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Abstract

We study general Franklin systems, i.e. systems of orthonormal piecewise linear functions cor-
responding to quasi-dyadic sequences of partitions of [0, 1]. The following problems are treated:
unconditionality of the general Franklin basis in L, 1 < p < oo, and HP, 1/2 < p < 1; equivalent
conditions for the unconditional convergence of the Franklin series in LP for 0 < p < 1; relation
between Haar and Franklin series with identical coefficients; characterization of the spaces BMO
and Lip(a), 0 < a < 1, in terms of the Fourier—Franklin coefficients.
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1. Introduction

The classical Franklin system, introduced by Ph. Franklin in 1928 ([16]), is a complete
orthonormal system of continuous, piecewise linear functions (with dyadic knots), ob-
tained by means of Gram—Schmidt orthogonalization of Schauder functions. Since then,
it has been studied by many authors from different points of view. The basic properties of
this system, including exponential estimates for the Franklin functions and LP-stability
on dyadic blocks, have been obtained by Z. Ciesielski in [5] and [6]. These properties
have turned out to be an important tool in further investigations of the Franklin system.
It is known that this system is a basis in C[0,1] and L? for 1 < p < co; moreover, the
coeflicients of a function in the Franklin basis give a linear isomorphism between the space
of functions satysfying the Holder condition in LP norm with exponent o, 0 < o« < 141/p,
1 < p < o0, and the appropriate sequence space ([5], [6]). The unconditionality of this
basis in LP, 1 < p < oo, has been proved by S. V. Bochkarev in [1]. P. Wojtaszczyk has
obtained a characterization of the BMO space in terms of the coefficients of a function
in the Franklin basis and has proved that this system is an unconditional basis in the
real Hardy space H' ([29]; see [8] for a simplified proof). The unconditionality of the
Franklin basis in real Hardy spaces HP, 1/2 < p < 1, has been obtained by P. Sjolin and
J. Stromberg ([27]); they have also proved that for this range of p, the H? quasi-norm of
f € HP is equivalent to the LP quasi-norm of the square function of the Franklin series
with coefficients a,, = (f, fn). Z. Ciesielski and Sun-Yung A. Chang have proved that
f € H' iff its Fourier-Franklin series is unconditionally convergent in L' (cf. [4]). The
equivalence of the Franklin system with the Haar system and higher order orthonormal
spline systems in LP and H? spaces has also beeen studied (see [7], [11], [26], [27]), and
results concerning the boundedness of the translation operator are known as well (see for
example [10], [17], [25]).

One of the authors of this paper has studied the unconditional convergence of Franklin
series in LP for 0 < p <1 ([18]-[21]). He has proved that the unconditional convergence
of Franklin series in L? is equivalent to each of the following conditions:

(i) the square function of the series is in L?, and
(ii) the maximal function of the series is in LP.

Moreover, the Franklin series converges unconditionally in L? iff the Haar series with
identical coeflicients converges unconditionally in L?. Analogous results concerning the
convergence of Franklin series in Lorentz spaces can be found in the recent paper [22].

It should be mentioned that Franklin’s construction has been later generalized to
higher order spline functions, periodic splines, splines on R and for functions of several
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variables and defined on smooth compact manifolds; here one should mention names like
7. Ciesielski, J. Domsta, T. Figiel, P. Oswald, J. Strémberg.

In the present paper we study some of the above problems for general Franklin systems
corresponding to quasi-dyadic sequences of partitions of the interval [0,1]. By a quasi-
dyadic sequence of partitions we mean a sequence of partitions {P; : j > 0} such that
Po = {0,1}, P; C Pj+1 and Pjy is obtained form P; by adding 2/ new points (one
new point between two consecutive points of P;), and the corresponding Franklin system
is a sequence of orthonormal piecewise linear functions with knots from the sequence of
partitions P; (see Section 2.2 and Definition 2.1 in Section 2.3 for the precise formulation).

It follows from [5] that if lim; o |P;] = 0 (|P;| denotes the diameter of the partition
P;), then the corresponding Franklin system is a basis in C[0,1] and LP, 1 < p < oo.
The main results of the present paper are the following. We prove that if the sequence of
partitions is weakly regular (see Definition 2.2 for the weak, strong and strong periodic
regularity of a quasi-dyadic sequence of partitions), then the corresponding Franklin
system is an unconditional basis in L? for 1 < p < oo (Theorem 3.1). Next we show that if
the sequence of partitions is strongly regular, then the Franklin system is an unconditional
basis in H? for 1/2 < p <1 (Theorem 4.2). Moreover, we prove that strong regularity of
the sequence of partitions is a necessary condition for the corresponding Franklin system
to be a basis in H? for 1/2 < p < 1 (Theorems 5.1 and 5.3). The question of the
unconditional convergence of the Franklin series in L? for 0 < p < 1 is studied as well.
We prove (see Theorem 4.1) that the unconditional convergence of the Franklin series in
LP is equivalent to each of the following conditions:

(i) the square function of the series is in L?, and
(ii) the maximal function of the series is in LP.

For 1/2 < p <1, all these conditions are equivalent to the fact that the series under
consideration is a Fourier—Franklin series of some element of H? (see Theorem 4.2).

Further, we compare the Franklin series and the Haar series with identical coefficients.
We prove that, under suitable regularity of the sequence of partitions, the square functions
of the Franklin and Haar series are equivalent in LP, 0 < p < oo (Propositions 6.1, 6.2; the
Haar system under consideration corresponds to the same sequence of partitions as the
Franklin system — for a detailed description see Section 2.4). As a consequence, under
the assumption of strong periodic regularity of the sequence of partitions, we deduce
that the Haar and Franklin systems are equivalent bases in LP, 1 < p < oo, while for
0 < p <1 the Franklin series converges unconditionally in L? iff the Haar series with the
same coefficients converges unconditionally in LP. Moreover, we get the boundedness of
the associated translation operator in LP, 1 < p < oo (for both the Haar and Franklin
systems), and in HP, 1/2 < p < 1 (for the Franklin system) — see Corollary 6.4. Finally,
we obtain a characterization of the spaces BMO and Lip(«), 0 < o < 1, in terms of
the coefficients in the Franklin system corresponding to a strongly regular sequence of
partitions — Theorems 7.1 and 7.2; recall that the spaces BMO and Lip(«) are the dual
spaces to H' and HP, 1/2 <p < 1, a = 1/p — 1, respectively (cf. for example [13]).

It should be mentioned that analogous properties of the Haar system corresponding
to a quasi-dyadic sequence of partitions (i.e. the unconditionality of the Haar system in
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LP for 1 < p < oo and equivalence of the square and the maximal functions of a Haar
series in L? for 0 < p < 1) follow from general results on martingale transforms (see
[2], [3]). For the reader’s convenience, we recall these properties of the Haar system in
Section 2.4.

The paper is organized as follows. In Section 2 we define the Franklin system corre-
sponding to a quasi-dyadic sequence of partitions and summarize the properties of the
Franklin and Haar systems needed for the purpose of this paper. In Section 3, we prove
that the Franklin system corresponding to a weakly regular sequence of partitions is an
unconditional basis in LP for 1 < p < co. In Section 4, for the Franklin system corre-
sponding to a strongly regular sequence of partitions, we discuss conditions equivalent
to the unconditional convergence of the Franlin series in L? for 0 < p < 1, and the un-
conditionality of this system in HP, 1/2 < p < 1, is proved. In Section 5 we prove that
strong regularity of the quasi-dyadic sequence of partitions is a necessary condition for
the corresponding Franklin system to be a basis in H?, 1/2 < p < 1. In Section 6 the
Franklin and Haar series with identical coefficients are discussed and results concerning
the translation operators are formulated. Finally, in Section 7 we give a characterization
of the spaces BMO and Lip(«) with 0 < o < 1 in terms of the Fourier—Franklin coeffi-
cients of a function — again for the Franklin system corresponding to a strongly regular
sequence of partitions.

1.1. Notation

Function spaces and H? spaces. For the reader’s convenience, we recall the definitions
of the spaces we work with.

By LP, 0 < p < 0o, we denote the Lebesgue space of real-valued functions defined on
[0,1] for which || f||, = (S(lj |f (w)[P du)'/P < oo. Tf 0 < p < 1, then || f|, is not a norm, but
then the space L” is equipped with the metric o(f,g) = [|f — g[[}. Recall that L? with
this metric is a complete space.

By C[0,1] we denote the space of continuous functions on [0, 1], and for 0 < o < 1,
by Lip(a) C C[0, 1] we mean the subspace of functions satisfying the Hélder condition
with exponent «. It is well known that Lip(«), with the norm

(1.1) HfHLilD(Ol) = || flloo +0 sup M

<eg<i  |T—yl®

)

is a non-separable Banach space.
We need also the BMO space, i.e. the space of functions of bounded mean oscillation.
If f € L', then f € BMO iff

1/2
(12) o = 17Dl 45w (175 170 = frPan) - <o,
r

where the supremum is taken over all subintervals I C [0,1] and fr = ﬁ §, f(v)dv (T
denotes the length of the inerval I'); for equivalent definitions of the BMO space we refer
to [13]. Tt is known that BMO is a non-separable Banach space.

Next, we recall the definition of real Hardy spaces on [0, 1], denoted by H?, 1/2 <
p < 1. We use the atomic definition, introduced in [12], and developed in [13]; for more
details, we refer to [13].
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First, recall the definition of p-atoms: a function a : [0,1] — R is called a p-atom
(1/2 < p < 1) iff either a = 1, or there is an interval I" C [0, 1] such that suppa C I,
supla| < [I']~'/P and S(IJ a(u) du = 0; note that if a is a p-atom, then |jal|, < 1.

For p = 1, a function f € L' is said to belong to H' iff there are 1-atoms a; and
real coefficients ¢;, j € N, with 3272, |ej| < oo, such that f = >>72 ) ¢ja;. The norm
in H' is defined as || f|| g = inf(3°72, |ej]), where the infimum is taken over all atomic
decompositions of f; H' with this norm is a Banach space.

The space HP with 1/2 < p < 1 is defined as a subspace of the dual of Lip(a) with
a=1/p—1: f € (Lip(a))* is said to belong to H? if it admits an atomic decomposition
f=32721 cjaj, where a; are p-atoms and the real coefficients ¢; satisfy Y372, |c;[P < o0;
it should be noted that this condition implies the convergence of the series Z;il cja; in
the norm of (Lip(a))*. For f € H? we put || f||g» = inf(>,, |ea|P)/?, with the infimum
taken over all atomic decompositions of f. For p < 1, || - ||g» is not a norm, but o(f,g) =
Ilf = gll%» is a metric on HP, and H? with this metric is complete; thus, (H?, || - ||%;,) is a
Fréchet space. Moreover, a linear functional L on H? is continuous iff there is a constant
Cy, such that |Lf| < Cp| flla» for all f € HP; similarly, a linear operator T : HP — HP
is continuous iff it is bounded, i.e. there is a constant Cr such that ||Tf| g» < Cr||f| e
for all f € HP.

The spaces BMO and Lip(«) are identified with the duals of H! and H?, a = 1/p—1,
respectively; cf. [13], Theorem B. More precisely: if g € BMO, f € H' and f = Y77 | ¢ja;
is an atomic decomposition of f, then the formula

n 1
Ly(f) = lim Y~ e; | g(w)a;(u) du
=1 0
defines a continuous linear functional on H', and each continuous linear functional on
H' is of this form; moreover, the norm of L, in (H')* is equivalent to ||g|/smo-

The dual of HP, 1/2 < p < 1, is identified with Lip(«), where o = 1/p — 1: if

g € Lip(a), f € HP and f = > .37, c;ja; is an atomic decomposition of f, then the

j=1
formula
o) 1
Ly(f) =Y ¢ | g(w)a;(u) du
=1 0

defines a continuous linear functional on HP, and each continuous linear functional on
HP is of this form; moreover, the “norm” of L, in (H?)* is equivalent to [|g||rip(a)-

To shorten the notation, if f € H' and g € BMO, or f € HP and g € Lip(a) with
a=1/p—1, we denote by (f,g) the value of the functional L, on f.

In Sections 3 and 4, the unconditional convergence of Franklin series in spaces L7,
1 <p<ooand HP, 1/2 < p < 1, is studied. The unconditional convergence of a series
>0, an in a metric space (X, p) means that for each permutation o of N, the series
Y oml 1 To(n) is convergent in (X, ). It is known that if (X, ) is a complete linear metric
space, then the series Y. ° , x, is unconditionally convergent if and only if the series
Yoo | Endy converges in (X, o) for each choice of the coefficients e, € {—1,1} (cf. for
example [24], Theorem 1 in Chapter 1).
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Though || - ||g» is not a norm for 1/2 < p < 1, we use for the HP spaces the same
terminology as for Banach spaces; in particular, by a basis in HP we mean a sequence
of elements y, € HP, n € N, such that for each f € HP? there is a unique sequence of
coefficients b, (f) such that f =3 b,(f)yn, with the series convergent in the metric
|- =%, and a basis is called unconditional if for each f € HP, the series Y~ bu(f)yn
is unconditionally convergent in HP.

Quasi-dyadic sequences of partitions. Let {P; : j > 0} be a quasi-dyadic sequence of

partitions of [0, 1]. By this we mean that Py = {0, 1}, and
'Pj:{tj_’i:OSiSQj}, P; C Pjy1 for 7 > 0,
O0=tjo<...<tjo =1, tir126 =15k foralljZOandkzO,...,?,
i.e. Pjy1 is obtained from P; by adding one point in each interval (¢ x—1,t;%), k =
L,...,27. For j > 0and 1 <k <2/, we put [;x = [tjr—1,t;x], and I3, = (tjr—1,t;1) is
the interior of I; . Moreover, we let
I ={lx:1<k<?} and I=|]Z;
Jj=20

The elements of Z; are called intervals of rank (or order) j

Mazximal and square functions. For f € L', M(f,-) denotes the Hardy-Littlewood

maximal function of f over [0, 1], and M*(f,-) is the maximal function corresponding to
the sequence of quasi-dyadic partitions {P; : j > 0}, i.e.

ME(,2) = sup o § ()] du.

191 |I|

It is well known that the operator M is of type (p,p) for p > 1 and of weak type (1,1)
(cf. for example Theorem 1.3.1 in [28]). Clearly, M* has the same properties.

For a given sequence of quasi-dyadic partitions {P; : j > 0}, the corresponding
Franklin system, as introduced in Definition 2.1 below, is denoted by {f, : n > 0}.

For a sequence of real numbers (an)n>0, the square function P and the maximal
function S of the Franklin series with coefficients (a,)n>0 are defined by the respective

P() = (iaifn(.f)l/z and S(-) = sup ‘ Zanfn ‘
-0

formulae

m>0
Moreover, for f € LP, 1 < p < oo, or f € HP, 1/2 < p § 1, we denote by Pf and
S f the square function and the maximal function of the Franklin series with coefficients
an = (f, fn), i.e. a, are the Fourier coeflicients of f with respect to the Franklin system
corresponding to {P; : j > 0} (note that the f,’s are Lipschitz functions, and therefore
they define continuous linear functionals on HP, 1/2 < p < 1).

Abbreviations. To shorten the notation, we use the following abbreviations. For a,bée
R, we put a Vb = max(a,b), a A b = min(a,b). We write A ~ B if there are positive
constants Cy,Cy such that C1A < B < CyB. The letters C, C,, C, , etc. denote various
constants, the value of which may vary from line to line; the subscripts indicate the
parameters on which the particular constant depends.
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By x4 we denote the indicator of a set A C [0, 1], A° is the complement of A in [0, 1]
and |A| denotes the Lebesgue measure of A.

2. Definition and properties of general Franklin systems

2.1. Piecewise linear functions. We start with recalling some known facts concer-
ning piecewise linear functions, which are needed for the purpose of this paper.

Let m = {t; : 0 < i < n} be a partition of [0,1], 0 =ty < ... < t, = 1; for later
convenience, we also put t_; = 0 and ¢, = 1,
- Ai + A1
==
Let S, be the space of piecewise linear, continuous functions on [0,1] with knots .

)\i:ti_tifl for OSZSTL-FL V; fOI‘OSZSn

Moreover, let N;, 0 < ¢ < n, be the B-splines of order 2 corresponding to the partition
7, 1.e. N; is the unique function from S, satisfying N;(t;) = J; ;. Note that supp NV; =
[tifl,tzurl], Z?:O Nl(t) =1foreacht e [0, 1], HNZHl =V and

(/\z + /\z+1)/3 for i = j,

) N /\i+1/6 fori:j—l,
(2'1) (N“NJ)_ /6 fori=j+1,
0 for |i — j| > 1.

Moreover, any function f € S, can be written in the form f = Z?:o a;N;, where a; =
f(t:), so the functions {N; : 0 < i < n} are a basis in S.

Let Gx = [(Ni, N;) : 0 <14, j < n] be the Gram matrix of the system {IV; : 0 <7 < n},
and define G = A, = [a;; : 0 <1i,j <n]. In Proposition 2.1 we list some estimates for
a;i,;, which are needed later on.

PROPOSITION 2.1. Let m={t; : 0< i< n} be a partition of [0,1], and let Ax = [a;; :
0 <14,j <n] be the inverse of the Gram matriz G, defined above. Then the entries of the
matriz A, satisfy the following conditions:

(2:2) 3<aii <2 for0<i<m,
(2.3) aij=aj; and a;;=(=1)""|ai;| for 0<i,j<n,
(24) 2|ai,1_j| < |CL1'1j| fOT 0<1 Sj < n,
(25) 2|ai+17j| < |ai,j| for 0<3<i<n,
2 1
(2.6) lai il < 5= - , 0<i<j<n.

max;<g<j Vk

Moreover,

27) gl (BN 4+ 2X0i41) < laivr Nt < 20aigl(Ni + Xip1)  for 0 <i <,
(2.8) |ai,j|(2)\i + %)‘H—l) < |ai_1,j|)\i < 2|ai7j|()\i + )\i-i-l) for j <i<n.

PROOF. Properties (2.2)—(2.6) can be found for example in [9] and [24], or they are
straightforward consequences of estimates given there, so their proof is omitted.
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To check (2.7), note that for i < j,
)\iaiij + 2(/\1 + )\1‘+1)0Ji1j + )\i+1&1‘+11j =0.
This together with (2.3) gives
2(Ni + Aiga)lai ;| = Aipalaira s + Ailaio] > Aigalaig ;)
On the other hand, applying (2.4) we get
200 + Nig1)ai ) = Aivrlairn |+ Nilaio1] < Nivlairn | + 5hlai),

which gives the remaining inequality in (2.7).

Inequalities (2.8) are obtained analogously.

It should be noted that, for fixed j, formulae (2.4), (2.5) and the fact that a; ; and
ait1,; have opposite signs follow just from the system of equations > ; a; ;j(N;, N) =

djks k=0,...,n, and these properties are sufficient to get (2.7) and (2.8). We refer to
this fact in the proof of Lemma 5.2. m

In the sequel, we need the LP-stability of the functions N;, which can be checked by
straightforward calculation:

PROPOSITION 2.2. Let 7 be a partition of [0,1], f€ Sx, f = >.1_yaiN;. Then for all
L <p<oo,

1/p n n

1 1/p 1/p

(1) (S takws) ™ < sl < (S ha) ™
p 1=0 =0

2.2. Franklin functions. Let (7,7) be a pair of partitions of [0, 1] such that 7 C 7
and 7 is obtained from 7 by adding one knot 7, 7 # 0, 1. Then there is a unique, up to
sign, function ¢ € Sy such that ¢ 1 Sz (in L?) and ||¢||2 = 1; the sign of ¢ is chosen in
such a way that ¢(7) > 0.

The function ¢ is called the Franklin function corresponding to the pair of parti-
tions (m, ).

Let us formulate some properties of the Franklin function.

Let m = {t; : 0 < i < n}; as 7 € 7, we have 7 = t}, for some 0 < k < n. Then
7 ={t;: 0<i<mn, i#k}, and for convenience we denote by Ni, i # k, the B-splines
corresponding to 7. Observe that

N;=N; fori<k—1landi>Fk+1,

Ak+1 Ak

N._1 = Ny ——— N, d N = N, —— Ng.
k—1 k—1+ Mt e L an E+1 k1t M+ e k
Define
Akt1 Ak
2.9 Wy = ——————Qj -1+ Qg — —————a; ,
(2.9) Ak + Agt1 k=l ok Ak + k41 k1

where Ar = [a;; : 0 < ,j <n] is the inverse of the Gram matrix G, and introduce the
function

(210) g = szNz
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Clearly, g € Sy, and it can be checked by straightforward calculation that (g, NZ) =0
for all ¢ # k, whence g L Sz. Formula (2.9) and properties of a; ; from Proposition 2.1
imply the following:

)\k+1 k
2.11 J= 2L g, ol — o,
( ) |w | e+ Mord |az,k 1]+ |a1,k| + e+ Mot |az,k+1|a
(2.12) w; = (=1)* Ywy|, so in particular g¢(7) = wy > 0,
(2.13) ake S wp < Sap gk,  sakrihr < (Wit < Sappipq for 1= +1

(to check (2.13), note that

Melaje—1] + Aet1]aj ki1l
2(Ak + Akt1)

|aj k| =
for j # k), which gives

1 1
— < |w| <3— fori=k-—1,kk+1.
V; v;

(2.14) g

Thus, we have ¢ = g/||g|l2. Moreover, these formulae for |w;| (cf. (2.11), (2.14)), decay
of |a; ;| from Proposition 2.1 (cf. (2.3)—(2.6)) and LP stability of B-splines from Proposi-
tion 2.2 imply

2.15 Lt=1r < <15p P for 1< p< oo
(2.15) g 9gllp < 154 p < oo,
where = 1/vg_1+ 1/vi + 1/v41.

As a consequence of formulae (2.9)—(2.15) and Proposition 2.1, we get the following
pointwise estimates for the Franklin function ¢:

PROPOSITION 2.3 (Pointwise estimates for the Franklin function). Let (7,7) be a pair
of partitions as above, and let ¢ be the Franklin function corresponding to (m, 7). Define
gi = sp(ti), i.e. p= Z?:O &Nb and = 1/7/k—1 + 1/Vk 4 1/7/k+1~ Then,

%2()#1/2_1/17 S HSOHP S 120u1/2—1/p for 1 S » S 00,
&= (-1)"Hg|, i=0,...,n,

1 /2 ~1/2
20 y; v
fori <k-—1,
, ~1/2 - ~1/2
2 2li—k| max;<i<ig—1 9 2li—kl tr —ti—1

&1 (Bhic1 +2X0) < &GN < 2061 (Nim1 + X);
and fori >k +1,

g 48 —1/2 96[i — k| p—1/?
el < 5L el < o < Sl =kl

axpri<i<i i 2107kt — )
€ir1] (2Nt + 3 Aiv2) < 1&INir1 < 20| (Nigr + Aiga).

The pointwise estimates from Proposition 2.3 imply the following decay of norms of
the Franklin function on the intervals from the partition :
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PROPOSITION 2.4 (Decay of norms of the Franklin function on intervals). Let (m, ) be
a pair of partitions as above, and let ¢ be the Franklin function corresponding to (mw,T).
Then for i < k —1 we have

3(v2—1) | le@)ldu< | [e(u)du,

2 )] < .
LS, ()] < tié?gifﬂ le(?)],

and for v >k+1,
tit1 ti
3v2=1) | lp()ldu < | |p(u)ldu,
ti ti—1

< .
2, Bax le®] =, max [e()

PRrOOF. Consider the case i < k—1. By Proposition 2.3, & = ¢(t;) and &11 = p(tit1)
have opposite signs and [¢;| < 1|1/, which implies

tit1
Nit1 &2 + & ?
mipn= | le()|du= — > (V2= DA [
2 J&l+ [l
and
ti
Ail&il

mi = S |o(w)]du < ==

ti—1

Therefore, using the estimates from Proposition 2.3 we get

Mitl 5 93 - 1)% > (V2 - 1)% >3(v2-1).
m; i1&i g

The bound for max;, ,<i<¢; |¢(t)] is a straightforward consequence of Proposition 2.3.
The case ¢ > k + 1 is treated analogously. m

REMARK. The constants appearing in Propositions 2.3 and 2.4 are not sharp. More-
over, estimates analogous to those from Proposition 2.4 (i.e. with constants independent
of the pair of partitions (m, 7)) can be obtained for integrals of |p(-)|P for 1 < p < oo.
However, for 0 < p < 1, estimates of this type do not hold.

2.3. Sequences of partitions and Franklin functions. Let {P; : j > 0} be a
quasi-dyadic sequence of partitions, with

P;={tj;:0<i<2}
Define m; = Py, and for n > 2, n =2/ + k with 1 < k < 27,
(2.16) Mn =P U{tisro1 1 <1<k},
(2.17) tn = titr2k-1,  {n} = [tjs126—2,t41,26] = [t -1, t5k),
with {0} = {1} = [0, 1],
(2.18) {n-} =[tit126-3:tjr1,26—1]  {n4} = [tiv1,26-1,t41,2642],

where for convenience we put ¢; 1 =0 and ¢; 9,41 = 1.
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Note that m, is obtained from m,_1 (n > 2) by adding exactly one point ¢,. The
Franklin system corresponding to the quasi-dyadic sequence of partitions {P; : j > 0} is
defined as follows:

DEFINITION 2.1. Let {P; : j > 0} be a quasi-dyadic sequence of partitions, and for
n > 1, let m, be as in (2.16). Then the Franklin system {fn : n > 0} corresponding to
{Pj : j > 0} is the following family of functions:
fo=1, fi(t) =2V3(t - 1/2),

and for n > 2, f, is the Franklin function corresponding to (7, mn—1).

Note that this definition guarantees || f,||2 =1 and (fn, fm) = 0 for n # m.

For a partition 7, denote by @, the orthogonal (in L?) projection onto S,. Note that
@ is simultaneously a continuous linear operator on LP; 2 < p < co, and can be uniquely
extended to a continous linear operator on LP, 1 < p < 2, and HP, 1/2 < p < 1; these
extensions are denoted by Q). as well. Clearly,

Qe f =D _(f i) fi-

i=0
Next, we list the properties of the projections @), which are needed for our purpose.
For the proofs, we refer to [5] and [9].

THEOREM 2.5. (i) For any partition m and f € LP, 1 < p < o0,

1@ fllp < 31115

Moreover, for each f € L' we have

(i) Let {P; : j > 0} be a quasi-dyadic sequence of partitions satisfying lim, o |7y
= 0. Then for all f € LP with 1 < p < oo, or f € C[0,1] for p = oo we have
limy, o0 || f — Qnr, fllp = 0. Consequently, the Franklin system {f, : n > 0} corresponding
to {P;:j >0} is a basis in LP, 1 < p < o0, and C[0,1].

Moreover, if f € L' and u is a weak Lebesgue point of f, then f(u) = lim, oo Qn, f(u).

2.3.1. Regularity of sequences of partitions. Recall that for a quasi-dyadic sequence
of partitions {P; : j > 0},

Lk = [tin—1tn)s Ak = Lkl = tjn —tip—1, k=1,...,2,
When we pass from P; to P;41, then the interval I is split into two intervals I 41 211
and I; 11,2, with disjoint interiors, i.e. we have
Liv=ILit19k—1Uljif12k,  Ajk = Nja12k—1 + Njg1,2k-

Now, we introduce the weak, strong and strong periodic regularity of a quasi-dyadic
sequence of partitions.

DEFINITION 2.2. Let v > 1 and let {P; : j > 0} be a quasi-dyadic sequence of
partitions of [0, 1].
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(i) We say that the sequence {P; : j > 0} satisfies the weak regularity condition with
parameter v if forall j > land k=1,...,2971,
1 Njok—1

I DA < v

v Aj2k

(ii) We say that the sequence {P; : j > 0} satisfies the strong regularity condition

with parameter v if forall j >0and k=1,...,27 — 1,

l < /\j,k+1

0 Ajk

<.

(ili) We say that the sequence {P; : j > 0} satisfies the strong periodic regularity
condition with parameter « if for all j > 0 and k =1,...,27,

1 Akt

o< ZhET o v

— — 3

YT Ak
where by definition A; 511 = Aj1.

Clearly, the sequence P; = {k/27 : 0 < k < 27} of dyadic partitions satisfies the strong
periodic regularity condition with v = 1. Another example of a strongly periodically
regular quasi-dyadic sequence of partitions is the sequence of Chebyshev knots on [0, 1],
i.e. with t;), = (1+ cos((27 — k)w/27))/2 = sin®(kmw/27*). The best approximation by
spline functions with these knots appears to be closely related with the Ditzian—Totik
modulus of smoothness with the step-weight function w(z) = y/z(1 — ) and the best
approximation by algebraic polynomials (see [23] for details and more examples).

In the sequel, the following estimates for the length of the intervals I;; are used
frequently:

PROPOSITION 2.6. Let v > 1 and let {P; : j > 0} be a quasi-dyadic sequence of
partitions of [0,1].

(i) Let the sequence {P; : j > 0} satisfy the weak regularity condition with parame-
tery. Then for all 7 >0 andk=1,...,27,

1 ~
— Lkl <|1; _ I < —
5 1| k| = | J+1,2k 1|7 | J+l,2k| S 3F

Consequently, if for some j, k,m,l we have I, C I;, then

1 m—j v m—j
(m> ik < [Ima] < (m) | L) ).

(ii) Let the sequence {P; : j > 0} satisfy the strong regularity condition with parame-
ter v and ay =logyy. Then for all 5 >0 and 1 < k,1 < 27,

|5k

Y2k = U+ D)7 el < Ll < 92(1k = U+ 1) L),

PRrOOF. The inequalities from (i) are straightforward consequences of Definition 2.2(3).
To check (i), let 1 < k,1 < 2/, k # [, and choose pu, 0 < pu < j — 1, such that
2# < |k — 1] < 2#F1 Let a,b be such that

Tk Cli—pa and Ijy Clipp.
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Then |a—b| < 2, and by strong regularity v~ 2|1;_, 5| < |Ij—p.al < ¥?|Lj—usl, so applying
(i) we obtain

" "
v v
5 = () iemal £92(25 ) ol <9210,

and we get (ii) by the choice of u. m

2.4. Sequences of partitions and general Haar systems. For a partition 7 =
{t; : 0 < i < m} of [0,1], let H, be the space of functions constant on each interval
[ti—1,t;), 1 < i < m, and continuous at 1. For a pair of partitions (m,7) such that 7 is
obtained from 7 by adding one point, there is a unique (up to sign) function h € H, with
h 1L Hx and ||h||2 = 1; it is called the Haar function corresponding to (w, 7).

Now, let {P; : j > 0} be a quasi-dyadic sequence of partitions of [0, 1], and let the
partitions 7,, n > 1, be as defined in (2.16). The Haar system {h,, : n > 1} corresponding
to {P; : j > 0} is defined as follows: hy = 1, and for n > 2, h,, is the Haar function
corresponding to (m,,m,—1). It can be calculated that for n = 27 + k,

Aj 1

J+1,2k

— for u € [tj41,26-2,tj41,26—1),
Aj1,2k—1 VA k

(2.19) i () = N

Nror for w € [tj41,26—1,t+1,26),
J+1, j

)

0 otherwise,

and for 1 < p < oo,

1 _ N
— (Njr12e-1 ANjg1,26) P72 < lhllp < 2(012e-1 A Ajgr,26) /P2

V2

Therefore, if the sequence {P; : j > 0} of partitions is weakly regular with parameter -,
then for 1 < p < oo,

1
V21 +7)

(2.20)

(2.21) {n} VP2 < lhally < 2/T 4| {n}VP71/2
and moreover,
1
\/f_y
Consider a quasi-dyadic sequence {P; : j > 0} of partitions and the corresponding
Haar system {h, : n > 1}. Note that for any sequence (ay),>1 of real coefficients,
the sequences {S# : m > 1} and {SZ : j > 0}, where S} = >  a,h,, are martin-
gales with respect to the o-fields generated by the appropriate Haar functions. Clearly, if
an = (f,hy) for all m € N and some f € LP, 1 < p < oo, then the SI’s are partial sums
of the Fourier—Haar series of f, and for f € L?, S is the orthogonal projection of f onto
the space spanned by hi,...,h,. Therefore, the results concerning the unconditional
convergence of the Haar series follow from known results from martingale theory. The

(2.22) [{n}| 72 < [ha(u)] < VAI{R}Y? on {n}.

properties of Haar series which are needed later on (cf. Section 6) are summarized in
Propositions 2.7 and 2.8. To formulate these propositions, we introduce the following
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notation: for a sequence (an)n>1 of real numbers, PH and S denote the square and
maximal functions of the corresponding Haar series, i.e.

PO = (Matha) " s -_supyzan 0]

n—1 m>1

Moreover, for f € L', we denote by P f, SHf the functions defined by the above
formulae with the coefficients a,, = (f, hy,).

If {P; : j > 0} is a quasi-dyadic sequence of partitions of [0, 1] such that |P;| — 0 as
j — o0, then the corresponding Haar system is a basis in LP for all 1 < p < co. Combining
this with D. L. Burkholder’s result concerning martingales (cf. [2], Theorem 9), and
Doob’s inequality for submartingales (cf. for example [14], Theorem 3.4 in Chapter VII),
we have

PROPOSITION 2.7. Let {P; : j > 0} be a quasi-dyadic sequence of partitions of [0,1]
such that |P;| — 0 as j — oo, and let {h, : n > 1} be the corresponding Haar system.
Then {h, : n > 1} is a basis in LP for all 1 < p < co. This basis is unconditional in each
LP for 1 < p < oo, and for each p, 1 <p < oo, and f € LP,

1£llp ~ IPH £llp ~ 1187 fllp,

with implied constants depending on p only.

Under the additional assumption of weak regularity of the sequence of partitions under
consideration, applying Theorem 5.1 from [3], we get

PROPOSITION 2.8. Let {P; : j > 0} be a quasi-dyadic sequence of partitions of [0,1]
satisfying the weak regularity condition with parameter vy, and let {h, : n > 1} be the
corresponding Haar system. Then, for each sequence (an)n>1 of real coefficients and p,
0 < p <1, the following conditions are equivalent:

(1) PH(-) e LP,
(2) SH(.) e L»,

(3) the series Y " | anhy converges unconditionally in LP.
2.5. Technical lemmas. For later reference, we present the formulation of Proposi-
tions 2.3 and 2.4 for sequences of Franklin functions.

PROPOSITION 2.9. Let {P; : j > 0} be a quasi-dyadic sequence of partitions satisfying
the weak regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Forn >2,n =2 +k with 1 <k < 27, let t,, and {n} be as in (2.17).
Then there is a constant C, depending only on vy, such that

1 _ _
(223) P < fally < VP for 1< p < oo,
Y
(224) ST < fultn) < G )2,
v

(2.25) | fa(trron-2)] < Cy{n} ™2 | faltirazn)| < Oy l{n}| 72
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fori <2k —2,
(2.26) faltjprs) = GO Pty [l < 3l fa(t)l;
[{n}|~1/2 [{n}| 1/
(2.27) |fn(tj+17i)| <C 912k—1—i <G 2lk—i/2| 7’
2k —1— i {n}['/?
2.28 n(tjv1:)] < C - ’
( ) |f ( J+1, )l T 9l2k—1—i tit1,2k—1 — tjt1,i—1
tjt1,i bit1.
3v2-3
2.29 w(u) du < ——— n(u)| du
@s) |l 2= | i)
j+1,i—1
3v2 -3 :
< 3V223 0 5 gyliaker

T 3V2—-4
and for i > 2k, i = 21,

(2.30)  faltjsrs) = (D2 (i)l [ fa(terase)| < 3l faltis)l,

(2.31) [fatira)] < Cv%v
(2.32) [ faltieni)l < Gy . ;’:{12/2_\ . tj+1,z‘4|r£n—}|tlj/j1,2k1 ’
(2.33) i | (u)] du < gﬁ%ﬁ WSM [ fn(w)] du
ti1 tit1
< 323y b

PROOF. By definition, f,, is the Franklin function corresponding to (m,, 7,—1). Denote
by pn the number p from Proposition 2.3 chosen for # = 7, and ™ = 7w, _1; then we have
fn, 1 1 1
— = + + ,
2 Kol Ko}l Hnedl
with {n_} and {n,} given by (2.18). Note that formulae (2.18) and the definition of
weak regularity imply [{n_}| > [{n}|/(y+ 1) and {n4}| > [{n}|/(y+1). Thus
4v+4+6
T 1 S /1477, S 9
{n}| {n}|

and now Proposition 2.9 is a consequence of Propositions 2.3 and 2.4. m

LEMMA 2.10. Let {P; : j > 0} be a quasi-dyadic sequence of partitions. Letn = 27 +k,
m=2 +1 withl <k <1<2/. Then there are two constants o, 3, depending on n and
m, such that

fo(u) = afm(u)  foru<tjr1ok—2 and fo(u)=Bfm(u) foru>tjy1,0.

PROOF. By definition, f, € Sz, fn L Sz, , and fim, € Sx,., fm L Sx,,_,. Denote
Nn = {Z : tj+17i S 7Tn}, Nm = {Z tliv1: € 7Tm}, and let Nn,ia 1€ Nn, and Nm,i, 1€ Nm,
be the corresponding B-splines. Thus, f, = ZieNn a;Ny,; with a; = fn(tj+1,;) and
fm = Ziex\/m blez with bz = fm(thrl,i)- Consider the functions fn; fm on [0, tj+1.,2k72]-
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Clearly, for ¢ < 2k — 3 we have N,, ; = N,,,; on [0,1], and in addition N, 2x—2 = Ny, 2k—2
on [0,¢j41,2k—2]; moreover, the functions N, ; = Ny,; with 0 < i < 2k — 3 belong
to both m,_1 and m,,—1. Therefore, formula (2.1) for inner products of B-splines and
the orthogonality conditions imply that both (a;)o<i<2k—2 and (b;)o<i<2k—2 satisfy the
following system of equations:

2I0 + xr1 = 0,

{ Ajg1,iTi—1 + 2()\]‘.:,_1,1‘ + Xj+1,i41)% + Ajg1it1Tipr =0 for 1 <4 <2k —3.
Since this is a system of 2k — 2 equations with 2k — 1 variables, the dimension of the
space of its solutions is 1. Since both (a;)o<i<2k—2 and (b;)o<i<2r—2 are non-zero, this
implies that there is a constant « such that a; = ab; for all 0 < i < 2k — 2. This property
and the representation of f,, and f,, imply that f, = afp, on [0,t;41,26—2].

The existence of a constant 8 such that f,, = 8fm on [tj11 4, 1] follows by analogous
arguments. m

LEMMA 2.11.  Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Let 0 < p < 1. Then there is a constant C , such that for I € I,

(2.34) VD7 P2 fa(w)lP du < €)1,
Ic{n}CI

and moreover, for all n > 0,

1
(2.35) VI fn@)lP du < €, | {n}7/2,

0

ProoFr. To prove (2.34), let I € Z,,. Note that if {n} C I then n = 27 +m

Wlth] Z jo and {n} = [tjymfl,tjym] (Cf (217)) Let I = Ijo,k = [tjoykfl,tjoyk] =
[tj25-90 (k1) tj.2i-sor]- Thus, {n} C I means that 2777 (k — 1) < m < 2777k, so we
get for u € I;; with | > 29790 (cf. the decay of f,, — Proposition 2.9, formulae (2.30)
and (2.31))

S HnPR S < Cyyp 3 o-plm—1
29 <n<2I Tt 23-30 (k—1)<m<2i—do k
{n}cIt

_p‘gjfjok_”
< Oy p2 :

As the sequence of partitions is strongly regular, applying the above inequality and
Proposition 2.6(ii), we obtain

1 "
| HelPdi<cy, Y (L2 o
tjo.k 27 <n<27H1 =20 —40 k+1
{n}ci
27 (l . 2j7j0k)a,y
: O’%P|Ij-,21*10k|l zjzj:k 1 ~gpl2i—iok—l]
= —Jo k+

~ Jj—Jjo
<C —_— 1],
<ou(-25)
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which gives
1 0o 1
VS P fm@Pdu< >V ST [P f(w)]P du
i,k nCI J=Jo tjy.k 27 <n<2it!
{n}cCI

o0

J—Jjo
g
<o,y () <

By analogous arguments we obtain

tjp,k—1
V> PP @ du < €1,
0 {n}crI

which implies inequality (2.34).
Inequality (2.35) follows from (2.34) (with I = {n}) and the fact that

} fn()? du < Cl{n} 77,
{n}
which in turn is an immediate consequence of the estimate for the supremum norm of
the Franklin function (cf. Proposition 2.9, formula (2.23)). m

Next, we formulate some technical estimates which are used frequently; their proofs
are elementary and therefore the details are omitted.

PROPOSITION 2.12. Let {P; : 1 >0} be a quasi-dyadic sequence of partitions satisfying
the strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Forn > 2, n =2/ +k with 1 <k <27 let {n} andt, =tj11,2c—1 be as
in (2.17). Then there is a constant C.,,, depending only on -y, such that

1 _ _
(236) o {n} ™2 <Ufaltir 22l [fnltienoen)ls [faltinoe)] < CyH{n} ™"/
v

Moreover, let 0 < a < 1. Then there is a positive constant Cy «, depending only on -y
and o, such that for all n and A C {n} with |A| > a|{n}|,

| 72y du > C, .
A
PRrROOF. To get (2.36), apply the lower estimates for the values |f,(¢j4+1,2k—2)| and
| fr.(tj+1,25)| from Proposition 2.3 and strong regularity of the sequence of partitions.
The remaining part of Proposition 2.12 is a straightforward consequence of (2.36). m

PROPOSITION 2.13. Let 0 < o < 1. Then there is a positive constant C,,, depending
only on a, such that for any interval [a,b], A C [a,b] with |A| > a(b—a) and a function
f linear on [a,b],

Juax |£(w)] < Comax|f(w)]  and [Sb]|f<u>|dusca§|f<u>|du.
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PROPOSITION 2.14. Let the quasi-dyadic sequence {P; : j > 0} of partitions satisfy
the weak regularity condition with parameter v, E C [0,1] and

B={u€e[0,1]: M*(xg,u) > 1/(2y+ 2)}.
Let I € I, and let I=, 1" be the intervals in I obtained by splitting I. If I ¢ B then

1 1
I"NE|>—|I"| and |ITNE>—|I1].
2y 2y

3. Franklin series in LP, < p < 00

The main result of this section is the following:

THEOREM 3.1. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
weak regqularity condition with parameter v. Then the corresponding Franklin system is
an unconditional basis in LP for all 1 < p < co.

For the proof of Theorem 3.1 we need some auxiliary results. We start with a technical
lemma.

LEMMA 3.2. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the weak
reqularity condition with parameter ~y. Let I € T and let ¢ be a function such that
1

suppp C I, suplg| < o Vo) du = 0.
I

Moreover, let a, = (¢, fn). Then there is a constant C, depending only on vy, such that
o0
S Z lan fr(u)]| du < C,.
I¢n=0
PROOF. First, observe that the conditions imposed on ¢ imply ag = 0 and |a;| <
V3 (recall that fo and f; do not depend on the specific sequence of partitions — cf.
Definition 2.1), so it is enough to consider the sum beginning with n = 2.
Since I € Z, we have I = I, for some jo > 0 and 1 < k < 2Jo. To estimate
SIC Y>orl o |an fn(u)] du, we split it into several parts.
First, consider Z;:(’:O Zij;ljﬂ |an ||| fn|l1. To simplify the notation, let I~ =1I; 11 251,
It =1I,412; and 7 = tj,4+1,2k—1. Note that if n < 270 + k. —1, then f, is linear on I, and
for 270 4+ k < n < 290F! the function f, is linear on both subintervals I~ and IT. The-
refore, denoting by &,, (, the value of the derivative of f,, on (I7)°, (I™)° respectively
(clearly, &, = ¢, for n < 290 + k — 1) and using the properties of ¢ we get

Sy

(3.1) lanl = | Yoo faw) du| = | Jo(w) (falw) = fu(7) du]
I

< (1l § Ju=rldu+ |Gl | fu— 7] du)
I— It
 lal TP Gl TP
27| '

E|>—~o
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To estimate |, |, let n = 27+ with 1 <1 < 27, j < jo, and let A; be the unique interval of
order j + 1 containing I~; as A; € Z;1, we have A; = Ik, for some k;; moreover, f,
is linear on A;. Applying the pointwise estimates for f,, from Proposition 2.9 (inequalities
(2.27), (2.31)) we get

sup |fn(u)] < Cy27 R 2l {n} 712,

which gives
(3.2) [€al < G271 Rl )|~ 1/2|A k

Using the estimates for length of intervals from Proposition 2.6(i) we get
|l—k; /2| —-1/2 T
n| <Cy27 ,

and by similar arguments (note that It C A; for j < jo),

Jjo—Jj
Gl < Co2 IR ) 1/2( ) 1
v+1 [T+

These estimates for |&,], |(,| and (3.1) give

Jjo—7j
lan] < G2 1552 ) |- /(—) |
v+1

As || fall1 < C4|{n}|*/? (cf. Proposition 2.9, (2.23)), the last inequality gives

27! ~ jo—j 2’ Jo—3j
(075 n S O - - 2 Il kj /2| < C ( > y
3 mlshso ()5 —

which implies
2i+1

Jo Jjo—J
(3.3) S Jallfli < Z( ) <o,
j=0 n=27+41
Now, let n = 27 +1 with 1 <1 < 2/ and j > jo. Then by the properties of ¢ we have
(3.4) ] < V()] (W) du < — Wi Slfn( )| du.
I
Recall that I = [tj, k—1,tjo,k] = [tj11,2+1-50 (k-1 j+172j+17j0k]. Consider n such that

tn € I, ie. {n} C I, or equivalently 2/t1=Jo(k — 1) < 2] — 1 < 29+1=Jok. (It should
be noted that we cannot use Lemma 2.11, which has been obtained for strongly regular
partitions and 0 < p < 1; now we obtain an analogous estimate for weakly regular
partitions, but for p = 1 only.) Then §, |fu(u)|du < || fu]1, and using the decay of the
integrals of | f,,| from Proposition 2.9 (cf. (2.29), (2.33)) we obtain

t

j+1,2dt1=d0 (k—1) 1
| 1£a(w)] du = | faldu+ | [falw)] du
Jc 0 t].+112j+17j0,C

3? 3(9|2”1*j0(k71)*21+2| + 12T MY | 5,
3V2—-14

”1’
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where § = 1/(3(v/2 — 1)) < 1. Moreover, for these n’s we have (cf. formula (2.23) in
Proposition 2.9 and Proposition 2.6(i))

Jj—Jjo
i < C <C, 1.
Il < Colgnt < € (25 ) I
By (3.4) we have |a,| < ||| f|l1, so applying the last two inequalities we get
(ON =30 (f—1)— i
Z |an| S | ()] du < il Z (62 O(h=1)=2042] 4 glI=2"770kly) ¢ 112

2j<nS2j+1 Jc 27 <n§2j+l
tn€l tn€l
Jj—Jjo
S Cy L E el,
v+1

lEN
which means that

(3.5) > |an|x|fn(u)|du§ay(#>ﬂao'

29 <n<2itt Ic
tn€l

Now, consider n = 27 + [ with 2] — 1 < 29+1=0o(k — 1), ie. t, < ti1,2941-d0 (l—1)-
Let J; be the interval from Z; with left end coinciding with the left end of I. Since
Jj C I, Proposition 2.6(i) implies that |.J;| < (v/(y+ 1))?77|I|. Applying for these n’s
the estimates for the integral and pointwise decay of |f,,| from Proposition 2.9 (cf. (2.33)
and (2.31)), we get

(36) it EAChs

3\/_4

3\f 3
3\/— 4| ]||f7l( j+1,29+1=d0 (k— 1))|

S | ()]

j7
Y —|1—=29790 (k—1)| —1/2
<C, 2 1.
(7“) {72

Clearly, SIC | fn(uw)] du < fn]l1, so the above inequlities, (3.4) and the estimate for || f, |1
(cf. (2.23)) give

Jj— J—Jo
Y _
3 jan| | |fn<u>|duscw(—) 2:2 ( ) :
29 <n<2itt Ic v+ leN +1

tn<tj+1,2f+1*jo (k—1)

By analogous arguments we check that

S ol [ Ifa(wldu < cv(ﬁ)”'“.

29 <p<2itt Ic
t">t]‘+1,2j+1*10 k

The last two inequalities and (3.5) give

9i+1

> lallnwlaso ()

n=27+41 Jc
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and summing over j > jo we get

oy e Jj—Jjo
v
> Vlanllfn)ldu <€y 37 (m) e
n=270+41I¢ J=Jo

This and (3.3) complete the proof. m
As a consequence of Lemma 3.2 we get

LEMMA 3.3. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the weak
reqularity condition with parameter vy. Let T C T be a subset such that I° NI° = () for
all 1,1 €T, 1#1,andlet B=J;cr 1. Let 1 be a function such that

Suph/]lgbu SupprBa VIETS/lb:Ou
I
where b is some nonnnegative number. Then there is a constant C,, depending only on
v, such that for any function ¢ satisfying the above conditions,

[ S fanfuw)ldu < C,0/B],

Becn=0
where a, = (Y, fr).

ProOF. Note that B¢ C ;o I put ¢r = ¢x; and a7, = (1, fn). Since the
functions vy satisfy the hypothesis of Lemma 3.2, we get

VS Jarnfu()du < {7 Jarn fulw)] du < CbIT],

Be n=0 Jc n=0

and summing over I € 7 we obtain

VD lanfulldu< Y7\ Y larnfalw)ldu < by |1 = CybIB]. =

Ben=0 I€T Ben=0 IeT
THEOREM 3.4. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
weak regularity condition with parameter v. Let 1 < p <2 and f € LP, f = EZOZO an fn-
Let € = (gp)n>0 with e, € {—1,1} and

T.f = entnfn

n=0
Then there is a constant C. p, depending only on v and p, such that for each f € LP and
each sequence ¢,

1Tl < Copll fllp-

PROOF. Let f € LP, 1 < p < 2. For x € [0,1], define

1

First, observe that @&(x) < M(f,x). Since for p > 1 the operator M(f,-) is of type (p, p),
this inequality implies

&(z) = sup
Iixzelel

12, < IM(f, )l < Cpll £l



On general Franklin systems 25

For m € Z let
By, ={x €[0,1] : (z) > 2™}.

Note that the set B,, is a sum of some intervals from Z, and let 7,,, be the set of maximal
intervals from Z contained in B,,; thus we have

Bn=|J I, with I°nI°=0for I,I€T,, I#1.

IeT,,

Note that B,,4+1 C B,,; moreover, for each pair of different intervals from Z, either their
interiors are disjoint or one is included in the other, which implies that for each interval
I € 7,41 there is a unique J € 7,, such that I C J. It is also clear that

(3.7) > 27™P|B| < Gpl|®|5 < Gyl fI2-
meZ
Now, let
f(x) for x € B,
F(z) = ﬁgf(u)du forzel, I €T,.

I
We check that there is a constant C., such that ||Fp|e < C,2™ for all m. Indeed, if
2 & By, then &(z) < 2™, which means that
1 m
’m §f(u) dul <2

for all J € Z with x € J, and this implies |f(z)| < 2™ a.e. on B,,. On the other hand, if
I € 7, is an interval of rank j, I* is the unique interval of rank j — 1 containing I and
I' is the other interval of rank j contained in I*, then by maximality of I, neither I* nor
I’ is included in B,,, which implies

‘ﬁgf(u)du < 2™,
o

1
< 2™ and ’W S f(u)du
I*
These inequalities and weak regularity of the sequence of partitions give

1 1 ||+ 1]
— f(u)du' < — ‘ f(u)du‘—i—‘ f(u)du‘ <M
7) mll} IERED) 7
Thus, for all m € Z we have ||Fiy oo < (29 4+ 1)2™.

Define ¢, = Fiyp1 — Fi; then

(3.8) [mlloe <3(2y+1)2™ and  supp¢m, C Bi.

Let us prove that the function v, and set B,, satisfy the assumptions of Lemma 3.3 with
constant by, = 3(2y+ 1)2™. It remains to check that SI Ym(u)du =0 for all I € T,,, but
this follows from the fact that for I € 7,,, the set I N B,,+1 can be written as the union of
some intervals from 7,11, and from the formulae for F,, and F,,11; the technical details
are omitted. Moreover, the function 1, is constant on the intervals I € 7,,,1, which
together with the previous property implies that (¥, ¥m/) = 0 for m # m/.

Note that by (3.7) and (3.8) we have f = Y °__ 4, with the series convergent
in LP. Thus, putting amn = (¢¥m, fn), we obtain a, = > -

m=—0oo

< (2y+1)2™.

G n and €n0, =
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Z;O:ﬂ)o EnQm,n. For l € Z let

E = {ue [0,1] ‘ananfn ‘ }
X;={uel0,1] ‘Zan( Z am-,n)fn(u)‘>2lil}v

m<l—1

{ue [0,1] ‘ZE"(Zam")f” ’>2l_1}.

m2>1

Note that E; C X;UY]. Let us estimate | X;| and |Y;|. First, using Chebyshev’s inequality,
estimates (3.8) for ||¢m |l and the orthogonality of the functions ,,, we obtain

{ue0 S 3 oma)iutw] > 222

m<l—1

> (3 )’

n=0 m<l-1

| X1

—1 2
~ 9202 me 221 2 Z l[¥mll2
m<l— m<i—1
C c, .
<gm O ImlelBul < 55 D 2°7(Bul.
msl—2 m<i—1

On the other hand, the functions 1, and the sets B,, satisfy the assumptions of Lem-
ma 3.3, so using this lemma we get

|Yl|§|Bl|+‘{uer.ZZ|amn||fn )| > 21

n=0m>1
< 1B+ s | 33 famal ol
Be n=0m>I
SR N B S AT
leBC n=0
Oy o
g2—jmz>l2 |Bym|.

Thus, we have

m 1 m
|E|<C (221 > 22MBy| + 5 > 2 |Bm|>.
m<l—1 m>1
Using this estimate and (3.7) we obtain (recall that 1 < p < 2)
ITef 115 < G Y27 |By

lez

< Cy)p(z2l(p72) Z 22m(B. | + Z ol(p—1) Z 2m|Bm|)

lez m<l leZ m>1
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< C’Y;P( Z 22m|Bm| Z 2l(17—2) + Z 2m|Bm| Z 2l(p—1)>

meZ >m meZ I<m
<Cyp Z 2"P| By | < C%p”f”g' u
meZ

Proof of Theorem 3.1. Recall that for each p, 1 < p < oo, the system {f, : n > 0} is
a basis in L. As an orthonormal system, it is an unconditional basis in L2. Its uncondi-
tionality in LP? for 1 < p < 2 follows from Theorem 3.4, and then the unconditionality in
LP for 2 < p < 0o is obtained by a duality argument. m

As a consequence of Theorem 3.4, using a well-known argument based on Khinchin’s
inequality and the maximal inequality from Theorem 2.5(i), we obtain

COROLLARY 3.5. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
weak regularity condition with parameter v and 1 < p < co. Then for f € LP we have

[£llp ~ 1P Fllp ~ 1S I,

with implied constants depending only on p and .
Moreover, for a real sequence (an)n>0, the following conditions are equivalent:

(1) The series Y o> an fn is unconditionally convergent in LP.
(2) There is f € LP such that an, = (f, fn) for all n > 0.

(3) P() = (XnZoanfa())/? € L.
(4) S

4) S(-) = sup,,>o 1> g anfn(-)] € LP.

4. Franklin series in P, 0 < p<1,and H?, 1/2<p <1

Let {P; : j > 0} be a quasi-dyadic sequence of partitions and let {f, : n > 0} be the
corresponding Franklin system. Let 0 < p < co and let a = (an)n>0 be a given sequence
of real numbers. Consider the following conditions:

(A) P() = (g anfa()/? € Lr.

n=0"n
(B) The series Y.~ an fn converges unconditionally in LP.

(C) S(-) = SUP,;,>0 1> oneo anfu(:)| € LP.

For 1 < p < oo, we have already proved the equivalence of (A)—(C) under the as-
sumption of weak regularity of the sequence of partitions under consideration — cf. Co-
rollary 3.5. In this section, we study the relations of the above conditions for 0 < p < 1.
Under the assumption of strong regularity of the sequence of partitions, we prove the
following;:

THEOREM 4.1. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Then, for eachp, 0 < p < 1, conditions (A), (B) and (C) are equivalent.

Moreover, we study the convergence of the Franklin series in H?, 1/2 < p < 1. We
obtain the following result:



28 G. Gevorkyan and A. Kamont

THEOREM 4.2. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Let 1/2<p<1 be given. Then the system {f, : n>0} is an uncondi-
tional basis in HP. Moreover, for f € HP,

’
p

(4.1) 1 lszn ~ ISl ~ 1S Fllp ~ sup | D en(f. fa) o
€ n=0

with the supremum taken over € = (€, )n>0 with €, € {—1,1}, and with implied constants
depending only on p and . In addition, for the system {f, : n > 0}, conditions (A)—(C)
are equivalent to

(D) There is f € HP such that an = (f, fn) for all n > 0.

(E) The series Y .- anfn converges unconditionally in HP.

The proofs of Theorems 4.1 and 4.2 are split into several lemmas. First, we state and
prove the lemmas, and the proofs of the theorems are presented at the end of this section.
The technique of the proofs is similar to that in [21]. For the convenience of the reader
and for the sake of completeness, we present them in detail.

LEMMA 4.3. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the strong
regularity condition with parameter v and let 1/2 < p < 1. Then there is a constant C., p,
depending only on p and -y, such that for every p-atom ¢,

||S<P||p < Cyp, ||P80||p < Cyp-

PROOF. It is clear that for ¢ = 1, we have ||S¢||, = [Py, = 1.
Now, let ¢ be a p-atom such that for some interval I C [0, 1],
1
supp C I, suplp| < 177, {p(z)do = 0.
0
For the interval I, let

jo =min{j : there is I € Z; with I C I'}.

Let I, x, be an interval of rank jg included in I'; it follows from the choice of jy that
there can be at most two such intervals — it is possible that one of I, x,—1, Ljo,ko+1 1S
also included in I'. Define

J= U Lo k-

[k—ko|<2

By the choice of jo we have I' C J, and strong regularity implies

(4.2) || ~ |J| ~|Ljyx| for |k —ko| <2.

Note that [|p||2 < |I'|'~2/P. Using (4.2) and Holder’s inequality with exponents 2/p and
2/(2 — p) we get

@3) [Py du< |72 (§(Po)an)" < el < 0y,
J J
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Since Sy(u) < 64 M(¢p,u) (cf. Theorem 2.5(i)) and the operator M is of type (2,2), we
have ||S¢ll2 < C|l¢||2, so a similar argument gives

(4.4) | (Se)rdu<c,,.
J

To estimate the corresponding integrals over J°, note that

(4.5) (Pp(u)? < Z |lan fo(u)|P and  (Se(u))? < Z |an fn(u)”,
n=0 n=0
where a, = (¢, f»), and therefore it is enough to prove
(4.6) S Z lan fr(u)|P du < C, p.
Jen=0

The idea of the remaining part of the proof is similar to the proof of Lemma 3.2. First,
consider n < 2%, Then f, is linear on each interval I, k; denote by &, 1 the value of the
derivative of f,, on IJ‘.’O’ , and let 7 € I'. Since I' C J and ¢ is an appropriate p-atom, by
strong regularity we get

@7l = | e falw) ) du| < TP Y el
J [k—ko|<2
For |k — ko| < 2 and j < jo, let A; € T, with I;, x C A, k, and let my be such that
Js J Jo, Js
Ajp=1jm,; let n =27 +1. Then we get (by arguments analogous to those used to obtain
inequality (3.2) in the proof of Lemma 3.2)
1

[€n il < Co27 1T {712
! |4kl
Note that for |k —ko| < 2 we have |my —my,| < 2, so by strong regularity |A; x| ~ |4k |;
thus, the last inequality and (4.7) give
|[|2=1/p

|an] < Cy27 Il [} |72 —.
! |Aj7/€0|

Since S(l) |fa(w)Pdu < C, p[{n}|*7P/% (cf. (2.35) in Lemma 2.11), the above inequality,
Proposition 2.6(ii) and (4.2) imply

2it1 1 o _
[P

Z S |anfn(u)|p du < O’y,p|F|2p_l Z 2—P|l—mko\7

n=2i4+10 =1 |Ij>mk0 |p

2p\l—mk0 |

27
Pt (11— M| + 1) P
<cC E o
=1

7P |Ij,mk0 [2p—1

. ( ~ )(joj)(2p1) |F|2p—l
P FY+1 |Ij07k0|2p71

(Go—3)(2p—1)
o, [ .
o (”y + 1)

IN

IN
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Thus, since p > 1/2, by summing over j < jo — 1 we get
290 1

(4.8) > Vlan fa(@)P du < Cy .

n=00
Consider now n > 27, Then we have
(4.9) jan] < 11177\ | fa(w)] du.
J
If {n} C J, then this inequality and the estimate for || f,||1 from Proposition 2.9 (cf.
inequality (2.23)) give
lan| < 17PN fulle < Cy{n} (V20|47

Applying the last inequality, Lemma 2.11 (cf. inequality (2.34)) and (4.2) we get
(4.10) VST Janfa(w)Pdu<Cyy

Je{n}CJ
Finally, for j > jo, the arguments including the decay of the L'-norms of f,, over in-
tervals from the partition 7, (i.e. inequalities (2.29) and (2.33) in Proposition 2.9; see
also inequalities (3.6) in the proof of Lemma 3.2), the estimate for Sé | fr(w)]P du from
Lemma 2.11 (i.e. inequality (2.35)), the estimates for the length of the intervals from
Proposition 2.6(i)—(ii) and (4.2) give
1

> fifatran( i) < ¢, (2 )j_j°|r|,

27 <n<27tt 0 J v+l
{n}gJ
which, together with (4.9), implies

V> lanfa(w)P du < s
Je n>270
{n}zJ

The last inequality, together with (4.8) and (4.10), gives (4.6). Lemma 4.3 now follows
from inequalities (4.3)—(4.6). m
As a consequence of Lemma 4.3, we get

LEMMA 4.4. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the strong
regularity condition with parameter v and let 1/2 < p < 1. Then there is a constant C., p,
depending only on p and v, such that for all f € HP,

||Sf||p < C%p”f”HPv ||Pf||p < C%p”f”HP-

LEMMA 4.5. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the strong
regularity condition with parameter y. Let (an)n>0 be a sequence of real coefficients such
that S(-) = sup,,>q |> g anfn(-)| € L'. Then there is f € H' such that an, = (f, fn)
for allm > 0. Mo;’eover, there is a constant C., depending only on vy, such that

£l < C5IIS])a-
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REMARK. Later on, we obtain a version of Lemma 4.5 for 1/2 < p < 1 as well (cf.
Lemma 4.9). However, the present version, for p = 1, is needed for the proof of Lemma 4.8
(i.e. the implication (C)=-(A)), which in turn is used in the proof of Lemma 4.9.

Proof of Lemma 4.5. Since S € L, there is a function f € L! such that a,, = (f, f»),
n > 0 — this follows from the Dunford—Pettis theorem (i.e. relative weak compactness
in L! of a uniformly integrable subset, cf. for example [30]). Moreover, note that || f||; <
[|S|l1. Tt remains to check that f € H*.

For convenience, let ||S||y = 1. Put Ey = By = [0, 1], and for r > 1,

E.={uel0,1]:S(u)>2"}, B,= {u €[0,1] : M*(xE,,u) > 2714_2}.

Since M* is of weak type (1,1), we have |B,| < C,|E,|.
Consider now the following decompositions of B,
(4.11) B,=|J 1=,
IeT, v

with the last union countable, where 7. is the family of maximal intervals from Z included
in B,, and each I, is an interval which is a union of some intervals from 7;., and no two
I'.,’s have a common endpoint. As for each I € 7,4 thereis J € 7, such that I C J, it
follows that for each I.41, thereis I}, with I;.4q1, C I} ,.

Now, define the following sequence of functions: go(u) = S(lj f(t)dt, and for r > 1,

flw) for u € B,
(4.12) gr(u) = II’1—| | rar foruer,,.
vl
Next, we prove that
(4.13) g0 ()] < Cy2".

Once we have proved (4.13), we obtain the following representation of f:

f =go+ Z(ngrl - gr) =go+ Z Z br,vv
=0

r=0 v

with by, = (¢r+1 — 9r)xr,.,- Then the functions

by
v = Coor T,
are l-atoms; in fact,
1
Vorv(du=" | g@dut | ga@du= | go(u)du
0 I ,NBri1 I \Bri1 i

= | rwau+ Y | rwdu— | fydu=o,

FT,V\BT+1 M:FT+1wMCFTwV FT+1,M I

and now it is easy to check that the a, ,’s satisfy the conditions for 1-atoms. Since a, ,’s
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are l-atoms, we obtain

1 00
1l < |V ) | + €, 30D 211
0

r=0 v

< NSl +Cy Do 2Bl < ISl + Gy 32T E| < Gy Sla-
r=0 r=0
Therefore, it remains to prove (4.13). First, note that |f(u)| < S(u). For u € BS and
given m > 0, let J € 7 be such that v € J and S, = >, @, fn is linear on J; then
J ¢ By, so by the definition of B, we have

e =20,
2942
Since on E¢ we have | Sy, (-)| < 2", by Proposition 2.13 we get |Sy(-)| < C,2" on J, which
implies S(-) < C42" and |g,(-)] < C,2" on B¢.
Consider now |g,(-)| on B,, and let I, be one of the intervals in the second repre-
sentation of B, in (4.11). Let

jo = min{j : there is I € Z; such that I C I}, }

and let I, be an interval of rank jo included in I7.,; note that there are at most two
adjacent intervals with this property, and by strong regularity |I;,| ~ |I}.,|. Moreover,
denote by t1,,tr the left and right endpoints of I5.,, and let ]L, I JR be intervals of rank
7 > jo containing ¢, and tg respectively; in case one of the points ¢y, tg is a point from the
partition P;, the corresponding interval is chosen in such a way that it is not contained in
I'.,. Note that I}, C I}, I}, C I}*. By strong regularity we have |I}:| ~ |} ~ |I7., ],
and therefore, by Proposition 2.6(i),

L v J=Jo R ~ J—Jjo
ary tise (=) Tin s (1) il
Now, we have
290 - gi+1
(4.15) S f(u)du = S Zanfn(u)du—i— Z S Z an fn(u) du.
Iy Iy, n=0 Jj=jo Iy, n=27+1

Let us estimate the first term in the sum (4.15). The interval IJI-; is not included in I,
and as the intervals I'. . do not have common endpoints, it follows that I JI;) is not included
in B,; therefore, by the definitions of the sets F, and B,., we get

2v+1
2y +2

L L
|l N Eg| > |11,

and for u € I} N ES we have |Zi]:00 an fn(w)] < 27; as the function Zijio an fn() is
linear on I}, Proposition 2.13 implies that |Zi]:00 an fu(u)] < C,2" on Ij;. The same

argument gives |Z72120 anfn(u)] < C,2" on IJ%. Moreover, note that, by the choice of
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Jo, for J € T;,_1 with I;, C J we have J ¢ B,; therefore, by Proposition 2.14 we have

L, N ES| > (1/(27))|1L,], and by the same argument as previously, |Zf;:00 an fn(u)] <

C,2" on I;,. The intervals IjO,I]%), I;é cover I ,, so we get

290
4.16 G fro(w) du| < C,27| T ).
v :
I, n=0
Consider now Zij;ljﬂ anfrn(u), 5 > jo, on I]L; as IJL ¢ B,, by Proposition 2.14 we
have |I}'_ N Eg| > (1/(27))[I}_| and [T}, N E;LZ (/@y}, |, where I} I}, are
intervals of rank j + 1 included in I]L. Since Zi;zjﬂ an frn(u) is linear on both IJI»j_ and

IJI»j+, by Proposition 2.13 we get

2J+1
Z anfn(u)’ <(C,2" on IJL,
n=27+1

and by the same argument we obtain an analogous estimate on [ ]R. Now, let ¢, be the
unique function from Sp; equal to 1 on I, ), \ (17 UI}Y), and equal to 0 on (1., UT} U} )C.
Since all the functions f,, with n > 27 are orthogonal to @;, we obtain (cf. (4.14))

9i+1 9it+1 1 9+l
‘ S Z anfn(u)du‘ = ‘ S Z an, fr(w) du—S( Z anfn(u))sl')j(u) du‘
Iy, n=27+1 Iy, n=27+1 0 n=27+1
Qi1 git1
< V| Y afu@|du+ § | Y anfulw)du
Ik n=27+1 IR n=2i+1

. R v Jj—Jo
S C2([Iy |+ 17) < CﬂT(ﬁ) [T,

which gives

2i+1

oo [eS) J—Jo
3 ] I > anfulw du’ <y cg(#) D] < C 27| D).
J=jo

Jj=jo Iy, n=2i+1

The above inequality, (4.15), (4.16) and (4.12) give |g,(-)| < C,2" on I} ,, and the proof
of Lemma 4.5 is complete. m

LEMMA 4.6. Let the quasi-dyadic sequence of partitions {P; : j >0} satisfy the strong
reqularity condition with parameter v and 0 < p < 1. Let (an)n>0 be a sequence of real
coefficients. Then (A) implies (B) and (C). Moreover, there is a constant C., p,, depending
only on p and v, such that

o0
supH E Entnfn
15

n=0

where the supremum is taken with respect to all sequences € = (€p)n>0 with e, € {1,—1}.

L S Gl Pl (1Sl < Crpll Plly,
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PRrROOF. For convenience, let ||P||, = 1. Define Ey = [0, 1],

Erz{ue [0,1]:Zaifﬁ(u)>2r}, r=1,2,...,
n=0

B, — 0,1 : M*(xp., C r=0,1,2,...,
{uenamae > gl 0

and let 7. be the set of maximal intervals from 7 included in B,. First, we prove the
following technical estimate:

(4.17) V> lanfa(w)Pdu<Cy 2720 for T €T,
Ic {n}CI
{n}¢Bri1

Indeed, if {n} ¢ B,4+1 then Proposition 2.14, the definition of E,;1, Proposition 2.13
and the decay of |f,| (cf. Proposition 2.9, inequalities (2.26) and (2.30)) imply that
lanfollo < C,20FD/2. Using the bound for || f,|ls from Proposition 2.9 (inequality
(2.23)) we get |a,| < C,27/2|{n}|'/2. Applying this estimate and Lemma 2.11 (inequality
(2.34)) we obtain (4.17).

Now, for I € 7, let

¢1 = Z anfn-

{n}cCI
{n}¢Brt1

We check that this formula defines an L? function. As for {n} ¢ B,.+1 we have
2v+1
[{n}l,
2v+2
by Proposition 2.12 it follows that S{ Jrme f2(u) du > C,. Therefore, we obtain (cf. the
n 1
definition of E, 1)
3= Y ar<coy Y ar | fAwdu

{njcr (mycl  {mynme
{n}ZBrt1 {n}ZBri1 -1

<o, | S a2 fw)du < C271).

I\E,y1 {n}CI
{n}¢ZBri1

H{n} N Eﬁ+1| >

Thus, we have
(4.18) Irll2 < C,2772| 1|2 for I € T,.
We are ready to prove the unconditional convergence of > ay, fn. Let € = (en)n>0

with €, € {—1,1} and

Vre = Z Entnfn for I €7T,.

{n}cCI
{n}¢Brt1

The series defining vy . converges in L?, so it converges in L? as well (recall that 0 < p
< 1). Therefore, it is sufficient to prove that there is a constant C, ;, such that

Do ltrellh < Cype

r=01¢€7,
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To estimate [[11[|F, note that by the Holder inequality (with exponents 2/p and
2/(2 —p)) and (4.18) we get

p/2 _ ,
Vorelr du < (§lor et du)™ 110/ = g 11072 < €, 277721,
I I
Moreover, as for p < 1,
[1,e(u)” < Z |an fr(u)|?,

{n}cCI
{n}¢Bri1

by (4.17) we have

Vel du < €, 27721,
IC
Thus, [[¢hr [/ < C., »2"P/2|I|, which implies (cf. the definitions of the sets FE, and B,)

SN el <Cup > Y 2RI <Oy, Y 2B,
r=0

r=01€7, r=01€7,

< Chp Y 2PRE| < CLlIPIE < Oy,
r=0

which in turn implies the unconditional convergence of the series >~ janfn in LP.
Moreover, note that the last chain of inequalities also implies

o0
sup H Z Enln fn
€ n=0

It remains to estimate ||S||p; clearly,

< O’Y»P'

p
p

S(u) < Z Z Str(u), which implies S(u)P < Z Z Stpr(u)?.

r=01€T, r=01€T,
The maximal inequality from Theorem 2.5(i) implies that ||S¢r|2 < C|jt1]|2; moreover,
SorP < Y Janfa()l.

{n}cCI
{n}¢Bri1

Therefore, similar arguments to those used for estimating || c||b give
ISvrll < Gy 27211,
so summing over r > 0 and I € 7, we get
1515 < Cyp,
which completes the proof of Lemma 4.6. m

LEMMA 4.7. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the strong
regularity condition with parameter v and 0 < p < 1. Let (an)n>0 be a sequence of real
coefficients. Then (B) implies (A). Moreover, there is a constant Cy, depending only on p,
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such that

)
p

oo
[ Pll, < Cypsup H Zgnan,fn
€ n=0

where the supremum is taken over all sequences € = (€, )n>0 with £, € {1,—1}.

PROOF. Denote by {r, : n > 1} the sequence of Rademacher functions. Khinchin’s
inequalities state that for each p, 0 < p < oo, there are constants A,, B, (finite and

> lenl? < oo,

positive) such that for any sequence (¢, ),>1 of real coefficients with >~

Ap(i|cn|2)l/2S Hic,ﬂ”n SBp(i|0n|2)l/2
n=1 n=1 p

n=1
(cf. for example [31], Chapter V, Theorem 8.4). The unconditional convergence of
Yoo oanfn in LP implies that for each € = (e,)n>0 with e, € {—1,1}, the series
> oo o Enln fn converges in LP (cf. [24]). This in turn implies that

o0
lim supH E Enln fn
n=m

o0
p p
=0 and sup H E Entnfnll = MP < oco.
m—oo p e = p

Now, a standard argument gives P € L? and ||P||} < C,MP. =

LEMMA 4.8. Let the quasi-dyadic sequence {P; : j > 0} of partitions satisfy the strong
regularity condition with parameter v and 0 < p < 1. Let (an)n>0 be a sequence of real
coefficients. Then (C) implies (A). Moreover, there is a constant C. p,, depending only
on p and vy, such that

1P[ly < Cr.pllS]lp-
PRrROOF. Suppose ||S||, = 1, and put Ey = [0, 1],
E.={uel0,1]: S(u) > 2"}, r=1,2,...,

1
B, — 0.1]: M*(xz., Cr=0,1,2,...
{ueniaimw> b -

Consider the following decompositions of B,
(4.19) B,=|J 1=,
IeT, v

with the last union countable, where 7, is the family of maximal intervals from Z included
in B,, and each I, is an interval which is a union of some intervals from 7,., and no two
I'.,’s have a common endpoint. As for each I € 7,41 thereis J € 7, such that I C J, it
follows that for each I41, thereis I5., with I, C I} ,.

Let us begin with some auxiliary calculations.

Augziliary calculations — functions (., ¢y, and ®. Denoting by jr the rank of the
interval I € Z, we define
0 ifu & By,
Colu) = Z Z |an fr(uw)| for we I withIeT,.

JZ2ir n:2d <n§2jJrl
{n}Z B,
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In the sequel, the following estimate is needed: there is a constant C, such that
1
(4.20) V¢r(w)du < 2B,
0
Indeed, we have
1

fodu=> {3 S Janfu(w)du

0 I€T, T j2j1 n:29 <n<2it?!
{n}¢Z B,

Observe that if {n} ¢ B, then Proposition 2.14, the definition of F,., Proposition 2.13 and
the decay of f,, (cf. Proposition 2.9, inequalities (2.26) and (2.30)) imply that ||an fn|lco <
C.,2"; this estimate and inequality (2.23) give |a,| < C-27|{n}|*/2. Moreover, if {n} ¢ B,
then {n} ¢ I for I € 7,. Denote by I, I;’, j > jr, the intervals of rank j included in I
and containing the left and right endpoints of I, respectively. Using the estimates from
Proposition 2.9: the decay of integrals of Franklin functions (i.e. inequalities (2.29) and
(2.33)) and the pointwise decay of Franklin functions (inequalities (2.27) and (2.31)), the
above estimate for |a,[, and the estimate for the length of I, I]T" from Proposition 2.6(i),
we get

S Y whwas 22 (1 () Y el

J2Jr I n:2d <n<2it! Jj>ijr DI, n:29 <p<2itt
{n}¢B7 {n}¢BT

<02 S| + 1) < 621,
JjZjr
so summing over I € 7, we obtain (4.20).
Now, let I, , be as in the second representation of B, in (4.19); let j,. , be the minimal
rank of an interval from 7 included in I, ; moreover, put

Jrvi= \J T forj=>jrs.

I1€Z;
ICrl,

Note that {J,,; : j > jr.} is an increasing sequence of intervals and

F’I‘,V: U Jr,u,j'

J2grw
Moreover, if 2/ < n < 2/T! and {n} C I'.,, then {n} C J,, ;. Now, put
Or v jm(U) = Z anfn(u), m>1,
n:29 <n<27ttAm

{n}Clvy

0 ifue Jr1y7j7‘,y,

j—1
Z max |oypim(u)| fu€ Jry;\Jrvi-1,

erp(u) = S iz, "

o0

Z max loruim@)| fudgl;,.

i:jnu




38 G. Gevorkyan and A. Kamont

In the sequel, the following estimate is needed: there is a constant C, such that

1
(4.21) Sgon,,(u) du < C,2"|I,|.
0

To check this inequality, note that

1 fe%e]
Vorvdu= 3" | maxjoyjm(u)ldu.
0 j:jr,u Jﬁ,y’j

To estimate the terms appearing in the sum on the right-hand side of the above equal-
ity, let A7, A;r be the intervals of rank j > j,, with the right endpoint of A} be-
ing the left endpoint of J, , ; and the left endpoint of A;r being the right endpoint of
Jrvj. As A;_H, A;r ¢ By, and 0,4, jm(-) is linear on these intervals, by Proposition 2.13
we get |0y 5m(-)] < C42" on A7, and AT, Denote by Jf:lij, Jffj the left-hand part
and right-hand part of J¢

. . . R
< .j» respectively. Consider the function oy, jm(-) on J;,";. By

Lemma, 2.10, for all m this is a multiple of some Franklin function f,, with 27 < n7§)] 2i+1
and {n} C J,., ;; this implies that max,, |0y, jm(-)| on this set is a multiple of |f,|,
and therefore the estimates for integrals of Franklin functions from Proposition 2.9 (i.e.
inequality (2.33)) imply

S max |0y jm(u)| du < M S max |y jm(u)| du < C’.Y2T|A;r|.
JOR m 3\/5_ 4 At m

V] J

The integral over Jfl{“ ; s treated analogously, which gives

| max |0y, (1) du < ;27| A7, .

JeL

™V,
Proposition 2.6(i) and strong regularity of the sequence of partitions imply that
v J=Jr,v
—1 A+
Allari e (25 )i

and we get

oo

0 jfj'r',u
r i r
E S max [oy,y,j,m(u)] du < E C,2 (m) || < C27 |1,

j:j'r‘,u Je j:j'r‘,u

RSV

which proves (4.21).
Define

dsr = CT‘ + Z Pr.v-

It follows from (4.20) and (4.21) that

1
(4.22) \@.(u)du < C,27|B, .
0
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Auziliary calculations — functions v¢,.. Now, introduce the auxiliary functions

Y = Z an fn = Z an fn — Z an frn = Z Up fr — Z an fn-

{n}CB- {n}CB- {n}CBry1 {n}ZBri1 {n}ZBr
{n}ZBria

We want to estimate S,.. First, note that for v & B,.,

IDITAES S DI AES S S [0 (@] < 3 o ) < B, ()

{n}<CBT v {n CFT‘ v Vo j=jru
n<m n<m

As u € B, implies u € B,;1, the above inequality and the second representation of ..
give
(4.23) Stop(u) < Dp(u) + Pry1(u) for u & By.

Moreover, on B¢ we have S(-) < C,2" (cf. the analogous statement in the proof of
Lemma 4.5), so for u ¢ B, we get

|5 ]| S ento] o] 3 sl

n<m n<m n<m
{n}¢ZB: {n}CB-
<02’“+Z‘ anfn(u)‘
n<m
{W}CFT v

<02’“+wa ) < Cy2" + Pr(u),

which gives

(4.24) S( Z anfn,u) <C,2"+ P, (u) foru¢ B,.
{"}ﬁBT

On the other hand, if u € B, then u € I for some I € 7,.; now, if m < 297 then

|5 ]2 S]] X i)

n<m n<m

{n}Z B {n}CB-

The first term on the right-hand side is bounded by C,2", by the definition of E,, B,
and maximality of I. Moreover, if {n} C B, and n < 277 then {n} ¢ I and the second
term can be bounded by > ¢, (u), which gives

‘ 3 anfn(u)‘§072r+¢r(u).
n<m

{n}¢B.
For m > 271 we write

271

‘ Z an fn(u }<}Zanfn } ‘ Z anfn(u)}—i—‘ Z anfn(u)}.

n<m n<291 29I <n<m
{n}Z B, {n}CB, {n}Z B
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As previously, the first two terms are bounded by C,2" and >, ¢, . (u), respectively,
while the third term is bounded by (. (u). Thus, we obtain

(4.25) S( Z anfn,u) <C,2"+ &, (u) forue B,.
{n}¢Br
Applying (4.24) and (4.25) and using the third representation of 1, we get
(4.26) Sr(u) < C,2" + &y (u) + Prpa(u) for u € By
Therefore, (4.23) and (4.26) now give
Str(u) < C32"xp, (u) + @r(u) + Pry1(u).

Integrating the above inequality and using (4.22) we get

1
{ S9n(u) du < C,27( B,
0

Applying Lemmas 4.5 and 4.4 we get the following bound for || P, ||1:

1
1/2
(4.27) V(> artw) au<c2iBl
0 {n}CB,
{n}ZBrt1

Final part of the proof of Lemma 4.8. We need a bound of || Pi,||D. First, using (4.27)
and Holder’s inequality with exponents 1/p and 1/(1 — p), we get

(2 arw) w<pro(§( 2 armw) ) <2
B {n}CB- By {n}CB-

{n}ZBri1 {n}ZBri1
It remains to estimate the integral over Bf. For {n} ¢ B,y1 we have ||a, fnlloo < C42"
(by definition of B,11, 41 and Propositions 2.13 and 2.14). The estimate for || f,, ||oo (cf.
inequality (2.23) in Proposition 2.9) now gives |a,,| < C,2"|{n}|'/2
(2.34) from Lemma 2.11 we get for I € 7,

> Jefalrdu<c, 2],
Ic {n}CI
{n}¢Bri1

Using this inequality we obtain

, so applying inequality

/
(Y @2pw) a<s Y | Y ) du
B¢ {n}CB, I€7, B: {n}cCI
{n}Z Bria {n}¢Bri1

<SS jaf@Pdu

Ie7, ¢ {n}cCI
{n}ZBri1

< Cyp Z 2P| < Ov,p2rp|Br|-
IeT,
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Thus, we have
1

(X erw)”w<e,2ms,)

0 {n}CB,
{n}ZBri1
and summing over r > 0 we obtain
1 fo'e) oo 1
/2
P> azrzw) ™ a <EI( X dnw)a
0 n=0 r=00  {n}CB,
{n}ZBrp1

[o ]
<Cyp Y 27[B < Cyp m
r=0
LEMMA 4.9. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the strong
regularity condition with parameter v and 1/2 < p < 1. Let (an)n>0 be a sequence of real
coefficients such that S(-) = sup,,~o | Yoneo anfn(-)| € LP. Then there is f € HP such
that f = Y07 o anfn, with the series convergent in HP. Moreover, there is a constant
Cy p, depending only on p and -y, such that

[ llze < Cypll Sl

PROOF. First, consider a sequence (ay)n>0 with a finite number of non-zero terms.
Then, since f, € H?, wehave h = " an fn, € H?NC|0, 1], and moreover, by arguments
analogous to those used in the proof of Lemma 4.5, we check that there is a constant
C, p, depending only on p and +, such that

[Bllze < CopllS]lp-

Now, let (an)n>0 be an arbitrary sequence with S € LP. Since S € LP, Lemma 4.8
gives P € LP. Thus, P is finite a.e.; define P,, = (3°°0 a2 f2)1/2. Observe that P, \, 0,

n=m n
which in turn gives ||Pp,||, — 0 as m — oo. Consider the sequence hy = ZZ:O an [
Combining Lemma 4.6, the decay of || P/, and the part of Lemma 4.9 just proved for
finite sequences, we find that hj is a Cauchy sequence in H?, and by completeness of H?,
there is f € HP with f = limy_ o hi. Moreover, combining the above calculations with

Lemmas 4.6 and 4.8, we get
[fll e = klim [hllr < Cypsup [|Shillp
o k>0

<Cyp igg [Philly < CypllPllp < CypllSllp- =

Now, we are ready to prove Theorems 4.1 and 4.2.
Proof of Theorem 4.1. Theorem 4.1 is a consequence of Lemmas 4.6, 4.7 and 4.8. m

Proof of Theorem 4.2. Let f € H? and an, = (f, fn), n > 0. Put s, f = >0 an fn.
By Lemmas 4.9, 4.6 and 4.4 we have
[smfllar < CypllS(smfllp < Cqpll Plsmf)llp < CypllPfllp < Cypll fllar.

If f is a continuous function then s,,f — f in the uniform norm, which implies that
Smf — fin HP. Asthe continuous functions are dense in H?, this and the last inequalities
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imply that s,,f — f in HP for all f € HP. Moreover, (-, f,) is a continuous linear
functional on H?, which implies that if f =" | by, f,,, with the series convergent in H?,
then b, = (f, fn). Thus, the system {f, : n > 0} is a basis in H?. Its unconditionality
follows from Lemmas 4.4, 4.6 and 4.9.

Equivalences (4.1) now follow from Lemmas 4.4, 4.6, 4.7 and 4.9.

Finally, the equivalence of conditions (A)—(E) follows from the unconditionality of the
basis {f, : n > 0} in H?, Theorem 4.1 and the lemmas just mentioned. m

5. The necessity of strong regularity in H?, 1/2 < p <1

The main result of this section is the following:

THEOREM 5.1. Let {P; : j > 0} be a quasi-dyadic sequence of partitions and 1/2 <
p < 1. If the sequence {P; : j > 0} does not satisfy the strong regularity condition, then
the corresponding Franklin system is not a basis in HP.

The proof is based on the following lemma:

LEMMA 5.2. Lete > 0 and let m = {7, : 0 < i < m} be a partition of [0,1] such
that there exist three consecutive intervals Ag_1, Ag, Ag11, where Ay = [1—1, 7], with the
following property: either

[Aps1] < efAg—a| and  [Ax] < ||,
or
[Ap—1] < eApg1]  and  |Ag] < el Apqa].
Let Q be the orthogonal (in L?) projection onto Sy and for given p, 1/2 < p < 1, define

|Qx|lsr = sup W
feHr ”f”Hp

Then for each p, 1/2 < p < 1, there are €, and Cp, depending on p only, such that for
all partitions 7 satisfying the above condition with 0 < € < gp,

@l = Crlog(1/e) in case p =1,

Qrllmr > Cpet=t/P in case 3 <p<1.

PROOF. For convenience, let \; = |4;|. Suppose that the first set of inequalities is
satisfied, i.e.
(5.1) A1 < eXp—1 and A < eXg_1.

We consider in detail the case when none of the intervals Ag_1, Ak, Agy1 touches the
boundary of [0, 1]; the other cases, i.e. k =2 or k = m — 1, require only minor technical
changes, and the detailed calculations are omitted.
Consider the function
1/ for uw € Ag = [Tg—1, k],
SD(U) = { —1/)\k for u € (kal — Ak;Tk71)7
0 otherwise.
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Since 2_1/17)\,1671/]030 is a p-atom, we have
(5.2) ol < 2/P0/P71,

Let us estimate ||Qr¢||g» from below. For this purpose, we use the following fact (an
analog of a part of Theorem 11 of [15]):

Let 1/2 < p < 1 and ¥(u) = max(0,1 — |u|), ¢¥c(u) = (1/)¢(u/(). For f € HP,
define

f(u) = sup |(f, ¢ (u —))I.
¢>0
Then there is a constant C),, depending on p only, such that

(5.3) 1 Mlp < Coll fllre-

Since Qrp € Sy, we have Qrp = >.1"; a;N;, and as Q@ is the orthogonal projection
onto S, the coefficients a; satisfy the equations Y. ; a;(N;, N;) = (¢, N;), j =0,...,m.
By straightforward calculation we get

0 forj<k—-3andj>k+1,
“i
forj=k—-2
MNp1 or j )
(o, Nj) =< A — Ap—1 .
— T f =k-1
e 1 or j )
l for j =k
2 =
Thus, the equations for the a;’s take the following form (cf. formula (2.1) for (N;, N;)):
2a9 + a1 =0,
(54) { Ni@i—1 + 2()\1 + /\i+1)ai + )\i+1ai+1 =0 fori<k—3ori>k+1,
Am_1 + 20, =0
and
Ak
A—2ak—3 + 2(Ap—2 + Ap—1)ar—2 + Ap—1ap—1 = —3)% o
(5:5) A=A

Mo—10k—2 + 2(Ag—1 + Ag)ag—1 + Aar, = 3 L

Awar—1 + 2(Ag + Agg1)ak + Aey1ak41 = 3.
Arguments analogous to those used in the proof of Proposition 2.1 now give:
a;aiy1 <0,
(2Xig1 + SXiv2)aip] < Xigalas] < 2(Nig1 + Xivz)|aigal,
(5.7) aiait1 <0, |ai| < $laiy1]| fori <k -—3.

(5.6) fori>k: {

Further, note that ||¢|l1 = 2; as ||Qr¢|l1 < 3||¢|l1 (see Theorem 2.5 (i)), we have
Tk—1

2
oy max(lag-a], ag—]) < | |Qnep(w)|du <6,

Tk—2

(5.8) max(|ak—1], |ak—2|) < 15/ k-1
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and by (5.1)
|ak,1|)\k S 15¢.
As aj11 and ai have opposite signs and |ayi1| < |ag| (cf. (5.6)), the last equation in
(5.5) can be written as
N+ 2 gar + {10 = 3,
with |n] < 15¢ and 3/2 < ¢ < 2. Thus, if ¢ < 1/15 then
1
T — =
Ak + Mgt

Let y;, kK < i < m, be the point from A; for which Qr¢(y;) = 0; in addition, let
Ym+1 = Tm = 1 and in case ax—1 > 0, put yx = 7x—1. Denote

(5'9) ag.

Yit+1
1
A; = S Qrip(u) du = Sai(yi1 —yi) fork<i<m.
Yi

Now, Q¢ is positive on (Yg421, Yr+21+1), and negative on (Yxt214+1, Yk-+2i+2); this follows
from the fact that ay > 0, (5.6) and the choice of the y;’s, and we have

(5.10) Apyor >0, Agyoip1 <0 forl >0.
Further, for [ > 0,

Yk+21+1 | | | |/\
G421 Q421 | Ak+21
Ao > S Qrp(u) du = +2 +2I B2+
2 a2l + |aktou]
Tk+421
Y ARy 2041| Akt
|Ak+2l+1| < | +2 +1| ( | +2 +1| +21+1 + /\k+2l+2)-
2 lak+21] + |ak+2041]
These inequalities and (5.6) imply that for I > 0,
(5.11) Apror > 2| Arrorst]-

If in addition e < 1/60, then |ar_1| < Lax (cf. (5.1), (5.8) and (5.9)), which implies
Te — Yk > %)\k. Since |ag41] < %ak by (5.6), which gives yx11 — 7% > %/\kﬂ, by the
definition of A, (5.9) and (5.11) we have

(5.12) Ap >3 and Ay +Apy > 5 fore < g

Now, we can estimate |[(Qr¢)*|l, from below. Choose g with ¢ > A\p + Agt1, and
consider v = 7,1 — p. Clearly, (Qrp)*(u) > |S; Qrp(8)Y3p(u — s)ds|. Note that the
choice of p guarantees ¥3,(u — yr+1) > V3o(u— Ti41) > 1/(90). Since ¢ is increasing and
nonnegative on (—oc, 0], from (5.11) and (5.12) we get

1 m Yit+1
S Qﬂ@(s)w&g(u - 5) ds = Z S Qﬂ-gﬁ(S)U)gQ(u — S) ds
Yk =k y;
> Z ¥30(U — Yt2141) (Dig2r + Appaig1)
1>0

> V30 — Yry1)(Ak + App1) > 230"
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On the other hand, by (5.8), (5.7) and the choice of y;, we get

Y o0

k
15
| § Qre)so(u—s)ds| < sup [Qn(s)] | wsp(2)dz < =
0 s<yk s k—1
Thus, we obtain
1 15
* >_- )
(@re)"(w) 2 57 = 37

Put 8 =1/(30-243) and take e < 3/4. Then the last inequality implies

1
(Qrp)*(u) > ——  for A+ Ap1 < 0 < BAp—1.

~ 4860
Using this inequality and (5.1), for £ < /4 we get
BAk—1 1 p BAk—1 1 p
=) ||P > —— ) do> —— | do.
Qs> | (g5) 4=V (555) 2
Akt Akt1 2eAp—1

Calculating this integral and applying (5.3) we get
1Q=ll e > Cp)\llc/_pl_l for 1/2 < p <1,

or ||Qr¢llgr > C11n(B/2¢) in case p = 1, with the constant C}, depending on p but not
on ¢ and 7. Taking ¢ < $/4 and combining these inequalities with (5.1) and (5.2) we get
1Qxllzr > C1In(B/(2¢)) and ||Qx|lzr» > Cpe' =P incase 1/2<p < 1. =

Proof of Theorem 5.1. Let 1/2 < p < 1 and suppose the quasi-dyadic sequence of
partitions {P; : j > 0} does not satisfy the strong regularity condition.

If the corresponding Franklin system {f,, : n > 0} were a basis in H?, and for f € H?
and a sequence of coefficients (b, ),>0 we had f = ZZOZO bn fn, then the continuity of the
liner functional (-, f,) would imply b, = (f, fn), and Qp, f = Zi]:() by fn, i.e. for each
f € HP, the sequence Qp, f would converge to f in HP.

Now, let €, be as in Lemma 5.2. As the sequence of partitions is not strongly regular,
it follows that for each €, 0 < ¢ < g5, we can find j. and a pair of adjacent intervals
Ijaflﬁl, Ij57171+1 S Z'Efl such that

either |I'€fl,l| < €2|I'57111+1| or |I'€fl,l+1| < €2|Ij57171|.

Then, passing to a splitting of I;._1; and ;. _1 ;41, we can find three consecutive intervals
I k—1,1_ k, I k+1 such that either

|I]5;k+1| S €|I‘5)k_l| and |stk| S €|I‘5)k_1|7
or

L k1] < ellj pral and I k] < eI, kil
Thus, P;, satisfies the assumptions of Lemma 5.2, which gives ||Qp,_||g» > Cpe'~1/? for
1/2<p<1,or|@Qp, g > Ci1In(1/e) in case p = 1. As € < ¢, is arbitrary, this implies
the existence of a sequence g,, € HP and a sequence of indices i, such that g,, — 0 in
H? and [|Qp,, gml|/Hr — 00, so the operators Qp, are not equicontinuous. Therefore, the

sequence Qp, f cannot converge in H? for each f € HP, and consequently the system
{fn : n >0} cannot be a basis in H?. =
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The results of Theorems 4.2 and 5.1 can be summarized in the following form:

THEOREM 5.3. Let {P; : j > 0} be a quasi-dyadic sequence of partitions of [0,1], and
let {fn :n >0} be the corresponding Franklin system. Then the following conditions are
equivalent:

(1) {P; : j > 0} satisfies the strong regularity condition for some parameter ~y.
(2) {fn : n >0} is a basis in HP for each p, 1/2 < p < 1.

(3) {fn :n >0} is a basis in HP for some p, 1/2 <p < 1.

(4) {fn : n >0} is an unconditional basis in HP for each p, 1/2 < p < 1.

(5) {fn : n >0} is an unconditional basis in HP for some p, 1/2 < p <1.

6. Haar and Franklin series with identical coefficients

Now, we compare the behaviour of the Haar and Franklin series with identical coeffi-
cients. We start with the following;:

PROPOSITION 6.1. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
weak reqularity condition with parameter v, and let {f, : n > 0} and {h, : n > 1} be the
corresponding Franklin and Haar systems, respectively. Then for each p, 1 < p < oo, and
a sequence (an)n>1 of real coefficients,

(55 e) ), ~ (S i)

with implied constants depending only on p and ~.

)

p

ProOF. It is enough to note that if the sequence of partitions is weakly regular with
parameter v, then there is a constant C,, such that for all n > 1 and u € [0, 1],

ha(w)] < CoM(fuvw) and | fu(w)] < C M (R, u).

To check these inequalities, recall the pointwise estimates for the Franklin function in
Proposition 2.9 (inequalities (2.28) and (2.32)), and the estimates for the Haar func-
tions (cf. (2.19), (2.22)). To complete the proof, apply the following maximal inequality
of Fefferman and Stein (cf. for example [28], Theorem 2.1.1): for each 1 < p < o0,
there is a constant C), such that for every sequence of functions {g, : n > 0} with

(Cniogn (N2 € L7,

(S )", = (£0) ",
n=0 P

The inequality of Fefferman—Stein does not hold for 0 < p < 1. To obtain an analogous
result in this case, the technique similar to that from [19] is used.

PROPOSITION 6.2. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v, and let {f, : n > 0} and {h,, : n > 1} be
the corresponding Franklin and Haar systems, respectively. Then for each p, 0 < p <1,
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and a sequence (an)n>1 of real coefficients,

> / > /
[(Z )™, ~ (S e) ™

with implied constants depending only on p and .

’
p

PROOF. Let us start with the proof of the bound of the Haar square function by the
Franklin square function. Define

E, = {u €0,1] - iaifg(u) > 2T},
n=1

B, ={ue0,1] : M*(xEg,,u) > 1/2},
djr = Z anhn-

{n}CB,

{n}ZBri1

For {n} ¢ B,41 we have |{n} N ES, | > 1|{n}|, whence by Proposition 2.12 there is a
constant C., such that S{ ynEe f2(u)du > C,. Using this we get
n r1

lerlz= > ai<c, Y e | fwdu

{n}CB, {n}CB, {n}nES
{n}ZBri1 {n}ZBr4+1 it
<G S Z ap fr(u) du < C,2"| By |.
ByNES,, {n}CB.
{n}ZBri1

Since supp ¢, C B,, using the above estimate and Hoélder’s inequality with exponents
2/p and 2/(2 — p) we get

1

p/2 _ -
VO a2r2) " du< BP0l < €272 B, )
0 {n}CB,
{n}ZBri1

Summing over r we obtain

L& 1
S(Zaihi(u)y/?dug ZS( Z aih%(u))p/zdu
o r 0  {n}CB,

{n}§ZBr+1

<Chp Y 2PPB, < Cp Y 2R,

and therefore

p

I(5 ) ), <o () )

It remains to prove the converse inequality. To this end, let
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B, = {u €0,1]: iaihg(u) > 2T},
n=1

By = {ue[0,1]: M*(xp,,u) > 1/2},

{/;T - Z anfn-

{n}CB-
{n}ZBri1
As previously, if {n} ¢ B,41, then |{n}ﬂEﬁ+1| > 1[{n}|, and therefore S{ JAB h2 (u) du
n r41

> C, (cf. (2.22)). Using this we get
W3 = Y az<c, Y a2 | hwdu

{n}CB. {n}cB,  {n}nEg,
{n}ZBri1 {n}ZB.11
<o, | S a2R2(u)du< C27|B,].
B.nEc,, {n}CB.,
{n}ZBrt1

Using the last estimate and applying Holder’s inequality with exponents 2/p and 2/(2—p)
we get

p/2 ~ ~ ~

) (X @) du < BRI < Oy 2 B
B, {n}CB.
{n}ZBri1

To prove the analogous bound for the integral over Eﬁ note that if {n} ¢ §T+1 then
{n} N Eﬁ+1| > 2|{n}|, and as h,, is constant on both subintervals of {n} from the next
partition, we have |[a2h? || < C,2"+1. Since ||hylloo ~ [{n}|7¥/? (cf. (2.21)), we get
lan| < C,2772[{n}|1/2. Let 7, be the set of maximal intervals from Z included in B,.
Applying the last estimate for |a,| and inequality (2.34) from Lemma 2.11, for I € 7,

we get

[ lanfalP du < Q22
fe {nycr
{n}ZBri1

which gives

(X aifg(u))”/2dug ST S lawfuPdu<c, 27/ B,
IeT, I°

Be  {n}CB, {n}cI
{"}§Z§T+l {"}¢BT+1

This inequality and (6.1) imply

1
p/2 ~
S( Z aflfﬁ(u)) du < C, ,2"7?|B,|,
0 {n}cB,
{n}ZBri1

and summing over r we get
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((Cwnw) as Sl X arw) s
0 n=0 T 0 {n}CBT

{n}¢ By
< Chp Y 272 |B,| <O, > 2R, |,

which gives

(Sear) ™, < el (Seae) ™,

PROPOSITION 6.3. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy
the strong periodic reqularity condition with parameter vy, and let {h, : n > 1} be the
corresponding Haar system. Then for each p, 0 < p < o0, and a sequence (ay)n>1 of real
coefficients,

(S eae) ), ~ (S eaea) ™,
n=1

with implied constants depending only on p cmd 5.

PrOOF. It is enough to check the equivalence for 0 < p < 2; for p = 2 the equivalence
is clear, and for 2 < p < oo it follows from the equivalence for 1 < p < 2 by the
unconditionality of the Haar system (cf. Proposition 2.7) and the duality argument.

For r € Z let

E:{uem Za >2T}

B, = {u € [051] : M (XEM’U’) > 1/2}7
1/}7" - Z anthrl-

{n}CB,

{n}ZBri1

For {n} ¢ B,41 we have |[ES,; N{n}| > 1|{n}], so S{n}ﬁE‘C
Using this inequality and the definition of E, 1 we get

6.2) 3= > ai<c, | 3 a2h2(u)du < C,27|B,].
{n}CB- B\E,41 {n}CBr
{n}ZBry {n}ZBri1

On the other hand, B, is a union of some intervals from Z; let 7,. be the family of maximal

intervals from 7 included in B,. For an interval I € Z, I = I;; for some 1 < k < 27,
define

B2 (u) du > C (cf. (2.22)).

I+t = {Ij7k+1 if k< 2]:,
Iijh, ifk=27,
and put
By =Y (Turt).
I1€7,
Then the periodic strong regularity of the sequence of partitions implies that |B}| <
(7 +1)|By|; moreover, note that supp 1, C B;. Therefore, using estimate (6.2) for ||1),-||3
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and Holder’s inequality with exponents 2/(2 — p) and 2/p, we get
1

(Y @naw) = Y @naw)w

0 {n}CB: Br  {n}CB.
{n}¢Bri1 {n}¢ZBri1

< Copl BP0 |5 < € 02772 1B, .
Therefore, as p < 2, we obtain

1 oo /2 1 »/2
(@i aw) aws S X @raw)
0 n=l1

r€Z0 {n}CB,

{n}¢Z Bri1
<Chpy 2PPIB| < C Y 2P E,
reZ rez
X p/2
< S(Zaihi(u)) du,
0 n=1

and one of the inequalities in the equivalence is proved. The opposite inequality is proved
in the analogous way. m

Combining Propositions 6.1, 6.2 and 6.3 with Propositions 2.7, 2.8, Corollary 3.5
and Theorems 4.1, 4.2, one can obtain various results on the simultaneous unconditional
convergence in LP of Haar and Franklin series with identical, or shifted, coefficients,
equivalent conditions for such convergence, or boundedness of shift operators. Now, we
formulate one of the possible versions of such a result.

COROLLARY 6.4. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong periodic regularity condition with parameter . Let {f, : n >0} and {h, :n > 1}
be the corresponding Franklin and Haar systems, respectively. Then

(i) For each p, 1 < p < oo, the systems {f, : n >0} and {h, : n > 1} are equivalent
bases in LP, i.e. for each sequence (an)n>1 of real coefficients, the series Zflo:o Gnt1fn
converges in LP iff > aphy converges in LP, and moreover ||Y 0" antifollp ~
1552wl

(i) Let (an)n>1 be a sequence of real coefficients and 0 < p < 1. Then the series
Yoo anhy, converges unconditionally in LP if and only if 07 any1fn converges un-
conditionally in LP.

(iii) The shift operator U, defined by Uh,, = hp41, is a bounded linear operator on LP
for each p, 1 < p < c0.
(iv) The shift operator T, defined by T fr, = fnt1, is a bounded linear operator on LP

for each p, 1 < p < 00, and on HP for each p, 1/2 <p < 1.

To comment on point (i) of Corollary 6.4 recall that even the classical Franklin and
Haar systems (i.e. corresponding to the sequence of dyadic partitions) are not equivalent
bases in L' (cf. [26]).

Recall that if the Haar system corresponding to a quasi-dyadic sequence of parti-
tions is a basis in L”, 1 < p < oo, then it is an unconditional basis in this space (cf.
Proposition 2.7). By Theorem 5.3 we know that the Franklin system corresponding to a
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quasi-dyadic sequence of partitions is a basis in HP, 1/2 < p < 1, iff it is an unconditio-
nal basis in this space. For the Franklin system in LP, 1 < p < oo, the weak regularity
of the sequence of partitions is sufficient for the unconditionality of the corresponding
Franklin system, but we do not know whether it is necessary as well. Clearly, the weak
regularity condition is stronger than the condition |P;| — 0, which in turn is a necessary
and sufficient condition for the Franklin system to be a basis in L?. However, some of the
above statements need not hold for an arbitrary sequence of quasi-dyadic partitions:

PROPOSITION 6.5. (i) If the quasi-dyadic sequence of partitions {P; : j > 0} is weakly
regular but not strongly periodically reqular, then the equivalence from Proposition 6.3
does not hold.

(ii) If {P; : j > 0} is not weakly regular, then the equivalence from Proposition 6.1
need not be true.

PROOF. To check (i), note that if the sequence of partitions is not strongly periodically
regular, then for each M > 0 there is an interval I € 7 such that

(6.3) either |I| > M|IT| or |It|> M|I|,

where IT is defined as in the proof of Proposition 6.3. Moreover, denoting by h; the
Haar function with support equal to I, we know that for a weakly regular system,
sl ~ |I|*/P=1/% (see (2.21)). This and (6.3) imply that in this case the equivalence
from Proposition 6.3 cannot hold. An example of such a sequence of partitions is P; =
{tjr 0 <k <27} with ¢, = 2sin®(kr/2712). This sequence is even strongly regular,
but not periodically strongly regular.

To show (ii), we give an example of a sequence which is not weakly regular and for
which the LP norms of the Haar and Franklin functions corresponding to the same interval
from 7 are not equivalent, and therefore the equivalence from Proposition 6.1 does not
hold. Let (M; : j > 0) be any sequence of positive numbers such that lim;_,., M; = oco.
Then we put Py = {[0, 1]}, Pa;+1 is obtained from Pa; by splitting each interval from Zo;
into equal parts, and Pa;42 is obtained from Py;41 by splitting each interval I € Zo;11
into left and right parts I1,, Iz in such a way that |Ir,| = M;|Ir|. Now, comparing the
formulae for the LP norms of the corresponding Haar and Franklin functions (cf. (2.20)
and Proposition 2.3), we see that for this sequence of partitions and 2 < p < oo,

: 7o p
lim sup = 00,
n—oo [[fullp
while for 1 < p < 2,
hy,
lim inf [Pl _ 0. m

n—oo |[fally

7. Characterization of the spaces BMO and Lip(a), 0 < a < 1

In this section we characterize the spaces dual to HP with 1/2 < p <1 in terms of
the Fourier-Franklin coefficients. Recall that the dual space to H! is BMO, and the dual
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to HP with 1/2 < p < 1 is Lip(«) with @ = 1/p — 1 (cf. Section 1.1 and the references
given there).
Let us start with the characterization of Lip(«).

THEOREM 7.1. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Moreover, let 0 < a < 1 and f € C[0,1], f = >0° yanfn. Then

f € Lip(a) iff

sup 7|an|
o {7

where {n} is defined by formula (2.17). Moreover,

< 00,

|an|

||f||Lip(a) ~ i‘g [{n}|1/2+a”

with implied constants depending only on v and a.
PROOF. First, let f € Lip(a), so
[f(u) = f(s)] < Llu— s|*.

Clearly, for n = 0, 1 we have |a,| < v/3 || f|leo (cf. the formulae for fy, f; in Definition 2.1).
Now,let n>2 n=2 +kwith 1 < k < 27. Using the pointwise estimates for Franklin
functions from Proposition 2.9 (inequalities (2.26), (2.27), (2.30) and (2.31)) and the
estimates for the length of intervals from Proposition 2.6(ii) we obtain

1 1
lanl = | {0 fuw) du| = |§ () = £(t)) () de
0 0

2i+1
<pY | u—tal®faw)] du
=1 I;41,

9J+1
< CyL{n}|~/? Z Ll (Ljgranan] + - - 4 [ Lig1pvan—1|)*27 1267172
=1
9J+1
< LC%Q|{TL}|1/2+O‘ Z(|2k _ l| + 1)a7+a(a7+1)27|2k7l|/2
=1
< LC, al{n}| /2",

To prove the converse inequality, let |a,| < L|{n}|'/?T®. For u € [0,1], let I;(u) be
the interval from Z; containing u. Consider a pair of points u, s € [0,1]; let

Jjo = max{j : there is at most one point from P; between s and u}.

Note that for j < jo, either I;(u) = I;(s), or I;(u) and I;(s) are adjacent intervals;
therefore, by strong regularity |I,;(u)| ~ |I;(s)| and moreover |I;, (w)| ~ |, (s)| ~ |s — u].
Let 77, j < jo, be the common endpoint of I;(u) and I;(s), 7} =
the function f;, is linear on both I;(u) and I;(s), the pointwise estimates for f, from

7)1, Since for n < 270



On general Franklin systems 53

Proposition 2.9 (inequalities (2.27) and (2.31)) imply

1 .
[ fr(u) — fn(s)] < Cyls —t] STien—T] (|IJ(U)| + |Ij(s)|)’ where n =27 + k,

(for more details, cf. the calculations for inequality (3.2) in the proof of Lemma 3.2). This
inequality and the estimates for the length of intervals from Proposition 2.6(ii), (i) give

jo—1 2it1
7)Y 3 anl [fa(w) = fu(s)]
j=0 n=2941
jo—1 23+t -
1 1\ o712
SCWL|S—U|Z Z |{n}|1/2+a< " >
j i |kn—1;]
=0 n=2i41 1L (w)] - |Li(s)]) 2
Jo—1 2j
< CanLls =l Y 1) (= 4 4+ ez
Jj=0 k=1

oy G Ged)
<Catls=ul L@l Y (-25) < CpaLls—ul"
P

Now, let n > 27°, n = 27 4 k,,. Choosing m; in such a way that I;(u) = I, for j > jo
and using again the estimates from Propositions 2.9 and 2.6 mentioned above, we obtain

00 2i+1 00 2i+1
o> anllfa < CL LY > [{nd[e2 el
J=Jjo n=27+1 Jj=jo n=29+41
[e’e) 27
< ChaL D L@W)™ > (k= my| + 1) 1kmmsl
J=Jo k=1
s v a(j—jo)
< Cya LI, ()™ ) (W) < Cy o LT, (u)].
J=Jjo

As an analogous inequality holds for s as well, and by the choice of jo we have |I;, (u)] ~
|1, (s)| ~ |s — ul, we obtain

co 2it1

Yo lanl [falw) = fals)] < Cra Lls —ul™.

j=jo n=23

Thus, the last inequality and (7.1) give

0o 2J+1
Yo D lanllfalw) = fals)] < Cqa Lls — ul®,
J=0n=2i+1

It should be clear that analogous arguments imply the uniform convergence of the series

oo o anfn, S0 we get f =" anfn € Lip(a).
The equivalence of the norms follows from the above estimates as well. m

Now, we present a characterization of BMO. The proof is an adaptation of the proof
from [29], but it is presented for the sake of completeness.
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THEOREM 7.2. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system. Let f € L', f = Yool oanfn. Then f € BMO iff

1 1/2
SWQWHjZ 4) =0
n20 {m}c{n}

where {n} is defined by (2.17). Moreover,

1 1/2
[/ llBmo ~ sup (m{ Z a%) )

n=0 m}c{n}
with implied constants depending only on .

PRrROOF. First, let the sequence of coefficients be such that for some constant M,
(7.2) > ak, <MPH{n}|, n>0.
{m}c{n}
We are going to show that there is a constant C. such that for any interval I" C [0, 1]
and f = Zzo:o an fr,

(7.3) Fep | 1£(u) = er|? du < C, AP T,
r
which implies f € BMO and one of the inequalities for the norms.
Consider an interval I" C [0, 1], and let

jo = min{j : there is I € Z; such that I C I'}.

Let Ijy x € Zjy, Ljo,x C I'. The choice of jo implies that there are at most two adjacent
intervals from 7, included in I'. Define

J= U Lo, J= U Lot

[1—k|<2 [1—k|<3
Then I' C J C J, , and by strong regularity
[Tl < [T < [T < G|,

Define
2j0
"/Jl = Z Z anfnu "/12 = Z Z anfna ¢3 = Zanfn
J2Jjo 27 <p<2itt J2jo 29 <p<2itt n=0
{n}cJ {n}gJ

Clearly, f =11 + 12 + ¥3. First, by (7.2) and the definition of J we get
(7.4) Sw%(u) du<d Y a2< Y N a2<MmPi <M
r

J=Jo 2j<n§2i+1 [1—k|<3 {n}CIj; 0
{n}CJ
Moreover, (7.2) implies that |a,| < M|{n}|'/2. Let u € I} for j > jo, choose I; such
that u € I;;,. Note that if n =27 +k, 1 <k <2/, and {n} ¢ J, then |k — ;| > 2777,
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Therefore, the bound for |a,| and the decay of | f,,| from Proposition 2.9 (i.e. inequalities
(2.27) and (2.31)) give

b <CoM D0 dT oM F T <o,
3>jo |k—1;]|>29—d0 3>jo
which implies
(7.5) {3 (u) du < C, M|,
r

To estimate 13, let 7 be the point from P;,_1 N I', if it exists, or any point from I
otherwise. Since any function f,, with n < 270 is linear on I'N {u < 7} and I' N {u > 7},
using the above estimate for |a,| and the decay of |f,,| from Proposition 2.9 (cf. the
calculations for inequality (7.1) in the proof of Theorem 7.1) we get

[3(u) — (1) < Cy M for u eI,
and clearly
(7.6) Vs (w) = ws(r)]? du < C, M.
r

Inequalities (7.4)—(7.6) imply that (7.3) holds with ¢ = 3(7), which completes the first
part of the proof.

To prove the converse inequality, let f € BMO, ||f|smo = K. Denote by Ly the
functional on H' corresponding to f (cf. Section 1.1). Since || fullgr ~ || fnll ~ [{n}[*/?
(cf. Theorem 4.2 and inequality (2.23) in Proposition 2.9), we have

(7.7) janl = |(f, fu)l = 1L s fal < Cllf lomoll full ar < O3 K [{n}]H2.

Let n > 2, 28 < n < 2i*1, Consider the following decomposition of f: f = 1 + @2 + @3,
with

o) 21
Y1 = Z A fm,s P2 = Z Z A fms Y3 = Z A fon-
m=0

{m}c{n} J=i 29 <m<2itt
{m}z{n}
Note that
1
(7.8) Z aZ, = Sgo%(u) du.
{m}c{n} 0

The integrals of ¢? over {n} and {n}¢ are treated separately.
We start with some technical estimate. Let I; i, [;; € Z; with [ # k. Then there is a
constant C., such that

(7.9) > |{m}|1/2( | r2) du)1/2 < ¢ 27U 12,

{m}Clik Iy

The proof is similar to that of inequality (2.34) in Lemma 2.11, so we give just a sketch.
For simplicity, suppose k < [ (the other case is considered analogously). Let m = 27 + s,
{m} C I; ;. Then, using the rate of decay of f2, from Proposition 2.9 and the estimates
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for the lengths of intervals from Proposition 2.6(ii) we get
| £2. () du < Oy {m} 7Mooy - 2722 0701
Ii

Using this inequality and the estimates for the lengths of intervals from Proposition 2.6(i)
we obtain

1/2 o 1)a s
Z |{m}|1/2( S ffn(u)du) <, Z |Ij)2j—i(l71)+1|1/227|21 (I=1)+1-s

{m}Cli,k Ii,l s<2i—ik
29 <m<2it!

(3—1)/2 o
C ( Y ) |Iil|l/22_2] (1-1—k)
v v +1 s

(=i)/2
c (L) [y 1/29- 11
T\v+1 ’

IN

IN

and summing over j > i we get (7.9).
Let n = 2"+ k, so {n} = I, ;. Using (7.7), (7.9) and Proposition 2.6(ii) we get

( S ‘P%(U)dU)lmgOvK Z |{m}|1/2( S fi(u)du)l/z

{n}e {m}Cli x iy
1/2
<eky Y |{m}|1/2( | 2 du)
l#k {m}clz k z,l
< C KDY |y M2 R
£k
< OO KLk MY (k=1 + 1) 227k < o) KL 12,
I#£k
which gives
(7.10) | @3(w) du < C K3 {n}.
{n}e
Similarly,

(§ gp%(u)du)l/QSCsz > Hmy( fi(U)du)U2

{n} l#k {m}CI;, Ik
< OV K Y L2271 < 0y K1 g2,
£k
so we get
(7.11) | ©3(u)du < O, K2|{n}.
{n}

Moreover, since (fm, 1) = 0 for m > 1, we have

| §eiwan < S | § fmwan <ok S Hm2 | ()] du,
{n} {m}c{n} {n} {m}c{n} {n}e
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so by inequality (2.34) in Lemma 2.11,
(7.12) |} o1 du| < K|y
{n}

Since each function f,,, with m < 27 is linear on {n}, we get (cf. the analogous calculations
for 15 in the first part of the proof)

(7.13) lps(u) — p3(s)] < CLK  for u,s € {n}.
Let € € {n}. Using (7.13), (7.12) and (7.11), we get

1 1
@3(5)—m{§l}f(u)du = @3(5)‘@ S p3(u) du
ey | RRGS i+ | ) e
1/2
CK+(|{ T S g(u)du> < C,K.

By the definition of BMO we have

<{n}| ‘f Iz }|S o)

which together with the precedmg inequality 1mphes

1/2
(I{vlz}l § 170)- P ) <K

This, together with (7.11) and (7.13), gives

(§ ctwan)™ < (] 15w - eae)au) "
{n} {n}

9 1/2 ) 1/2
+ (] Bwdn) T+ (] les(w) - wa() du)
{n} {n}
< O, K|{n} [
The last inequality together with (7.8) and (7.10) gives
S @ <K {n)]. m
{m}c{n}
Finally, consider the spaces VMO and lip(a), 0< < 1, which are separable subspaces
of BMO and Lip(«), respectively. They can be considered as the closure in the norms

| - lIBMo and || - [|Lip(a) Of the space of functions satisfying the Lipschitz condition. We
have the following characterization of these spaces:

2 1/2
dt) <K,

COROLLARY 7.3. Let the quasi-dyadic sequence of partitions {P; : j > 0} satisfy the
strong regularity condition with parameter v and let {f, : n > 0} be the corresponding
Franklin system.
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(i) Let 0 < a < 1 and f € Lip(«w). Then f € lip(«) iff

. |an| -
S [{n}[i/2+e — 0

(ii) Let f € BMO. Then f € VMO iff

1 1/2
lim ( — afn> =0.
n—oo (I{n}l 2

{m}c{n}
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