnegative on (−∞, 0], from (5.11) and (5.12) we get

1\
yk

Qπϕ(s)ψ3̺(u− s) ds =

m∑

i=k

yi+1\
yi

Qπϕ(s)ψ3̺(u− s) ds

≥
∑

l≥0

ψ3̺(u− yk+2l+1)(∆k+2l +∆k+2l+1)

≥ ψ3̺(u− yk+1)(∆k +∆k+1) ≥
1

243̺
.
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On the other hand, by (5.8), (5.7) and the choice of yk we get

∣∣∣
yk\
0

Qπϕ(s)ψ3̺(u− s) ds
∣∣∣ ≤ sup

s≤yk

|Qπ(s)|
∞\
−∞

ψ3̺(z) dz ≤
15

λk−1
.

Thus, we obtain

(Qπϕ)∗(u) ≥ 1

243̺
− 15

λk−1
.

Put β = 1/(30 · 243) and take ε < β/4. Then the last inequality implies

(Qπϕ)∗(u) ≥ 1

486̺
for λk + λk+1 ≤ ̺ ≤ βλk−1.

Using this inequality and (5.1), for ε < β/4 we get

‖(Qπϕ)∗‖p
p ≥

βλk−1\
λk+λk+1

(
1

486̺

)p

d̺ ≥
βλk−1\
2ελk−1

(
1

486̺

)p

d̺.

Calculating this integral and applying (5.3) we get

‖Qπϕ‖Hp ≥ Cpλ
1/p−1
k−1 for 1/2 < p < 1,

or ‖Qπϕ‖H1 ≥ C1 ln(β/2ε) in case p = 1, with the constant Cp depending on p but not

on ε and π. Taking ε < β/4 and combining these inequalities with (5.1) and (5.2) we get

‖Qπ‖H1 ≥ C1 ln(β/(2ε)) and ‖Qπ‖Hp ≥ Cpε
1−1/p in case 1/2 < p < 1.

Proof of Theorem 5.1. Let 1/2 < p ≤ 1 and suppose the quasi-dyadic sequence of

partitions {Pj : j ≥ 0} does not satisfy the strong regularity condition.

If the corresponding Franklin system {fn : n ≥ 0} were a basis in Hp, and for f ∈ Hp

and a sequence of coefficients (bn)n≥0 we had f =
∑∞

n=0 bnfn, then the continuity of the

liner functional (·, fn) would imply bn = (f, fn), and QPj
f =

∑2j

n=0 bnfn, i.e. for each

f ∈ Hp, the sequence QPj
f would converge to f in Hp.

Now, let εp be as in Lemma 5.2. As the sequence of partitions is not strongly regular,

it follows that for each ε, 0 < ε ≤ εp, we can find jε and a pair of adjacent intervals

Ijε−1,l, Ijε−1,l+1 ∈ Ijε−1 such that

either |Ijε−1,l| ≤ ε2|Ijε−1,l+1| or |Ijε−1,l+1| ≤ ε2|Ijε−1,l|.
Then, passing to a splitting of Ijε−1,l and Ijε−1,l+1, we can find three consecutive intervals

Ijε,k−1, Ijε,k, Ijε,k+1 such that either

|Ijε,k+1| ≤ ε|Ijε,k−1| and |Ijε,k| ≤ ε|Ijε,k−1|,
or

|Ijε,k−1| ≤ ε|Ijε,k+1| and |Ijε,k| ≤ ε|Ijε,k+1|.
Thus, Pjε

satisfies the assumptions of Lemma 5.2, which gives ‖QPjε
‖Hp ≥ Cpε

1−1/p for

1/2 < p < 1, or ‖QPjε
‖H1 ≥ C1 ln(1/ε) in case p = 1. As ε ≤ εp is arbitrary, this implies

the existence of a sequence gm ∈ Hp and a sequence of indices im such that gm → 0 in

Hp and ‖QPim
gm‖Hp → ∞, so the operators QPj

are not equicontinuous. Therefore, the

sequence QPj
f cannot converge in Hp for each f ∈ Hp, and consequently the system

{fn : n ≥ 0} cannot be a basis in Hp.
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The results of Theorems 4.2 and 5.1 can be summarized in the following form:

Theorem 5.3. Let {Pj : j ≥ 0} be a quasi-dyadic sequence of partitions of [0, 1], and

let {fn : n ≥ 0} be the corresponding Franklin system. Then the following conditions are

equivalent :

(1) {Pj : j ≥ 0} satisfies the strong regularity condition for some parameter γ.

(2) {fn : n ≥ 0} is a basis in Hp for each p, 1/2 < p ≤ 1.

(3) {fn : n ≥ 0} is a basis in Hp for some p, 1/2 < p ≤ 1.

(4) {fn : n ≥ 0} is an unconditional basis in Hp for each p, 1/2 < p ≤ 1.

(5) {fn : n ≥ 0} is an unconditional basis in Hp for some p, 1/2 < p ≤ 1.

6. Haar and Franklin series with identical coefficients

Now, we compare the behaviour of the Haar and Franklin series with identical coeffi-

cients. We start with the following:

Proposition 6.1. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

weak regularity condition with parameter γ, and let {fn : n ≥ 0} and {hn : n ≥ 1} be the

corresponding Franklin and Haar systems , respectively. Then for each p, 1 < p <∞, and

a sequence (an)n≥1 of real coefficients ,

∥∥∥
( ∞∑

n=1

a2
nf

2
n

)1/2∥∥∥
p
∼

∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
,

with implied constants depending only on p and γ.

Proof. It is enough to note that if the sequence of partitions is weakly regular with

parameter γ, then there is a constant Cγ such that for all n ≥ 1 and u ∈ [0, 1],

|hn(u)| ≤ CγM(fn, u) and |fn(u)| ≤ CγM(hn, u).

To check these inequalities, recall the pointwise estimates for the Franklin function in

Proposition 2.9 (inequalities (2.28) and (2.32)), and the estimates for the Haar func-

tions (cf. (2.19), (2.22)). To complete the proof, apply the following maximal inequality

of Fefferman and Stein (cf. for example [28], Theorem 2.1.1): for each 1 < p < ∞,

there is a constant Cp such that for every sequence of functions {gn : n ≥ 0} with

(
∑∞

n=0 g
2
n(·))1/2 ∈ Lp,

∥∥∥
( ∞∑

n=0

(M(gn, ·))2
)1/2∥∥∥

p
≤ Cp

∥∥∥
( ∞∑

n=0

g2
n(·)

)1/2∥∥∥
p
.

The inequality of Fefferman–Stein does not hold for 0 < p ≤ 1. To obtain an analogous

result in this case, the technique similar to that from [19] is used.

Proposition 6.2. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ, and let {fn : n ≥ 0} and {hn : n ≥ 1} be

the corresponding Franklin and Haar systems , respectively. Then for each p, 0 < p ≤ 1,
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and a sequence (an)n≥1 of real coefficients ,

∥∥∥
( ∞∑

n=1

a2
nf

2
n

)1/2∥∥∥
p
∼

∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
,

with implied constants depending only on p and γ.

Proof. Let us start with the proof of the bound of the Haar square function by the

Franklin square function. Define

Er =
{
u ∈ [0, 1] :

∞∑

n=1

a2
nf

2
n(u) > 2r

}
,

Br = {u ∈ [0, 1] : M∗(χEr
, u) > 1/2},

ψr =
∑

{n}⊂Br

{n}6⊂Br+1

anhn.

For {n} 6⊂ Br+1 we have |{n} ∩ Ec
r+1| > 1

2 |{n}|, whence by Proposition 2.12 there is a

constant Cγ such that
T
{n}∩Ec

r+1
f2

n(u) du ≥ Cγ . Using this we get

‖ψr‖2
2 =

∑

{n}⊂Br

{n}6⊂Br+1

a2
n ≤ Cγ

∑

{n}⊂Br

{n}6⊂Br+1

a2
n

\
{n}∩Ec

r+1

f2
n(u) du

≤ Cγ

\
Br∩Ec

r+1

∑

{n}⊂Br

{n}6⊂Br+1

a2
nf

2
n(u) du ≤ Cγ2r|Br|.

Since suppψr ⊂ Br, using the above estimate and Hölder’s inequality with exponents

2/p and 2/(2 − p) we get

1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nh

2
n(u)

)p/2

du ≤ |Br|1−p/2‖ψr‖p
2 ≤ Cγ,p2

rp/2|Br|.

Summing over r we obtain

1\
0

( ∞∑

n=0

a2
nh

2
n(u)

)p/2

du ≤
∑

r

1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nh

2
n(u)

)p/2

du

≤ Cγ,p

∑

r

2rp/2|Br| ≤ Cγ,p

∑

r

2rp/2|Er|,

and therefore
∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
≤ Cγ,p

∥∥∥
( ∞∑

n=1

a2
nf

2
n

)1/2∥∥∥
p
.

It remains to prove the converse inequality. To this end, let
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Ẽr =
{
u ∈ [0, 1] :

∞∑

n=1

a2
nh

2
n(u) > 2r

}
,

B̃r = {u ∈ [0, 1] : M∗(χẼr
, u) > 1/2},

ψ̃r =
∑

{n}⊂B̃r

{n}6⊂B̃r+1

anfn.

As previously, if {n} 6⊂ B̃r+1, then |{n}∩Ẽc
r+1| ≥ 1

2 |{n}|, and therefore
T
{n}∩Ẽc

r+1
h2

n(u) du

≥ Cγ (cf. (2.22)). Using this we get

‖ψ̃r‖2
2 =

∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
n ≤ Cγ

∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
n

\
{n}∩Ec

r+1

h2
n(u) du

≤ Cγ

\
B̃r∩Ẽc

r+1

∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
nh

2
n(u) du ≤ Cγ2r|B̃r|.

Using the last estimate and applying Hölder’s inequality with exponents 2/p and 2/(2−p)
we get

(6.1)
\̃

Br

( ∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
nf

2
n(u)

)p/2

du ≤ |B̃r|1−p/2‖ψ̃r‖p
2 ≤ Cγ,p2

rp/2|B̃r|.

To prove the analogous bound for the integral over B̃c
r note that if {n} 6⊂ B̃r+1 then

|{n} ∩ Ẽc
r+1| ≥ 1

2 |{n}|, and as hn is constant on both subintervals of {n} from the next

partition, we have ‖a2
nh

2
n‖∞ ≤ Cγ2r+1. Since ‖hn‖∞ ∼ |{n}|−1/2 (cf. (2.21)), we get

|an| ≤ Cγ2r/2|{n}|1/2. Let T̃r be the set of maximal intervals from I included in B̃r.

Applying the last estimate for |an| and inequality (2.34) from Lemma 2.11, for I ∈ T̃r

we get \
Ic

∑

{n}⊂I

{n}6⊂B̃r+1

|anfn(u)|p du ≤ Cγ,p2
rp/2|I|,

which gives\̃
Bc

r

( ∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
nf

2
n(u)

)p/2

du ≤
∑

I∈T̃r

\
Ic

∑

{n}⊂I

{n}6⊂B̃r+1

|anfn(u)|p du ≤ Cγ,p2
rp/2|B̃r|.

This inequality and (6.1) imply

1\
0

( ∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
nf

2
n(u)

)p/2

du ≤ Cγ,p2
rp/2|B̃r|,

and summing over r we get
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1\
0

( ∞∑

n=0

a2
nf

2
n(u)

)p/2

du ≤
∑

r

1\
0

( ∑

{n}⊂B̃r

{n}6⊂B̃r+1

a2
nf

2
n(u)

)p/2

du

≤ Cγ,p

∑

r

2rp/2|B̃r| ≤ Cγ,p

∑

r

2rp/2|Ẽr|,

which gives

∥∥∥
( ∞∑

n=1

a2
nf

2
n

)1/2∥∥∥
p
≤ Cγ,p

∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
.

Proposition 6.3. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy

the strong periodic regularity condition with parameter γ, and let {hn : n ≥ 1} be the

corresponding Haar system. Then for each p, 0 < p <∞, and a sequence (an)n≥1 of real

coefficients ,
∥∥∥
( ∞∑

n=1

a2
nh

2
n

)1/2∥∥∥
p
∼

∥∥∥
( ∞∑

n=1

a2
nh

2
n+1

)1/2∥∥∥
p
,

with implied constants depending only on p and γ.

Proof. It is enough to check the equivalence for 0 < p < 2; for p = 2 the equivalence

is clear, and for 2 < p < ∞ it follows from the equivalence for 1 < p < 2 by the

unconditionality of the Haar system (cf. Proposition 2.7) and the duality argument.

For r ∈ Z let

Er =
{
u ∈ [0, 1] :

∞∑

n=1

a2
nh

2
n(u) > 2r

}
,

Br = {u ∈ [0, 1] : M∗(χEr
, u) > 1/2},

ψr =
∑

{n}⊂Br

{n}6⊂Br+1

anhn+1.

For {n} 6⊂ Br+1 we have |Ec
r+1 ∩ {n}| ≥ 1

2 |{n}|, so
T
{n}∩Ec

r+1
h2

n(u) du ≥ Cγ (cf. (2.22)).

Using this inequality and the definition of Er+1 we get

(6.2) ‖ψr‖2
2 =

∑

{n}⊂Br

{n}6⊂Br+1

a2
n ≤ Cγ

\
Br\Er+1

∑

{n}⊂Br

{n}6⊂Br+1

a2
nh

2
n(u) du ≤ Cγ2r|Br|.

On the other hand, Br is a union of some intervals from I; let Tr be the family of maximal

intervals from I included in Br. For an interval I ∈ I, I = Ij,k for some 1 ≤ k ≤ 2j ,

define

I+ =

{
Ij,k+1 if k < 2j,
Ij+1,1 if k = 2j,

and put

B∗
r =

∑

I∈Tr

(I ∪ I+).

Then the periodic strong regularity of the sequence of partitions implies that |B∗
r | ≤

(γ+1)|Br|; moreover, note that suppψr ⊂ B∗
r . Therefore, using estimate (6.2) for ‖ψr‖2

2
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and Hölder’s inequality with exponents 2/(2 − p) and 2/p, we get

1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nh

2
n+1(u)

)p/2

du =
\

B∗

r

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nh

2
n+1(u)

)p/2

du

≤ Cγ,p|Br|1−p/2‖ψr‖p
2 ≤ Cγ,p2

rp/2|Br|.
Therefore, as p < 2, we obtain

1\
0

( ∞∑

n=1

a2
nh

2
n+1(u)

)p/2

du ≤
∑

r∈Z

1\
0

( ∑

{n}⊂Br

{n}6⊂Br+1

a2
nh

2
n+1(u)

)p/2

du

≤ Cγ,p

∑

r∈Z

2rp/2|Br| ≤ Cγ,p

∑

r∈Z

2rp/2|Er|

≤
1\
0

( ∞∑

n=1

a2
nh

2
n(u)

)p/2

du,

and one of the inequalities in the equivalence is proved. The opposite inequality is proved

in the analogous way.

Combining Propositions 6.1, 6.2 and 6.3 with Propositions 2.7, 2.8, Corollary 3.5

and Theorems 4.1, 4.2, one can obtain various results on the simultaneous unconditional

convergence in Lp of Haar and Franklin series with identical, or shifted, coefficients,

equivalent conditions for such convergence, or boundedness of shift operators. Now, we

formulate one of the possible versions of such a result.

Corollary 6.4. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong periodic regularity condition with parameter γ. Let {fn : n ≥ 0} and {hn : n ≥ 1}
be the corresponding Franklin and Haar systems , respectively. Then

(i) For each p, 1 < p <∞, the systems {fn : n ≥ 0} and {hn : n ≥ 1} are equivalent

bases in Lp, i.e. for each sequence (an)n≥1 of real coefficients , the series
∑∞

n=0 an+1fn

converges in Lp iff
∑∞

n=1 anhn converges in Lp, and moreover ‖∑∞
n=0 an+1fn‖p ∼

‖∑∞
n=1 anhn‖p.

(ii) Let (an)n≥1 be a sequence of real coefficients and 0 < p ≤ 1. Then the series∑∞
n=1 anhn converges unconditionally in Lp if and only if

∑∞
n=0 an+1fn converges un-

conditionally in Lp.

(iii) The shift operator U , defined by Uhn = hn+1, is a bounded linear operator on Lp

for each p, 1 < p <∞.

(iv) The shift operator T , defined by Tfn = fn+1, is a bounded linear operator on Lp

for each p, 1 < p <∞, and on Hp for each p, 1/2 < p ≤ 1.

To comment on point (i) of Corollary 6.4 recall that even the classical Franklin and

Haar systems (i.e. corresponding to the sequence of dyadic partitions) are not equivalent

bases in L1 (cf. [26]).

Recall that if the Haar system corresponding to a quasi-dyadic sequence of parti-

tions is a basis in Lp, 1 < p < ∞, then it is an unconditional basis in this space (cf.

Proposition 2.7). By Theorem 5.3 we know that the Franklin system corresponding to a
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quasi-dyadic sequence of partitions is a basis in Hp, 1/2 < p ≤ 1, iff it is an unconditio-

nal basis in this space. For the Franklin system in Lp, 1 < p < ∞, the weak regularity

of the sequence of partitions is sufficient for the unconditionality of the corresponding

Franklin system, but we do not know whether it is necessary as well. Clearly, the weak

regularity condition is stronger than the condition |Pj | → 0, which in turn is a necessary

and sufficient condition for the Franklin system to be a basis in Lp. However, some of the

above statements need not hold for an arbitrary sequence of quasi-dyadic partitions:

Proposition 6.5. (i) If the quasi-dyadic sequence of partitions {Pj : j ≥ 0} is weakly

regular but not strongly periodically regular , then the equivalence from Proposition 6.3

does not hold.

(ii) If {Pj : j ≥ 0} is not weakly regular , then the equivalence from Proposition 6.1

need not be true.

Proof. To check (i), note that if the sequence of partitions is not strongly periodically

regular, then for each M > 0 there is an interval I ∈ I such that

(6.3) either |I| > M |I+| or |I+| > M |I|,
where I+ is defined as in the proof of Proposition 6.3. Moreover, denoting by hI the

Haar function with support equal to I, we know that for a weakly regular system,

‖hI‖ ∼ |I|1/p−1/2 (see (2.21)). This and (6.3) imply that in this case the equivalence

from Proposition 6.3 cannot hold. An example of such a sequence of partitions is Pj =

{tj,k : 0 ≤ k ≤ 2j} with tj,k = 2 sin2(kπ/2j+2). This sequence is even strongly regular,

but not periodically strongly regular.

To show (ii), we give an example of a sequence which is not weakly regular and for

which the Lp norms of the Haar and Franklin functions corresponding to the same interval

from I are not equivalent, and therefore the equivalence from Proposition 6.1 does not

hold. Let (Mj : j ≥ 0) be any sequence of positive numbers such that limj→∞Mj = ∞.

Then we put P0 = {[0, 1]}, P2j+1 is obtained from P2j by splitting each interval from I2j

into equal parts, and P2j+2 is obtained from P2j+1 by splitting each interval I ∈ I2j+1

into left and right parts IL, IR in such a way that |IL| = Mj|IR|. Now, comparing the

formulae for the Lp norms of the corresponding Haar and Franklin functions (cf. (2.20)

and Proposition 2.3), we see that for this sequence of partitions and 2 < p <∞,

lim sup
n→∞

‖hn‖p

‖fn‖p
= ∞,

while for 1 < p < 2,

lim inf
n→∞

‖hn‖p

‖fn‖p
= 0.

7. Characterization of the spaces BMO and Lip(α), 0 < α < 1

In this section we characterize the spaces dual to Hp with 1/2 < p ≤ 1 in terms of

the Fourier–Franklin coefficients. Recall that the dual space to H1 is BMO, and the dual



52 G. Gevorkyan and A. Kamont

to Hp with 1/2 < p < 1 is Lip(α) with α = 1/p− 1 (cf. Section 1.1 and the references

given there).

Let us start with the characterization of Lip(α).

Theorem 7.1. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. Moreover , let 0 < α < 1 and f ∈ C[0, 1], f =
∑∞

n=0 anfn. Then

f ∈ Lip(α) iff

sup
n≥0

|an|
|{n}|1/2+α

<∞,

where {n} is defined by formula (2.17). Moreover ,

‖f‖Lip(α) ∼ sup
n≥0

|an|
|{n}|1/2+α

,

with implied constants depending only on γ and α.

Proof. First, let f ∈ Lip(α), so

|f(u) − f(s)| ≤ L|u− s|α.
Clearly, for n = 0, 1 we have |an| ≤

√
3 ‖f‖∞ (cf. the formulae for f0, f1 in Definition 2.1).

Now, let n ≥ 2, n = 2j + k with 1 ≤ k ≤ 2j . Using the pointwise estimates for Franklin

functions from Proposition 2.9 (inequalities (2.26), (2.27), (2.30) and (2.31)) and the

estimates for the length of intervals from Proposition 2.6(ii) we obtain

|an| =
∣∣∣
1\
0

f(u)fn(u) du
∣∣∣ =

∣∣∣
1\
0

(f(u) − f(tn))fn(u) du
∣∣∣

≤ L

2j+1∑

l=1

\
Ij+1,l

|u− tn|α|fn(u)| du

≤ CγL|{n}|−1/2
2j+1∑

l=1

|Ij+1,l|(|Ij+1,l∧2k | + . . .+ |Ij+1,l∨2k−1|)α2−|2k−l|/2

≤ LCγ,α|{n}|1/2+α
2j+1∑

l=1

(|2k − l| + 1)αγ+α(αγ+1)2−|2k−l|/2

≤ LCγ,α|{n}|1/2+α.

To prove the converse inequality, let |an| ≤ L|{n}|1/2+α. For u ∈ [0, 1], let Ij(u) be

the interval from Ij containing u. Consider a pair of points u, s ∈ [0, 1]; let

j0 = max{j : there is at most one point from Pj between s and u}.
Note that for j ≤ j0, either Ij(u) = Ij(s), or Ij(u) and Ij(s) are adjacent intervals;

therefore, by strong regularity |Ij(u)| ∼ |Ij(s)| and moreover |Ij0 (u)| ∼ |Ij0(s)| ∼ |s− u|.
Let τ∗j , j ≤ j0, be the common endpoint of Ij(u) and Ij(s), τ

∗
j = τj,lj . Since for n ≤ 2j0

the function fn is linear on both Ij(u) and Ij(s), the pointwise estimates for fn from
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Proposition 2.9 (inequalities (2.27) and (2.31)) imply

|fn(u) − fn(s)| ≤ Cγ |s− t| |{n}|
−1/2

2|kn−lj |

(
1

|Ij(u)|
+

1

|Ij(s)|

)
, where n = 2j + kn

(for more details, cf. the calculations for inequality (3.2) in the proof of Lemma 3.2). This

inequality and the estimates for the length of intervals from Proposition 2.6(ii), (i) give

(7.1)

j0−1∑

j=0

2j+1∑

n=2j+1

|an| |fn(u) − fn(s)|

≤ Cγ L|s− u|
j0−1∑

j=0

2j+1∑

n=2j+1

|{n}|1/2+α

(
1

|Ij(u)|
+

1

|Ij(s)|

) |{n}|−1/2

2|kn−lj |

≤ Cγ,α L|s− u|
j0−1∑

j=0

|Ij(u)|α−1
2j∑

k=1

(|k − lj | + 1)αγα2−|k−lj |

≤ Cγ,α L|s− u| |Ij0(u)|α−1

j0−1∑

j=0

(
γ

γ + 1

)(1−α)(j0−j)

≤ Cγ,αL|s− u|α.

Now, let n > 2j0 , n = 2j + kn. Choosing mj in such a way that Ij(u) = Ij,mj
for j > j0

and using again the estimates from Propositions 2.9 and 2.6 mentioned above, we obtain

∞∑

j=j0

2j+1∑

n=2j+1

|an| |fn(u)| ≤ Cγ L

∞∑

j=j0

2j+1∑

n=2j+1

|{n}|α2−|kn−mj |

≤ Cγ,αL

∞∑

j=j0

|Ij(u)|α
2j∑

k=1

(|k −mj | + 1)αγα2−|k−mj |

≤ Cγ,αL|Ij0(u)|α
∞∑

j=j0

(
γ

γ + 1

)α(j−j0)

≤ Cγ,α L|Ij0(u)|α.

As an analogous inequality holds for s as well, and by the choice of j0 we have |Ij0(u)| ∼
|Ij0 (s)| ∼ |s− u|, we obtain

∞∑

j=j0

2j+1∑

n=2j

|an| |fn(u) − fn(s)| ≤ Cγ,α L |s− u|α.

Thus, the last inequality and (7.1) give

∞∑

j=0

2j+1∑

n=2j+1

|an| |fn(u) − fn(s)| ≤ Cγ,α L|s− u|α.

It should be clear that analogous arguments imply the uniform convergence of the series∑∞
n=0 anfn, so we get f =

∑∞
n=0 anfn ∈ Lip(α).

The equivalence of the norms follows from the above estimates as well.

Now, we present a characterization of BMO. The proof is an adaptation of the proof

from [29], but it is presented for the sake of completeness.
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Theorem 7.2. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system. Let f ∈ L1, f =
∑∞

n=0 anfn. Then f ∈ BMO iff

sup
n≥0

(
1

|{n}|
∑

{m}⊂{n}

a2
m

)1/2

<∞,

where {n} is defined by (2.17). Moreover ,

‖f‖BMO ∼ sup
n≥0

(
1

|{n}|
∑

{m}⊂{n}

a2
m

)1/2

,

with implied constants depending only on γ.

Proof. First, let the sequence of coefficients be such that for some constant M ,

(7.2)
∑

{m}⊂{n}

a2
m ≤M2|{n}|, n ≥ 0.

We are going to show that there is a constant Cγ such that for any interval Γ ⊂ [0, 1]

and f =
∑∞

n=0 anfn,

(7.3) ∃cΓ

\
Γ

|f(u) − cΓ |2 du ≤ CγM
2|Γ |,

which implies f ∈ BMO and one of the inequalities for the norms.

Consider an interval Γ ⊂ [0, 1], and let

j0 = min{j : there is I ∈ Ij such that I ⊂ Γ}.
Let Ij0,k ∈ Ij0 , Ij0,k ⊂ Γ . The choice of j0 implies that there are at most two adjacent

intervals from Ij0 included in Γ . Define

J =
⋃

|l−k|≤2

Ij0,l, J̃ =
⋃

|l−k|≤3

Ij0,l.

Then Γ ⊂ J ⊂ J̃ , and by strong regularity

|Γ | ≤ |J | ≤ |J̃ | ≤ Cγ |Γ |.
Define

ψ1 =
∑

j≥j0

∑

2j<n≤2j+1

{n}⊂J̃

anfn, ψ2 =
∑

j≥j0

∑

2j<n≤2j+1

{n}6⊂J̃

anfn, ψ3 =

2j0∑

n=0

anfn.

Clearly, f = ψ1 + ψ2 + ψ3. First, by (7.2) and the definition of J̃ we get

(7.4)
\
Γ

ψ2
1(u) du ≤

∑

j≥j0

∑

2j<n≤2j+1

{n}⊂J̃

a2
n ≤

∑

|l−k|≤3

∑

{n}⊂Ij0,l

a2
n ≤M2|J̃ | ≤ CγM

2|Γ |.

Moreover, (7.2) implies that |an| ≤ M |{n}|1/2. Let u ∈ Γ ; for j ≥ j0, choose lj such

that u ∈ Ij,lj . Note that if n = 2j + k, 1 ≤ k ≤ 2j, and {n} 6⊂ J̃ , then |k − lj | ≥ 2j−j0 .
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Therefore, the bound for |an| and the decay of |fn| from Proposition 2.9 (i.e. inequalities

(2.27) and (2.31)) give

|ψ2(u)| ≤ CγM
∑

j≥j0

∑

|k−lj |≥2j−j0

2−|k−lj| ≤ CγM
∑

j≥j0

2−2j−j0 ≤ CγM,

which implies

(7.5)
\
Γ

ψ2
2(u) du ≤ CγM

2|Γ |.

To estimate ψ3, let τ be the point from Pj0−1 ∩ Γ , if it exists, or any point from Γ

otherwise. Since any function fn with n ≤ 2j0 is linear on Γ ∩ {u ≤ τ} and Γ ∩ {u ≥ τ},
using the above estimate for |an| and the decay of |fn| from Proposition 2.9 (cf. the

calculations for inequality (7.1) in the proof of Theorem 7.1) we get

|ψ3(u) − ψ3(τ)| ≤ Cγ M for u ∈ Γ,

and clearly

(7.6)
\
Γ

|ψ3(u) − ψ3(τ)|2 du ≤ Cγ M
2|Γ |.

Inequalities (7.4)–(7.6) imply that (7.3) holds with cΓ = ψ3(τ), which completes the first

part of the proof.

To prove the converse inequality, let f ∈ BMO, ‖f‖BMO = K. Denote by Lf the

functional on H1 corresponding to f (cf. Section 1.1). Since ‖fn‖H1 ∼ ‖fn‖1 ∼ |{n}|1/2

(cf. Theorem 4.2 and inequality (2.23) in Proposition 2.9), we have

(7.7) |an| = |(f, fn)| = |Lffn| ≤ C‖f‖BMO‖fn‖H1 ≤ CγK|{n}|1/2.

Let n ≥ 2, 2i < n ≤ 2i+1. Consider the following decomposition of f : f = ϕ1 + ϕ2 + ϕ3,

with

ϕ1 =
∑

{m}⊂{n}

amfm, ϕ2 =
∞∑

j=i

∑

2j<m≤2j+1

{m}6⊂{n}

amfm, ϕ3 =
2i∑

m=0

amfm.

Note that

(7.8)
∑

{m}⊂{n}

a2
m =

1\
0

ϕ2
1(u) du.

The integrals of ϕ2
1 over {n} and {n}c are treated separately.

We start with some technical estimate. Let Ii,k, Ii,l ∈ Ii with l 6= k. Then there is a

constant Cγ such that

(7.9)
∑

{m}⊂Ii,k

|{m}|1/2
( \

Ii,l

f2
m(u) du

)1/2

≤ Cγ2−|k−l||Ii,l|1/2.

The proof is similar to that of inequality (2.34) in Lemma 2.11, so we give just a sketch.

For simplicity, suppose k < l (the other case is considered analogously). Let m = 2j + s,

{m} ⊂ Ii,k. Then, using the rate of decay of f2
m from Proposition 2.9 and the estimates
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for the lengths of intervals from Proposition 2.6(ii) we get\
Ii,l

f2
m(u) du ≤ Cγ |{m}|−1|Ij,2j−i(l−1)+1| · 2−2|2j−i(l−1)+1−s|.

Using this inequality and the estimates for the lengths of intervals from Proposition 2.6(i)

we obtain
∑

{m}⊂Ii,k

2j<m≤2j+1

|{m}|1/2
( \

Ii,l

f2
m(u) du

)1/2

≤ Cγ

∑

s≤2j−ik

|Ij,2j−i(l−1)+1|1/22−|2j−i(l−1)+1−s|

≤ Cγ

(
γ

γ + 1

)(j−i)/2

|Ii,l|1/22−2j−i(l−1−k)

≤ Cγ

(
γ

γ + 1

)(j−i)/2

|Ii,l|1/22−|l−k|,

and summing over j ≥ i we get (7.9).

Let n = 2i + k, so {n} = Ii,k. Using (7.7), (7.9) and Proposition 2.6(ii) we get

( \
{n}c

ϕ2
1(u) du

)1/2

≤ CγK
∑

{m}⊂Ii,k

|{m}|1/2
( \

Ic
i,k

f2
m(u) du

)1/2

≤ CγK
∑

l 6=k

∑

{m}⊂Ii,k

|{m}|1/2
( \

Ii,l

f2
m(u) du

)1/2

≤ CγK
∑

l 6=k

|Ii,l|1/22−|k−l|

≤ CγK|Ii,k|1/2
∑

l 6=k

(|k − l| + 1)αγ/22−|k−l| ≤ CγK|Ii,k|1/2,

which gives

(7.10)
\

{n}c

ϕ2
1(u) du ≤ CγK

2|{n}|.

Similarly,
( \

{n}

ϕ2
2(u) du

)1/2

≤ CγK
∑

l 6=k

∑

{m}⊂Ii,l

|{m}|1/2
( \

Ii,k

f2
m(u) du

)1/2

≤ CγK
∑

l 6=k

|Ii,k|1/22−|k−l| ≤ CγK|Ii,k|1/2,

so we get

(7.11)
\

{n}

ϕ2
2(u) du ≤ CγK

2|{n}|.

Moreover, since (fm, 1) = 0 for m ≥ 1, we have
∣∣∣
\

{n}

ϕ1(u) du
∣∣∣ ≤

∑

{m}⊂{n}

|am|
∣∣∣
\

{n}

fm(u) du
∣∣∣ ≤ CγK

∑

{m}⊂{n}

|{m}|1/2
\

{n}c

|fm(u)| du,
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so by inequality (2.34) in Lemma 2.11,

(7.12)
∣∣∣
\

{n}

ϕ1(u) du
∣∣∣ ≤ CγK|{n}|.

Since each function fm withm ≤ 2i is linear on {n}, we get (cf. the analogous calculations

for ψ3 in the first part of the proof)

(7.13) |ϕ3(u) − ϕ3(s)| ≤ CγK for u, s ∈ {n}.
Let ξ ∈ {n}. Using (7.13), (7.12) and (7.11), we get

∣∣∣∣ϕ3(ξ) −
1

|{n}|
\

{n}

f(u) du

∣∣∣∣ ≤
∣∣∣∣ϕ3(ξ) −

1

|{n}|
\

{n}

ϕ3(u) du

∣∣∣∣

+

∣∣∣∣
1

|{n}|
\

{n}

ϕ1(u) du

∣∣∣∣ +

∣∣∣∣
1

|{n}|
\

{n}

ϕ2(u) du

∣∣∣∣

≤ CγK +

(
1

|{n}|
\

{n}

ϕ2
2(u) du

)1/2

≤ CγK.

By the definition of BMO we have
(

1

|{n}|
\

{n}

∣∣∣∣f(t) − 1

|{n}|
\

{n}

f(u) du

∣∣∣∣
2

dt

)1/2

≤ K,

which together with the preceding inequality implies
(

1

|{n}|
\

{n}

|f(t) − ϕ3(ξ)|2 dt
)1/2

≤ K.

This, together with (7.11) and (7.13), gives
( \

{n}

ϕ2
1(u) du

)1/2

≤
( \

{n}

|f(u) − ϕ3(ξ)|2 du
)1/2

+
( \

{n}

ϕ2
2(u) du

)1/2

+
( \

{n}

|ϕ3(u) − ϕ3(ξ)|2 du
)1/2

≤ CγK|{n}|1/2.

The last inequality together with (7.8) and (7.10) gives
∑

{m}⊂{n}

a2
m ≤ CγK

2|{n}|.

Finally, consider the spaces VMO and lip(α), 0< α< 1, which are separable subspaces

of BMO and Lip(α), respectively. They can be considered as the closure in the norms

‖ · ‖BMO and ‖ · ‖Lip(α) of the space of functions satisfying the Lipschitz condition. We

have the following characterization of these spaces:

Corollary 7.3. Let the quasi-dyadic sequence of partitions {Pj : j ≥ 0} satisfy the

strong regularity condition with parameter γ and let {fn : n ≥ 0} be the corresponding

Franklin system.
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(i) Let 0 < α < 1 and f ∈ Lip(α). Then f ∈ lip(α) iff

lim
n→∞

|an|
|{n}|1/2+α

= 0.

(ii) Let f ∈ BMO. Then f ∈ VMO iff

lim
n→∞

(
1

|{n}|
∑

{m}⊂{n}

a2
m

)1/2

= 0.
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