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1. Introduction and statement of the results

The main purpose of this paper is to give a method of constructing
Lipschitz homeomorphisms between germs of complex analytic sets. Neither
Whitney’s stratifications (Whitney, Thom, Mather) nor Zariski's equi-
singularity (Varchenko) offer such a possibility.

Lipschitz homeomorphisms are interesting because of (at least) two
reasons. On the one hand, they have a lot of “good” properties which are of
general interest (Lipschitz homeomorphisms preserve sets of measure zero,
the group of all Lipschitz homeomorphisms has a natural topology, etc.).

On the other hand, analytic sets have interesting metric properties, such
as for instance the Lojasiewicz property of regular separation: if X and Y are
analytic, then for some ¢ >0, C > 0 we have, locally

dist(x, Y) = Cdist(x, X n Y

for xe X. The best exponent ¢ = ¢(X, Y) (the Lojasiewicz exponent) is an
interesting metric invariant of the pair (X, Y). Clearly, these properties are
preserved under Lipschitz homeomorphisms, but not under arbitrary
homeomorphisms.

1t follows that there does not exist a Lipschitz homeomorphism (C3, 0)
—(C?, 0) carrying Xou Y, onto X, U Y, (t # 0), where X, ={y=2z=0}, Y,
= {y=x* z=1tx), although such a homeomorphism (even satisfying
Holder’s condition) clearly exists.

To state our first results we need a definition.

Let T = C™ be an analytic set. A family of germs of analytic sets in
C"xT over Tis a germ X at {0} x T of a subset of C"x T such that the
germ of X at every point (0, t) is analytic. Let p: C"x T — T be the standard
projection; we put X, =p~'()nX = C"x{t}.

We say that X is Lipschitz-equisingular at a point te T if there exists a
germ h of a Lipschitz homeomorphism (with a Lipschitz inverse)

h: (C"x T, (0, 1)) = (C"x T, (0, 1)
such that ph=p and h(X)=X,xT.
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ProposiTioN 1.1 (Lipschitz equisingularity)(*). Let X = C"x T be a family
of germs of analytic sets. Let toe T. Then there exists a neighbourhood U = T
of to and an analytic set T' & U such that X is Lipschitz-equisingular at every
point of U-T".

If we do not require h to be Lipschitz, then the above proposition is of
course well-know (see e. g. [8]). Its proof (due to Thom) is based on some
basic properties of Whitney’s stratifications; h is constructed by integration
of a discontinuous vector field (a different proof is given in [9]). Our
Lipschitz homeomorphism will be constructed by integrating a Lipschitz
vector field.

Proposition 1.1 is an easy consequence of the existence of a stratification
of an analytic set with certain metric properties which we now describe.

To have a good model for these properties, consider for the moment the
one-dimensional case, i.e. the germ at Oc C" of an analytic curve X, singular
at 0. It has a natural stratification into X, = X—{0} and X,,, = {0}. Put
X°={0}, X!'=X, X'=X'-X° For geX® let P, be the orthogonal
projection of T, C" = C" onto T, X! (with respect to the standard hermitian
metric on C").

It follows directly from Puiseux expansion that P, satisfies the estimate

(1.1) |P,—P,| < Clg—q/dist({q, q'}, X°)

for g, ¢'e X!, for some constant C, depending only on X.
We are also interested in the derivative of the function P,. Again it
follows from Puiseux expansion that for some constants C > 0, a < 1

(1.2) ID, P(g)l < C|vl/dist(g, X° for all geX* and ve T, X"

To generalize these observations to higher dimensions we need some
definitions.

Let X = C" be a germ at 0 of an analytic set. By a stratification of X we
shall mean a decreasing sequence of germs of analytic sets

X=X>5X"15,, 05X}

such that X/ = X/~ X’~1 is smooth and dim X/~! <4im X/.
For ge X/ let P T,C"=C"-T, X’ be the orthogonal projection. Let
Py =I1—-P, be the orthogonal prOJectlon onto the normal spaces T,* X'.
For techmcal reasons we shall replace the distance functions dlSt (g, X%)
by semianalytic functions 0,(q) (i. e. continuous functions with semianalytic
graphs) such that

(1.3) (1/2n)dist (g, X/) < 0;(g) < 2ndist(g,.X7), Q2 Qj+1.

(*) This was recently proved by a different method by R. Hardt.
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If one is prepared to use some basic properties of subanalytic sets [4] or if
X7 are algebraic, then the distance functions themselves can be used.

(To prove the existence of g;’s we use the fact that for any semianalytic
set A T\mere is a semianalytic function g, such that

(1/2)dist (g, 4) < @4(g) < 2dist(g, 4)
[7]; we put g; = ), 8,4

k=]
Let ¢, be a fixed constant, ¢, = 2n. A chain (more exactly, a cy-chain)
for a point qe X’ is a strictly decreasing sequence of indices j; (I < j; <j) and

a sequence of points qjser" such that j, =j, g;, =¢ and
1.4 js is the smallest integer for which g,(q) = 2¢c3 g; (g) for all k <ji,

lg—q;| < co0;,(q)-
(The existence of a chain for a given point is clear. It is easy to verify the
following inequalities:
(1.5) (1/2c)e,(g) < (1/2cd)dist(q, X7) < a,(g;) < chdist(g, X'} < cge,(q)

for all s and t <j,.)

For the proofs of all the results except Proposition 1.4 only 2n-chains
are necessary.

The following proposition generalizes (1.1).

ProrosiTioN 1.2. Let X = C" be a germ of an analytic set. There exists
a stratification {X'} of X such that for some constant C and every k:

(1.6, k)  for any j, any qe X’ and any chain q =gy Gy -+ Gy Jor g,
. k-1

lP;-.il quz s qukl < Clqjl _qulldISt(qjl, Xk )’

(1.7, k) if, further, ¢'e X/ and |g'—q| < (1/2¢0)@;-1(q), then
J

(Pe =P Py, ... Py, | < Clq'—ql/dist(q, X*7);
in p'articular,
(1'7’0) IPq’_Pq, £ Clql_ql/dISt (q: -Xj— 1),

which is the most direct generalization of (1.1).

These estimates are sufficient for the prove of Proposition 1.1. To
generalize (1.2), we define (for any N) the following neighbourhood of X” (for
a given stratification {X/} of X):

Uy, = {xe C": dist(x, X") < dist(x, X"~ ")*}.

Remark that if j > r, ge X/ n Uy, and {g,} is a chain for g, then j; = r for
some s (provided that N > 1).

ProrosITION 1.3. There exists a stratification (X'} of X satisfying not
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only the conclusion of Proposition 1.2, but also such that for some N, é > Q,
a <1 we have for every k:

(18, k) for any ge X!, any chain q; =4, qj;, ..., 4y for q and any
-J,
ve T, X% <1 .
ID, P, < C/dist(g, X'*™Y,

where w = th quz qukv; |
(1.9, k) if, further, ge X’ n Unjps then there exists a we T, X, |w| = 1, such
that

[0 Py P

%, .

. P,,jk(C"))| >6
and
D, P,| < C/dist(g, X"

The estimates in both of these propositions do mnot follow from
Whitney’s conditions. In fact, the stratification of X = {x?+y* =2’} =« C*
into X and {0} is a Whitney stratification, but (1.7,0) is not satisfied.

However, we shall prove that the estimates of Proposition 1.2 imply a
very strong form of Whitney’s condition A (implying also condition B); this
should be compared with the complicated relations between Whitney’s
conditions and Zariski’s equisingularity [3].

The construction of our stratifications is based on Lojasiewicz’s
»partitions normales”. The difference is that, instead of using one projection
C'*! o C for every i, we use a finite number of them.

Finally, we mention an application of Proposition 1.3, not related to
Lipschitz equisingularity. Let M be a complex manifold with a C*-hermitian
metric. Let X = M be a d-dimensional analytic set. Its regular part X, is a
d-dimensional manifold; let Q be the curvature form on X,., of the induced
hermitian metric. For every invariant homogeneous polynomial P of degree d
we have the closed 2d-form P(Q) on X,

ProrosiTioN 1.4 (integrability of curvature forms). If K is an open subset
of X, such that the closure of K in M is compact, then P(S) is integrable
over K.

It is not clear to the author if Propositions 1.2 and 1.3 (and therefore
also the other ones) hold in the real case.

Often we shall not distinguish between a set (or a function) and its germ
at the origin.

The character C will stand for various constants.

reg*

Acknowledgment. The author is greatly indebted to Professor
E. Bierstone for reading the manuscript and discussing the above problems,
to Professor A. Pli§ for discussing interesting examples in the real case,
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and, above all, to Professor S. Lojasiewicz for reading the manuscript and
suggesting many improvements. Proposition 1.1 was stated as a problem by
Professor D. Sullivan.

2. Lipschitz vector fields and stratifications

Here we show how Proposition 1.1 follows from Proposition 1.2,
The following proposition explains the relation between the estimates
(1.6, k), (1.7, k) and Lipschitz vector fields. '

ProrosiTioN 2.1. Let {X7} be a stratification of a set X c C" satisfying
‘the assumptions of Proposition 1.2. Let v be a Lipschitz vector field on C" such
that v(q)e T, X* for ge X* k <j. Then there exists a Lipschitz vector field w
on C" such that w =0 on X’ and for every k and qe X* we have w(q)e T, X*.

Proof. It is enough to construct a w such that w(g )ETXJ-H for
geX'*!. First we define w on X'*!: w=v on X and w(q) = P,0(g) for
geX'*1, We prove that it is Lipschitz. Take a ge X’*! and a chain g

=4j,5 Q> +--» 4jy- Writing v(g;) = v(q;,, )+7,, [7;| < Clg;,—q; I, we get

v(g;) = qul v(g;,, 1)+P“Js 0y,
and, by induction,
v(q,) =P,

'Ijz .

o) T Py, Py
Therefore
IW(Q)_W(qu)l Iqu v(qjl) v(qu)l Iqu v(qjl) v(qu I+I v(qu)l

= Clqjl_qlzl'H 5, 412 ‘Ij u(qh [+ Z P;; 9y 41_,2 P‘U_'ﬁjsl
o Js—
< Clgy, ~ a3, + X, Clay, —a;,| I8, )/dist (g, X**7")
s>1

and, since |7 |/dist(q, x*" g, w(g)—w(g;,)l < Clg—gq,l.

If ¢'e X’ is arbitrary, then |g—q'| > Clg—q),| and

w(@)—w(q)l < Iw(@—wgp)l+iw@)—w(g) < Cla—4q].
Let ¢ X'+ If |g—q| < (1/2)dist(g, X’), then
Iw(g)—w(g)l =Py v(q)— Pyv(q)

< |v(@)—v (@l +I(Py— P v (gl
< Clg'—al+|(Py—P) Py, -.. Py v(g;)l +

+§ (g —Pg) Py, .. Py, B

< Clg'—4l.
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If |g—¢| = (1/2) dist(q, X), we select points g, '€ X’ closest to g, q'; we
have [w(g)—w(g)l < w(@—-w@l+w(@)—w@)+w@—w@) < Clg' —ql.

It is now enough to extend w to a Lipschitz vector field on C" [2].

We now prove Proposition 1.1, Consider the germ of X at (0, t,) and let
{X7} be a stratification of X satisfying (1.6, k) and (1.7, k). Let
J ={j: {0} x T¢ X/}. Put

T' ={t: (0, He X’ for all jeJ}u Tpy;

clearly, "¢ T. .

Let t¢ T". We identify a neighbourhood of ¢ with an open subset of C*
(where d =dim T). Let ¢, ..., ¢, be the standard “constant” vector fields on
this neighbourhood. We shall show that e,’s can be lifted to Lipschitz vector
fields v, (i. e. p, v; = ¢) tangent to the strata X/,

Let k be the smallest integer not belonging to J. In a neighbourhood of
(0, t), X* is a smooth manifold containing {0} xT and p: X*-> T is a
submersion. Thus e;’s can be lifted to smooth vector fields w; tangent to X*
and (at points of {0} x T) to {0} x T Using Proposition 2.1 we extend w;’s to
Lipschitz vector fields, denoted again by w;, defined in a neighbourhood
{(x, £): Ix| <& [t'—1t| <&} of (0, f), tangent to the strata X. Since p, w, are
linearly independent at every point, we can replace them by suitable linear
combinations and get the desired Lipschitz liftings v,.

We can now construct the Lipschitz homeomorphism h; it will be
defined in {(x, t'): |x] <n, |t —t] <&} for some n <& For any t, |t'—t] <g,
let v, =) (t;—t)v. We integrate v.; let H(s, t', x) be the solution of
a—;:—(s, t',x)=vp(s, H(s, t', x)), H(,t,x)=x.

h is given by (t', x)—(t, «(1, t', x)).

3. Generalized normal partitions

We first introduce some notation, Let Tj, ..., T, be variables; we put

AT, .., )= ¥ 18T, - T,

{rnig iz

where Z* denotes summation over all iy, ..., I such that i;# i for s#¢

and H* multiplication over all j,, j, such that j, #j,, j,#i fors=1,2 ¢t
=1,..,kIf

P(T)=T'+Y T

i<d
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and t,,...,t; are the roots of P, then A(t,,...,t,) is a polynomial in
Agy «v0y Qg1+

A (tyy .. t) = A (ag, ..., ag_1).
We shall call 4,’s the generalized discriminants of P; 4, is its discriminant.
P has less than k different roots if and only if 4, =0, ..., 4;,_, =0.

Now we generalize Lojasiewicz’s ,partition normale” [7].

Let Z = C" be an analytic set; we decompose Z into equidimensional
sets Z={)Z% dimZ*=a. Put Z,=Z7.

Let X7~! = C" be any hypersurface containing Z, and let F" =0 be a
reduced equation of X"~ !, We choose the x,-axis so that the standard
projection C"— C"~! gives a finite map X"~ ! —» C"~ !, We identify C"~ ! with
{xy = 0}. There exists a neighbourhood @, of 0 in C"! such that for every
£eQ, the projection n(£): C"— C"™? parallel to (£, 1) induces a finite map
Xn 1_, c' 1

Let &5, djz, ... be a finite set (now arbitrary, but specified later on) of
elements of Q,. Let

'Z..-1=k‘J1t(€?)( U 29

a<n—1

and let
X, =n(EM({xeXy ' n(&: X275 C" ' is not a
local isomorphism at x})

be the set of critical values of m(&)| X"~ !. We take for X2 any
hypersurface in C"~! containing Z,_, and all X,’s. Let

X:—Z [Un ;l) I(Xm Z]mxn 1
n— 1—U75( DX

let F*~! =0 be the reduced equation of X72_?

By decreasing induction on m we choose a suitable neighbourhood
Q.1 C" of 0, a finite number of vectors &7*!, ¢7%! ... eQuyy, @
hypersurface X7., c C"*! with a reduced equation F"*! =0 and
decreasing sequences of analytic sets X{,, = Xi,,, I=2m m<j<l

Suppose we have these objects for m > k. Take an x,,,-axis so that the
standard projection C**!'— C* induces a finite map X¥,, —» C*. Let
Q,.+, < C* be a neighbourhood of 0 such that for any &e Q. the projection
n(£): C¥*' — C* parallel to (¢, 1) induces a finite map X%, , — C*. We take
an arbitrary finite set of vectors &*1, ... in Q4.

If I(p, q) is a sequence of indices (iy, i,~y, ..., iz+1), We put

nl(p.q) n(élq+1) -On(éfpﬁ Cp_+cq’

k<g<p<n
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Let Zy = U mymy(U Z%; let X, = C* be the set of critical values of
I(n,k a<k

n(£+1): X%, — C*. We take for X;*~! any hypersurface in C* containing Z,
and every X,.
Now we define

(3.1) Xel=XEn ) mighe n (XEY),
I(n,k—1)
(3.2) Xvl= U TpmXah, mzk
I{n,m)

Let F* =0 be a reduced equation of X§~1.

We put Xi, = X? ~xi-1,

F™(x+A(&, 1)) is equivalent to a distinguished polynomial with respect
to A; let A7 (x, £) be its generalized discriminants.

The following lemma lists all the simple properties of { X/} needed later.
For the purpose of the proof we introduce

—1 j .
X¥=Xh— U Bim s (X 160);
I(m,j+1)

clearly X/, is an open subset of X*/.

LemMa 3.1. 1) m(EM(XY) < X1, and n(EM(X¥) < X¥. | for all &7,

2,) every my, induces a finite map X5 — C' and a local isomorphism
X* — C'; in particular X3, is smooth and myy,, induces a local isomor-
phism Xi, - C/;

3,) for every i and every topological component X' of X*/ there is an |
such that for all xe X' '

47(x, &N =0 for s <1, A7(x, &) #0;

the same holds therefore for every topological component of XJ,;

4) for xe C"\ X7~ and for every i the equation F™** (x+A(&P*1, 1)) = 0
is nonsingular with respect to A;

5) Z is the sum of (some) topological components of Xis.

Proof. 1), 4), 5) are obvious. Let xoeX}/. Fix & =¢&m, ..., f{;:rll

=& et n° = n(&): C— C*! and let 7: CP — C? be their composition.
For simplicity of notation assume that all £ =0, ie. n° are the standard
projeptions. Let yy, ..., yj+1 be coordinates in a neighbourhood of n™/* 1 (x,)
in C'*! such that X}, = {y;,, = 0}. Together with 2,), 3,) we shall prove
(by increasing induction on m) that

6p) there exists a variety V,, = C™ (a wing) such that xqye V,,, n™*1: ¥V,
- ! is finite and is. a local isomorphism on Va\(r™ D=1 (X9, 1) and
V\(@™ )71 (X, ) = C"\ X2, '
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We show that 6,) implies 3,,,). Consider V,, as the graph of a
multivalued function f, ie. V,={(,f(y)}, where f: C'*'5 "I~ is
analytic in yq,..., y;, yj{f1. For any fixed y' =(y;, ..., y; the equation
F™ (', yj+ 1), S V', ¥j+1), A) = 0 is (by 4)) nonsingular with respect to 1 for
Yj+1 # 0; thus every solution is of the form A= A,(y, yjf,;). Using for
instance the argument of Varchenko [9], it is easy to see that the
multiplicities of these roots for y;,; =0 do not depend on y’; this proves
3m+ 1)-

3m+y) implies that =™*!': X{,, - XJ is an isomorphism in a
neighbourhood of x,, which, together with 2,), proves 2, ).

To prove 6,.;), choose an ap so that x, is in the branch
{0, FO) 2O} Let A, (V, ¥i¥0) = () +yiE1Ya (Vs ¥iEy). Take a t>s
and define V.1 = {(y, S () ttay (V) +¥741)}-

The collection of varieties {X7} and projections = (£]") (called admissible)
having the properties as in the lemma will be called a generalized normal
partition compatible with Z.

4. Regular projections

Let X = C" be a germ at 0 of a hypersurface with a reduced equation F
= 0. Fix the x,-axis so that F does not vanish on it. Let Q' be a fixed
neighbourhood of the origin in C"~! such that for every £e Q' the projection
n(£): C"— C""! induces a finite map X — C"~'. Then, by the preparation
theorem, F(x+4(f, 1)) is equivalent to a distinguished polynomial
Wix, & A) in A:

F(x+4(¢ 10)=00x. & WW(x, &2, Q(0,0,0#0, W(,0;4)=2%

Let A be a germ of a subset of B at a point ge B. We shall say that a
Be (" Q< C" !, A cC of the origins such that F(x+4(¢, 1)), W(x, &; ),
Q(x, &, A) are defined for xeB, éeQ, leA and Q # 0 in BxQ x A.

Let A be a germ of a subset of B at a point ge B. We shall say that a
projection n = (&) is e-regular at A with respect to X if there exists an
integer | and a neighbourhood U of ¢ such that for all #, [n—¢| <e¢,

Al(xi 7’)=0 for l<ls A;(X, ’7)7&0

for xe(U\{p})nA. If A={q}, we require that A4;,(q,n =0 for i <]
4i(q, m # 0.

A projection is regular at A if it is e-regular for some &.

We shall be interested in the case of a germ of a curve 4. By a (germ
of a) curve in B we mean a germ at 0 of an analytic map C— B, t—gq,eB;



14 Lipschitz equisingularity

sometimes we shall identify such a curve with the image of the map g,. The
constant map will also be considered as a curve.

We shall give a geometric characterization of regular pI'O]eCthIlS Let
S,(q, &) denote the open cone in B:

S.(g, &) ={a+4(, 1): In—¢| <e, AeC} N B.

ProrosITION 4.1. Let n = n(&) be e-regular with respect to X at a curve
q,. Then there exists a constant C such that for |t| # O, sufficiently small, the
intersection of S,(q,, &) with X consists of points of the form

e+ Ayt () (1, 1),
where 1;,(n) are analytic for [n—¢| <& and satisfy

Au(n) # Ay () for all m and i#j,
[DA;d < ClA.

Proof. The equation F(g,+4(, 1)) = 0 has (for t # 0) one root, 4 =0,
with multiplicity, say [, while all the others are simple. Thus all these roots
are of the form A = 4, (¢t'”, n), A; analytic, and either 4, = 0 or 4(¢, n) # O for
all n and ¢ 0; also A,(t, n) # 4;(t, n), i #j. Thus 4,,(n) are the branches of
A", 7). To prove the last statement observe that for those A;(t, #) that are
not =0 we have A;(t, n) = t*® A*(¢, n), where 2*(0, n) # 0. It follows that for
some C |D, 4] < CJ4).

We are now interested in the existence of regular projections.

Let

X9 =IxeC" Feml),

where m, is the ideal of all germs at x of analytic functions vanishing at x.
Thus X©@ =C"> XU 5 X2 5 |, If xe X for some i, then 1 =0 is a root
of W(x, ¢; A) = 0 with multiplicity > i for all &, so 4,(x, &) =0 for s <i—1.
The following fact follows easily from Sard’s theorem:

LemMma 4.1, If xe XD\ X*D, then 4;_;(x, &) £ 0.

Let ¢, be a germ of a curve at ge B, I' its image (i.e. the germ of the set
{g;: teC}) and A an integer. We define a cusp-like neighbourhood of I'\ {g}:

S4(IN = {xeB: dist(x, I') < |x—q[*}.

Recall that if X is a metric space, then a d-net in X is a subset A < X
such that for every xe X we have dist(x, 4) <.

ProrosiTioN 4.2. Let k be an integer and Q, an open set in Q. There exist
& 0, such that if Q, is a finite 8'-net in Q, and Ty, ..., I, are germs of
curves ar q, ..., 4y, respectively, (g, e B) then there exists a £eQ, and an
A which determines an e-regular projection with respect to X at every
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STy n(XU‘)\XU‘+1)), where the indices j; are such that TI'\\{q;}
- X(J;)\XU;+ 1)'

Proof. It suffices to prove the proposition for k = 1, for in the general
case we can use induction on k: let ¢, ' satisfy the conclusion for k—1.
We take a finite cover of 2, by balls Q" of radius &'/2. Let ¢,, &, satisfy
the conclusion for Q, =Q* k=1 We take ¢ =min(¢/2, &, £,,..),
6 =min(¢, 4, 65, ...).

For k =1 the proposition follows easﬂy from the followmg lemma (we
have to use it putting X, =B, K=X"", L=x"1"" 5, =0,, 4 = 4y _,):

LemMA 4.2. Let X, = C" be neighbourhood of the origin and E, c C™ a
neighbourhood of a given point in C™. Let A(x, £) be an analytic function
defined in a neighbourhood of X,xZ,. Let K, L be analytic sets,
OeL c K = X,. Suppose that for every xe K\ L there exists a € E such that
A(x, &) #£ 0. Then there exist a finite number of points &y, ..., EeZq and
an ¢ > 0 such that for every curve q,, g, K\ L for t # O, there exists a j such
that A(x, &) # 0 for |(~¢&jl <e and xeS4(I) (where I' is the image of q,)
for some A.

Proof. We can assume that =, is a neighbourhood of the origin in C™.
Consider the Taylor expansion of 4:

A(x, 8 =} 4, (x)¢

Let I be the ideal in ¢(X,) generated by all 4,’s. There exists a blowing-up
h: M — X, such that h*(I) is locally principal. Thus there is a cover U of M
and for every Uell a function ¢ye @(U) such that

4 (h(X), i) = (Pu(X)Ai.;(x, é) for X€ Ua

where Ab(x, &) = ZA 2(x)&* and for every xe U there is an a such that

ba(x)# 0. Clearly {py =0} = h™'(L). Take an x,€ U and the smallest v
for which there is an a, |/ = v, such that 4§ ,(x,) # 0. Then, after a linear
change in the &-variables: { = A, é we can assume that A% %03 0,...,0,()

= {;, (unit), so A4f(x, ) is equxvalcnt in a neighbourhood of x, to a
distinguished polynomial

Peo(x, 8, G = Emt Y ar(x, OV

and g;(xy,{)=0 for all {"'=({,,...,{m-,). Thus every solution of
Peo(x, 0, () = 0 satisfies |, < Clx—xo|!". Let &= A;01 ©,..., 0, w,
where |y| is so small that é,e E, and u # 0. Then there are neighbourhoods
of xy and of &g such that Af(x, &) # 0 in these neighbourhoods. Therefore
there exists a finite number of points &, ..., £, 5, and a number & such
that for every Ue U and every xo,e U there is a j such that 4% (x, £) £ 0 for x
in a neighbourhood of x4 and for [{—¢; <e. If g, is a curve in Xy, e K\ L
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for ¢ # 0, we lift it to a curve §, in M, take a Ue Ul containing g, and find a
& for go. If A is big enough, the lifting of S,(I') lies in U.

Suppose now that the standard projection n =n(0): C'—> C""! is e-
regular with respect to X at a point pe C". We want to describe S, (p, 0) N X,
where & < & will be specified later on. It is the disjoint sum of manifolds M;
= {p+A,(E(&, 1): |¢] <€}, where A;(€) # A (&) for all ¢ and j#k, and
DA < C|A|. We want to represent M;s as the graphs of functions x,
= @;(x'), X' = (%4, ..., X4,—1) and to define precisely the domains of ¢,'s. We
shall use the implicit function theorem in the following form:

IFT: Let B(g, 6) be the ball {xeC": |[x—g| <} and let G: B(q, §) = C"
be an analytic function such that DG(q) = I, |D? G| < L = const. Then there
exist constants 6’ = '(3, L, r) and K = K (4, L, r) such that G™! is defined
on B(G(g), 8) and |D(G™)| < K.

For those A;s which are not identically 0, we have [D(lgi)l < C, so

e” 14,00 < 14,0 < e®[4(0), ¢l <e.
Let p' = n(p). Consider the map
G(&) = p+[4E/40]¢, Kl <e.
Then G(0) = 0, DG(0) = I. For |¢| < /2 we have

ID? ;&) < (2°/e) sup [DA; ()l < C(2°/e) sup 140 < Ce®(27/e) |4, (0),.

Therefore for |¢| < g/2
ID*G ()] < (2|D4 (OI+1D* 4, ()N 1EA4,(0) < 2C+Ce™2"" ! = L.

Thus the equation H () = p'+4;(£)€ = p'+¢q’ can be solved (with respect to
{) for |q'| < &'[4;(0)). This shows that M; can be described as {x, = ¢,(x)},
where ¢; is defined on B(p,|4,(0)é) and |De;| = |D(A,0H™ 1)
< ClAjoH Y |ID(H Y < CK [A;0H™ /)2, (0)) < CKe®.

Choose now ¢’ so small that e“®¢’ < §’. Then for |£] < ¢ we have |A; (&) ¢
< &|4,(0)), ie. p'+4(&)¢eB(p, |4;(0)&). Summarizing, we have proved the
following proposition:

ProposITION 4.2. Let m = :(0) be e-regular with respect to X at p. Then
there exist constants ¢, &', M, depending only on C, ¢, n (where C is as in
Proposition 4.1) such that S, (p, 0)nX can be described as Jollows. Let p
=), p=(P.p)h ' P)VNnX={p+Afe,, j=1,...,k). There exist
Junctions @;: B(p', |A]18) - C such that |Do,| < M and S,.(p, 0)n X is the
(disjoint) sum of {x, = p,+@,(x)}.
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5. Quasi-wings

These will be a modification of Whitney’s wings.

We fix a splitting C" = C*®C™ % Llet n: C™— C* be the standard
projection and let x,, ..., x; (resp. y;, ..., Ym—z) b€ coordinates in C* (resp. in
Cm—k).

Suppose we are given a germ I' at 0 of a curve in C* with equations x;
= x;{t), x;(0) = 0 (te C). Assume that p = ord x, (t) < ord x;{t) for all i. Let s
be a fixed positive integer, s = p. Put u =(u,, ..., ) and let

(5.1) x(t, u) = (x1 (£), X2 (&) +uat, ..., X () +u ).
We shall work with neighbourhoods of I'\{0} of the form
(5.2) U,={xeC* x=x(,u),1#0,Jul <e}.

A quasi-wing V (of dimension k) in C™ over U, is the image of a map of
the form

(C\{0}) x C*~ 1 3(t, w)r(x (2%, u), f(t, u)),

where f is a germ of an analytic function C*— C™~* satisfying (for some C)
the following estimates:

(5.3) D, f(t, w < Clt*= Y, |D,f(t, u)| < Clt]*.
We shall write
Vo= {(x(t" u), f(t,w): t#0,ul <e}.

f will be called a representation of V (it is not uniquely determined by
V). We shall identify V with its representation.

V can also be represented in the form {(x (%%, u), f(t, w))} for any
integer g > 0; such representations will be called equivalent.

V can be broken into a sum of smooth manifolds, not necessarily
disjoint. In fact, let x, = (xo1, ..., Xo1)€ U,; put

D(xo) = {\xe U,: |x; —Xo1l <(1/2)|x04l},
D' (xo) = {xe Uyzt [x1—x01] < (1/3) %04} -

In D(x,) we select a branch of x}/” and solve x(t?, u) = x with respect
to (t, u): t—l,b(gx”‘"'), where ¢ is a root of unity of order pa and Y is
analytlc, v(0) =

(5.4)

uy = [x2— x5 (¥ (@x1/7)")] s (@x1/P7,
etc. Inserting this into f we get functions f,: D(x,) » C™ ¥ such that

V n[D(xo) x C"=¥] = | graph f,.
[4

2 — Dissertationes Mathematicae CCXLIIIT
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It is trivial to show that estimates (4.3) are equivalent to the condition

(5.5) every f has first derivatives bounded by a constant
independent of xg.

The manifolds V, = graph f, will be called branches of V.

A. Selection of quasi-wings

LeMMa S5.1. Let V@ = {(x(t*, u), @ (¢, u))} be quasi-wings in C™ over U,
such that f®(t,u)# P, u) for a#PB, t+#0 and all u, i (f*s are
components of f@). Let I' be a germ at O of a curve in C™ given by
(x(t2, u@), (@), x(t*, u(t)e U,. Let £(z) be the unit tangent vector to I at the
point corresponding to t and m, the projection on to the x,-axis. Assume that
|, ()] = C > O for all t. Suppose that for t # 0, for every i and every a we have
v;(t) # f{®(€, u(t)). Then there exists a quasi-wing W = {(x(t°, u), (¢, u))}
over U, such that v(t) =g(t, u(t)) and f@(t, u) # g,(t, u) for all a, i, u, t # 0.

In such a situation we say that W contains I

An easy proof is left to the reader; in § 8 we shall prove a stronger
selection lemma.

B. Lifting of quasi-wings

LemMa 5.2. Let X <« C™*! be a hypersurface, my: C"*' — C™ the
standard projection, ny: X — C™ a finite map. Let V = {(x(t*, u), f(t, )} be a
quasi-wing in C™ over U,. Assume that, for every xo,e U, and every branch V,
of V, mo induces a local isomorphism n5* (V)" X = V,. Let I be a germ of a
curve in C"** given by (x{t%, u(t)), v(t), w(t)), u(0) = 0. If ny is regular with
respect to X at I, then there are quasi-wings in C™** over U,, of the form

W = {(x(taq’ u), f(tqa u)’ gi (t! u))}
such that
(x(t*%, u), f(1% u), 2)e X, ul <e/2,t #0 < z=g(t, u) for some i.

Proof. Let F=0 be a reduced equation of X. Then the equation
F(x(t°, u), f(t, w), z) = 0 can be solved as z = g, (t¥4, u) for some ¢q. We have
only to show that W, are quasi-wings over U,,. Put g =g, for simplicity,
take a point

p= (x (t?)a u(tO))’ U(to), W(to))er,
fo# 0; let p” = x(t6, u(ta)l D(p") = {xe U, |x;~pi| <(2/3)|p,|}. Take an
ag-th root of unity ¢ and construct f, and g, in D(p"); we shall show that
(5.6) 190 (x) =g, (P < Klx—p"l for xeD(p”),

where the constant K does not depend on p. This of course will imply
estimates (5.5).
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We have |f,(x)—f,(p") < Alx—p"| for xeD(p”), where A does not
depend on p.

Let us return to the situation of Proposition 4.2. Let p' = ny(p),
' (P)nX ={p+i’e,+1} and let ¢;: B(p,|A?|6)— C have the same
meaning. Suppose that A = g,(p")— p,,+1; then in a neighbourhood of p” we
have g,(x) = @, (%, f,(x))+Pm+1- Let xe D(p”). We distinguish two cases.

I° [x—p"| <1A7167/2(1+A4). Then |x—p"|+[f,(x)=f(p") <28, so
go(x) =@, (x’ j;(x))'l'pmi-l and

l90 (%) =g, (P} < M (Ix—p"|+ £, () ~fo (P)) < M1+ A) 1x—p".

2° |x—p"| >|A98'/2(1+ A). We shall show that for any u < ¢ satisfying
(5.7) below (which can therefore be made independent of p and Xx)
(x, f(x), go(x)) is not in the cone S,(p,0) = {p+A(¢ 1): écC, [¢]
<p, AeC}. For suppose that (x, j:,(x), g.(x)eS,(p, 0). Then g,(x)
= @;(%, f,(X))+ Pm+1 for some j. We estimate |29]. Since

|o; (%, £,00) = (Ix=p"1 +1.£, ) =1, PN/ ns,

we have

1471 = lo; (0", £ = |oi(x, £ () =|os(x. )= (P, L")
Z(x=p"l/W~M(1+A4)|x—p"| = |x—p"|[(}/p)—M({1+A)].
In particular, |49] > [A9] if p satisfies
(5.7) 8 [(1/w)— M1+ A)]/2(1+4) > 1.
Further, ¢, is defined in the ball around p' of radius =i}’
> |x~p"| &' [(1/u)— M (1+ A)]; this ball contains (x, f,(x)) provided that
[x—p"|6'[(1/w)— M1+ A)] > |x—p"|+1f () =f(P")

which is satisfied if u satisfies (5.7). Thus we get a contradiction since j # 1.
So we have

|go ()= go (P")] < (I — p"|+ 1S, ()=, (PN < |x = p"| (1 + A)/ .

C. Nicely situated quasi-wings. Two quasi-wings V = {(x(s*, u), f(t, w))},
W = {{x(¢, u), g(t, w))} over U, will be called nicely situated if for some
iy ey dy

f,.ﬂ(t, u) # g,-ﬂ(t, u fort#£0,=1,..,]1,
while for all other i
it ) —gi (e, Wl < CY 1S (0 1) =g, 5, )]
8
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LemMMA 5.3. Let X <« C™*! be a hypersurface,

7= {(x(e*, w), £t ), 7 (¢, w)},
W= {(x(t, u), g(t, u), 3¢, w)}

two quasi-wings over U, in C™"' such that

1° V, We X, A

2° the qlasi-wings V = {(x(?, w, [, W)}, W={{x(t* u), g, w)} in C"
are nicely situated,

3° the standard projection my: C™*' — C™ is regular with respect to X at
every point of V,

4° ny: ng ' (V)" X = X is a local isomorphism.

Then ¥, W are nicely situated.

Proof. Let k be the number of points in ng'(p)n X for peV: it is
independent of p. Take a fe V; let p = mo(F). There exist k distinct numbers
(=0, A,(p), ..., 4(p) such that p+4,(p)e,., are all the points of
g (p) N X (where e,., =(0, ..., 0, 1)). Since =, is regular at every such p,
every A;(p) (for i > 2) has an extension to an analytic function defined in
a neighbourhood of p whose graph is a subset of X. Thus (after replacing t
by its power, if necessary) there exist analytic functions A,(t, u), ..., A4 (¢t, 4)
such that

Ait,u)# 0 for t#0, A;(t,u)# A)(t, u) for t 0 and i#j,

and
(x(e2, ), f (6, w), J(t, W+ A4, u)

are all the points of X in =mg' (x(t% u), f(t, u)). distinct from

(x(t, w), f(t, u), f(t, u). We have
A, uy=t"Ti(e, u),  |Z(t, )| = 8> 0.

Again by regularity of m, at points of V there exist analytic functions

@;(t, u, 2) (for i>2), defined for ze C™, |z| < e, |t|* (for some constant &,)
such that

(pi(ta u, 0) = /1,-([, u),
((x (22, w), £, w)+2z, F(t, W+ (t, u, 2))e X,
¢i(ta u, Z)] Z (1/2)|Al(t1 u)l'

Now let

Siglts w) =gy (&, ) = 1P by (2, w),
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where h; are invertible; let a, = mina(f). We have to prove that either
[
ft, u)# G(t, u) for all u and t 0, or that
If(t, wy—G(t, u)| < Alt|"°, A =const,

Suppose that the latter condition is not satisfied. Then there is a function
u(t), which can be assumed to be analytic (after, maybe, replacing ¢ by its
power) such that

|7 (e, u(®)—g(t, ur)] =11, for some b < ag.
Let
B = (x(e7, u(®), £t u@), 7(t, u(®)),

g = (x(z% u (), g(t, u(®), gz, u(®)).
Let my, be d-regular with respect to X at every point of V.
By assumption, g, lies in the cone {F,+u(n, 1): ne C™, Iyl <8, ueC}, so
for every r there exists an analytic function g (1) (|#] < d) such that

g = P+ pe () (e, 1),

where
= (0, [g(t, w(®)—f (6, u@®)])/[G(t, u(@) =T (¢, u@)].

Clearly g, (0) = A;(t, u(t)) for some i > 2, and i is independent of t. Consider
the equality

gie,w =7 w+et, u g, -1, u).

It holds in a neighbourhood of the set {{t, u(z)): |t| # 0, sufficiently small}.
Both sides are analytic and well-defined (since r; = b, and so |g—f| < (1/2)|4
for |t] small enough). Thus the equality holds identically. It follows that
F(t, u)# §(t, u) for all u and t # 0.

To apply Lemma 5.3, we have to know when a projection is regular at
all points of a quasi-wing. Let X < C™ be a hypersurface with a reduced
equation F =0, where F is a distinguished polynomial with respect to x,,.
Let 2 = C™"! be a neighbourhood of the origin such that F(x+1(¢, 1)) is
equivalent to a distinguished polynomial in A for £eQ; let 4,(x, £) be its
generalized discriminants. Let &, ..., &, be points such that for every i the
functions A4,(x, £,) generate the ideal generated by all 4;(x, &), {eQ.
Assume for simplicity of notation that one of the &’s is 0.

LemMa 54. Let V = {(x(t*, u), f(t, w))} < X be a quasi-wing containing a
curve I' = {(x(t", u(®), f(t, u(t)))}. Suppose that

1° the standard projection n; C™ — C™ ! is regular with respect to X at
every point of I',
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2° for every o there is an i, such that for all xeV we have 4;(x, {,) =0
for i <i, and A4; (x, ) #0. Then = is regular at every point of V.

Proof. Let Ai(x, e,) =0 for i <ip, 4 (x, ey #0 for xéF\{O}. We
have to show that, for some ¢, 4;(x, &) = 0 for i <i, and 4; (x, {) # 0 for

all x = (x(2°, ), f(t, w) t # 0 and |¢|] < ¢'. Note that for all « we have i, = io;
in fact, 4; (x, £;) # 0 for xe r\{0}, and e, is not in the tangent cone to X

at x. Thus 4,(x, ¢)=0 for i <i, and for all xeV and a. Therefore
4;(x, &) =0 for all i <i, and for all xeV and all £. Now,

A ((x(°, w), (1, W), &) = 1 4, (¢, w),
where 4, is either invertible or identically 0, and

Aio ((x(ta) u(t))a f(t, u(t)))s 0) ='tr0 ZO (t)’

Ao (1) invertible. As before, 4, ((x(t%, u(®), £(t, u())), €) # 0 for all t 0 and
|£] sufficiently small, and so for all ¢

A, ((x (e, w (@), £ (6, @), €) = 0 4* (1, &),
4*(¢t, 0) invertible. Therefore r(a) > r, and
Ay ((x?, w), £ (£, W), &) = 4* (1, u, &),

4*(t, u, 0) invertible. Thus diy((x e, u), f(t, W), &) #0 for all £+ 0 and |¢]
< ¢, for some constant &',

D. Tangent spaces to micely situated quasi-wings. Let V = {(x(¢*, u),
St w)}, W= {(x(e", u), g(t, w))} be nicely situated quasi-wings in C™ over
U,. Take a point py = x(t3, ug), to # 0, |ugl < &/2, constryct D(p,y), D'(po),
0 Jo» 9, @s in (5.4) and (5.5). For qe V, = graph f, (resp. ge W, = graph g,) let
P, be the orthogonal projection C™ — T, V, (resp. C" — T, W,). Let P} = I—P,.

LEMMA 5.5. There is a constant C, independent of py, such that for q, € |
q2€ W, we have

|P112_Pq1| < Clgy — q3l/Ipos ™",

provided that m(q,), ©(q;)€ D' (po) (s and p are defined at the beginning of § 5).

Proof. Let ¢y =n(qy), 92 =n(q;), qi = fo(d1) 43 =9,(a2) T, V, is
spanned by the vectors (e, Dy f, (41)), where D;= ¢/dx;, and T,, W, by
(e;, D;g,(q5) Thus it is enough to show that

IDf; (41) — G, (92)| < Clq1 —,l/Ipos "
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First observe that for g, g5 D’(po)

Df, (41) — Dfe (42)| < Clgy ~qal/1posl ™

since |D%f| < C/|po,|™® in D' (po). Now let i, ..., i, be the indices for which
f-‘,; # gy, for t # 0. Then

Fig(ts 0) =gy (2, 4) = 1P iy (2, ),
where |hy| > const> 0, and therefore
Fipa () =150 (x) = O X417y (x)
for xe D(py). Thus
IDf;.0(45) — D10 (@5) < ClSi.0(a2) 10 (0213112
< Clfi5.0(a2)— 9150 (@2)/1Pos
(92,1 is the x,-coordinate of g3). If i # iz, then
filt, w—gi(t, w) = " (¢, w),
where o = m;'n a(f) (h; not necessarily invertible); so

fl,o i = Qa x‘i/pa hi.a
and therefore
|Df;. o (q5) — Dg; o (@2) < Clgl,[""/1q5,11"
<

C1/,(q5) —go (@) 1posl””.
Thus, finally,

|Df, (q1)— Dg,(q5)| < |Df,(q1)— Df,(q5)| +|Df, (q2) — Dg, (q5)]

< C(lqy — g5l + £, (g2) — 9o (@) |poy |7

< C(lgy — @al + 1/, (a5) =1, (@l + 1 5 (a1) — g, (@) pos 7P
<C

(s — g5 +1a7 — g3))/1pos[*'* = C |ay — qal/Ipos|*.

6. Proof of Proposition 1.2

We shall prove that a generalized normal partition {X4} of C"
(compatible with a given set Z < C") satisfies the estimates of Proposition 1.2
if the points & are chosen in the following way. For é'e 2, we take points
such that: .

1° for all s the ideal generated by all 47(x, &), {eQ,, is generated by
45(x, &),
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2° for any n+1 curves q,(f), ..., g+ 1(¢) in C" there is an i such that

a) the projection = (£7) is regular with respect to X3! at each of these
curves,

b) if £(t) is the unit tangent vector to g;(t), then, for some C and every
t # 0 (with |t| sufficiently small),

(&N (8] = C > 0.

For & 'eQ,_, we take vectors such that

1° for all s the functions A" !(x, "~ ') generate the ideal generated by
all A:_l(xs é)a ﬁegn—ly

2° for any n+1 curves g (£), ..., g+ (t) in C"~* there is an i such that

a) m(&2 ') is regular with respect to X7-% at each of these curves,

b) I (&) E ()] = C > 0 for all || # 0, sufficiently small, where .7;(z) is

the unit tangent vector to g;(t).

Similarly we choose £.

We now give some preliminary lemmas based on the curve selection
lemma.

If X = R" is semianalytic, u, f, g are nonnegative functions defined on X,
u semianalytic, f; g real-analytic, g # 0, and there is a sequence x, — X,
x,e X, such that (uf/g)(x,) — O, then there is a real-analytic map ¢(r) such
that for r >0 @(re X, g(o(r) # 0 and u(e(r)f(¢®)/g(p()—>0 as r—0
and ¢(0) = x,.

In fact, let A be the graph of u. Then (0, u(xc), xo) belongs to the
closure of the semianalytic set

B={(t, z, x): tzf (x) = g(x), xe X, (x, z)e A, g(x) # 0}.

Applying the curve selection lemma we get a real-analytic curve
(t(r), z(r), x(r)) lying in B for r >0, £(0) = 0. So we can put @(r) = x(r).

Similarly, if uf/g is unbounded in every neighbourhood of x,, then there
exists a real-analytic curve ¢ (r) such that ¢ (0) = x,, ¢(r)e X, g(¢ () # O for
r>0 and u(@()f (e ®)g(e[F)— .

If X c R" is semianalytic and f(r) is a real-analytic map, re R, f(r)e R",
then there exists a real-analytic map g(r) such that g(r)e X for r > 0 and
|f (r)—g (r'/7) < Cdist(f (), X), for some peN-and C > 0.

In fact, let gy be a semianalytic function such that
(1/2) dist (x, X) < gx(x) < 2dist(x, X); apply the curve selection lemma to the
set {(r, x): xe X, [f () —x| < 20x(x)}.

LemMa 6.1. Let X c C" be an analytic set and f(r)e C" a real-analytic
map. If dist(f (r), X) is of order r°, then for complex t we have dist (f (), X)
2 Clt]* (by f(t) we mean here the complexification of f: R— C").

Proof. Assume that the conclusion is false. Then, by our previous
remarks, there exists a real-analytic map ¢(r)eC, ¢(0)=0 such that



Proof of Proposition 1.2 25

ox(f (p(M)) < Clo(r)*** for some C, &. Let h(r) be a real-analytic map such
that h(Ne X, |f(o®)—h('/?)| < Clo(r)***. Replacing everywhere r by rP
we can assume that p=1. For teC we have h(t)eX, and therefore
dist(f (¢ (2), X) < Clp(1)**® for all teC. But in the complex domain ¢ is
surjective, and we have a contradiction.

Lemma 6.2. If (1.6, k) fails to hold, then there exist real-analytic maps
gj,(r)s s qjk(r) such that for r >0 we have:

g, (e XL,

(6.1) gy, (N—q;,N <cogifay ), s=2,..,k
(co is the constant appearing in the definition of a chain),
1
(62) IP§ (VPy (). Py ) 3
= lgy, (N —q;,0)/gj -1 (le ") " for some 5> 0.
Proof. Observe that for fixed j the functions
Xisx>P.eC”
and -
XisxsPreC”
are restrictions of real-meromorphic functions, well defined on X’ (cf. e. g
[1]). Write
P, = A;(x)/Ry(x), Py = Bj(x)/R;(x),

where A4;, B, R, are analytic and R;(x) # 0 for xe X4 (4, and B, are matrix-
valued). Let

G(qjl’ LR} qjk) = ij— 1 (qjl)Ile (qjl) A_lz (qu) M Ajk(qjk)l/lqjl _qul HIRJ' (qji)l‘
1

G is unbounded on the semianalytic set
gy s 4) G X @ilay,) > (1/2c0) 1, (as,)
(for all I <j), |q;, —q;| < co st(qh)},
and so there are real-analytic maps g, (r), ..., g, () such that
G(g;, (), .. g () >0 as  r—0.
Necessarily g;, (0) =... = qjk(O)eXf;“_l, 50 0j,-1(q;,(r)) is of order r*, u> 0.

If G(qjl(r), cevs qjk(r)) is of order r™", v> 0, then it is enough to take %
= v/24.
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Lemma 6.3. Let g,€ X be a curve. Choose admissible projections '
= n(&, ) C'»> C™! for j<i<n; let aM: CP— C? be their composition. For
s:mplzczty of notation assume that every ©‘ is the standard projection. Assume
that every m' is d-regular with respect to X~' at a™*'(q,). Then

dist(g,, X4~ %) < (1/8)" dist (z™ (q,), X77Y).

Proof. Fix a t and let y be the closest point of X7~! to n™/(q,). Let |,
be the real interval joining these points. We lift I; via n/** to a real-analytic
curve I;,, in n™/* ! (X)) starting at n™/*!(q,). Clearly, it lies outside the cone
S, (n""“ (q), 0). Again we lift I,,, via n/*? to a real-analytic curve I, , in
a™*2(Xl) starting at m™*2(g); it lies outside the cone S;(n™/*?(q,), 0).
Finally we get [,. If z is its end, then ze X~! (by the definition of XJ~!) and

g, —z| < (1/6)"~ ! |n"™ ()~ ).

We shall now prove (1.7,0); the proof of this case (which is the first step
of induction in the proof of (1.7; k)) is simpler than the general case, since we
need not use essentially quasi-wings (except the definition and Lemma 5.5).

Suppose that (1.7,0) fails for seme j. Then there exist real-analytic maps
q(r), ¢'(r) such that q(r), ¢ (e X for r >0, [g()—q () < (1/2c0) ;-1 (9 (7))
and for some >0

|Pay— Pl = Clg(r)—q' (n/dist (q(r), X2™7)

After replacing r by its power we can assume that the order of
dist (g(r), X{~') is an integer s. Let g(t) (te C) be the complexification of g(r);
then the order of dist (g(z), Xi ') is <s. Necessarily

(6.3) lg()—q' () = o (r).
Now choose admissible projections ' = n (¢}, ):C' —» C'~* (assumed to be

the standard projections, for simplicity of notation), j < i < n, such that every
n' is regular with respect to Xi~! at n™'**(g(¢)) and the angle between the
tangent vector to n™(g(z)) and the kernel of n' is > 8, > 0 for some &, and
all t # 0. Then, by Lemma 6.3, dist(n™/(g(t)), XJ~!) is of order < [t*. In C/
we take coordinates x;, ..., x; so that the equations of z™/(g(t)) are: x, = ¢7,
x, =x(t), i>1, ord x (t) 2 p, and define U, by (5.1) and (5.2), taking

"I (q (t)) for I Usmg (6.3) it is easy to show that in the (¢, u)-“coordinates”
in U, the equations of n"/(q’(r)) are:

1+n

t=r+e@), uw=ul(r), where @()=o(r),u(r)=o0(1). l
For ¢ sufficiently small (n™)~'(U,) n XJ, is a sum of quasi-wings

Vo= {(x( ), £2(t, W)},
and f*(t, u) # ff (s, u) for all « # B, all j and ¢ # 0. Let g(r) lie on ¥, and
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q'(r) on V. If a # B, we can use Lemma 5.5 directly. If « = f, we must take
more care of different branches of V. For simplicity we omit the index «. For
any two a-th roots of unity g, ¢, fi(ot, v)—f;(¢'t, u) is either identically O or
# Q for t # 0; in the latter case

(6.4) Silet, w—fi@'t, w) =" Gi(z, )

with G; invertible.

Let po = n™/(q(ro)) for ro # 0; construct D(py), D'(po) as before and let
Jo» Jp be the branches in D(p,) of V(=1V,) containing g(r) and ¢'(r),
respectively. If f;, = f; o for all i, we can again use Lemma 5.5. If f;, # f .
for some i, then it follows from (6.4) that in D'(p,)

ID./;,Q Dﬁql C'ﬁo f I/dlSt(pOa Xj 1)

(C independent of p,) and to finish the proof we proceed as in Lemma 5.5.

We now prove (1.6, k) by increasing induction on k. The case k = 2 is
covered by the induction step. Assume that (1.6, k) does not hold and let &
be the smallest integer with this property. Take real-analytic maps
q;, ("), ..., q;,(r) as in Lemma 6.2. Then

ord Q-1 (‘1]1 (n) < Ofd.Qj,,_i— 1 (‘1j1 (")) (=ordg, (‘Ij1 (")) )
for otherwise (1.6, k) follows from (1.6, k—1). It follows that for all s
(6.5) ordlgy, () —g;, (") > ord g; -1 (4;, ().

Fix a n" = n(£]): C"— C"~! which is e-regular (for some &) with respect
to X,"' at every g, (1) and [n";| > C > 0 for some C and all 5, where 7;_is

the unit tangent vector to g; (¢). Then fix a "t =1r(é,;_11) which is e-
regular with respect to X2Z? at every n" q,,(t) and |z"~1 Ej |>C >0 for all s,

where tj is the unit tangent vector to n"g; (t), etc., until we fix a nj" '

For simplicity of notation assume that every =': C‘—> C'"! is the standard
‘projection. Let nP:; CP — C? be their composition, p = g = j;.

Consider n"'j"(qjk(r)); replacing r by its power we can assume, that
dist(n"*(q;, (M), Xj*"") is of order r, seN; thus s is also the order of
dist(q, ("), X2*") by Lemma 63, and, by Lemma 6.1,

. ,J =1
dist (" *(g;, ), X )= Cltf, teC.
By a propef choice of coordinates X, ..., Xy, In C’* we can assume that

" (4, (0)) 0 and that =™ (45, (1)) is not tangent at ¢t = 0 to the direction of
thc x,-axis. Then the xl—coordmate of =" (qjk(t)) can be written as

(=™ “(4;,®), =t"+o(t?). Let I of §5 be n""‘(q,k(t)) and define x(t, #) and
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U, by (5.1) and (5.2). By (6.5), n"'j"(q,a(r)) can be written as x (2,(r), u,(r)),
a=1,...,k where t,, R-C and u,: R— C 1 osatisfy 1,(r) =r+o(r),
u, (r) = o(1).

LemMMaA 6.4. There exist an integer q, arbitrarily small perturbations g, ()
of q;,(r?) and quasi-wings V, = {(x(t*, w), £i(t, w))} over U, (for some ¢ <)
such that:

v, c X%,
g, = (x (L ()5 4 (1), Lo (ta (), e )

every pair V,, V,.. is nicely situated.

Proof. We construct g;_ and ¥, by decreasing induction on o. To get ¥,
put  first Vrk=U, We Ilift v to Xj,’:ﬂ, i.e. we consider
( J"“) (Vk”‘)r\Xij By Lemma 5.2, this is a sum of quasi-wings over
U,.. From among them we select that one (call it ij" ) which contains
n""‘”(qjk(r)). Now we lift ¥/**' to

procedure until we get V' =V,.
Suppose we have already g; and ¥, = {(x(t°, u), f,(¢, w))}, where f,

=(fa,1> -+ s Jan—g)- We shall construct ; _, and V,_,. We perturb qj, -
that the perturbed map g, _, liesin X’ 2~ 1 and satisfies for every r # 0 and every

Bsix SBSju-i'm Jk(‘]}, 1("))"77-' (‘11,, 1()) and n"ﬂ(qja_l())¢I/¢ﬂUXﬂ !
for r#£0, f <j,-1, where

V“ﬁ = {(x(ta’ u)’ (L,l(ta u), taey f‘;"ﬂ_-’k(t’ u))}

Xk Ju+2 and select V;**%; we repeat this

Then the same holds for the complexification of g; _ . Using Lemma 5.1
(after maybe replacing r by its power) we construct (inductively on f) quasi-
wings ¥, (for § <j,-,) containing n™#(g; _, (r)) such that Vf and V!,
are nicely situated, 7f(VA )=V and VL, nX{'=0@. We Ilift
Vujil1 to X/~ Jae 1+1 and, as before, we select a quasi-wing V;’E]‘H containing

a1 l(q,z ,(M); by Lemmas 53 and 54 the quasi-wings plagtt!

and V1t {0, ), (fr &), ovns S pr 1=t W)} are nicely
situated. We repeat this procedure untll we get VL, =V,
Now we show that (1.6, k) holds for § Gy, )y o, G (1) r > 0 Observe that

x, (%, 0) =t +0(t"). Let @(t)=t+... so that x,(t*,0)=¢(@®)" In D

(n"'j" (@, (1)) (for » > 0) we choose the branch of x!/* which takes the value
o(t) for u=0. Put ¢ = 1; then for all « we have 3, (NeV,, . For xe ¥, , let
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P, C"> T.V,, be the orthogonal projection and let P;- = I—P;}. Then, by
Lemmas 5.5 and 6.3 we have

(6.6) |Py; Py ol <Clg, 0=, \/dist (, (), XY,
Further, we have
(67) Py 0= Pay ) Py, ol < CIL ()=, (W/dist (T, (), X7F70),

for
L
Py, 0= Py o0 Py, ol = (P, ) Py 0= P, 00 Py ) Py ol

v 1
=Py 0 Pry 0 Pry,, ol S1Pg0 Py, ol
Now it is enough to write

1 71 ¢ ’ 1
|P{,‘1(r) P-sz(") rer Pll'jk(f)l < IPq_,'l(") Pﬂjz(’) o quk(")l'{-glpﬂ'jl(r) quz(r) e

! ! !
i 7, (P 7,0 i q,-a(r)) P O RRE P q,k(r)l

71 ] I
<Py o Py - Pyl |
1 ~ ~
|qul(r) qu (r) - qu w1, ) —ay, ., ()
1
dist (7, (1), X» )

+CY

and use (1.6, ) for | <k, (6.6) and (6.1).
To get a contradiction it is enough to remark that if g;(r) are

sufficiently small perturbations of q;,(r%), then they also satisfy (6.2).
To prove (1.7, k) we use induction on k. First we prove, as in the proof
of (1.6, k), that -
| Py qul P,,Jk] < Clg'—g;,/dist (g, Xt
Then we note that
L 1 1
|(Pq,—1qu1)qu2 quk| < |Py P"h . |+|P P P jz qukl

and use (1.6, k).

7. Whitney’s conditions

Let ge Xi, q'e X%, k <j; let 2a(q, q') be the angle between T, XJ and
T, X%, then |2sina(q, g)| = |P} P, |-
ProposiTioN 7.1.  |a(q, ¢) < Clg—q|/dist({q, ¢'}, X5~ 1.
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Remark. This inequality is much stronger than Whitney’s condition A,
which is equivalent, by Lojasiewicz’s inequality, to the estimate

(7.1) (g, 4) < Clg—q'|*/dist({g, ¢'}, X3 ')

for some 4, p > 0. The existence of a stratification satisfying (7.1) with 1 = 1
is proved in [8] (in the real case).
Of course we are assuming that the vectors &' are chosen as in § §.
Proof. Our estimate is trivial if |g—q'| = (1/2¢¢) 0x-1 (). Assume that
lg—4q'| <(1/2co)x-1(q) and take a chain g, =g, ..., q;. Let m be the

smallest integer such that j,, > k. Then

L = |pl L 1
IP,I_,1 quml = IP'ln (P“Jz+Pqu) o (P,,jm_1 +qum_ 1)quml

< Clgy, —q;,)/dist(q, Xk,
ie: la(q, g;,)| < Clg—g;,|/dist(q, X5 !). Further, we have
'qum_-Pq’, < Ciqjm—qll/dist({qjms ql}, Xﬁ—l),

which finishes the proof. :

In [8] it is proved that condition (7.1) with 4 =1 implies Whitney’s
condition B (in the complex case it is actually equivalent to it, as was proved
by B. Teissier). However, we shall prove it directly for the case of generalized
normal partitions.

ProposiTION 7.2. The stratification {X?} satisfies Whitney’s condition B.

Proof. Suppose that this is not the case; then for some k < j there exist
real-analytic maps q(r), ¢'(r) such that q(0) = ¢'(0)e X%, q(r)e X4, ¢'(r)e X*
(for r > 0) and

£(@(M-q'), T, Xi)»0.

Then the same holds for a sufficiently small perturbation §(r) of g(r). We fix

- projections 7" = n(&), 1" =w(E]7Y), ..., n* 2 = n(E¥*2) such that every n'
is e-regular with respect to Xj~' at n"(¢(0)). Again assume for simplicity that
every n' is the standard projection. Let y,, ..., ¥4+, be coordinates in C**!
such that X§,, has equation y,,, =0 in a neighbourhood of n™***(q(0)).
Then every X}, in a neighbourhood of 7™ (q(0)) has equations of the form
Ve+1 =0, X; = @y(yy, ..., ¥i)» ¢, analytic, s =k+1, ..., m. We perturb q(r) a
little, so that the perturbed map 7(r) satisfies

™ (Fr))¢g X"t for r>0and m=k+1,...,j+1.
We select a quasi-wing V; € containing #%(7(r)) such that ¥~ (X4~ 1\ X%

= @. Then we lift it succesively to a quasi-wing V, X/ containing =™ @),
s=j+1, ..., n. The quasi-wings ¥, is of the form x, = f,(y;, ..., Vi, VilT1)
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= (ps(yl’ "','yk)+|//s(yl> T Y:¢1)}’§+1,' 'l/s invertible, a> 1. Then (see
e. g [5]) €(@)—4'(r), Ty, V,)~0 and we have a contradiction.

Remark. One could ask if an estimate of the form
|%(@—q', T, X)) <Clg—q|/dist({q, q'}, X% )

" holds for _le{., qg'e X* k <j. This is not the case: there is no stratification
of {(x2+y*—z%(x*—2z*) =0} = C* having this property.

8. Extended quasi-wings

These will be objects needed in the proof of the second part of
Proposition 1.3.

Fix a splitting C" = C*@C*@®C™*~!; we shall denote points in C™ by
(x, y, 2), where x=(x,,..., x,,)eC", ze Cl, y=U1 .VM—k—l)ecm*k_l'
Let ' = C* be a (germ of a) curve in C* and define x(t,u) by (5.1) and
U, = C* by (5.2). An extended quasi-wing W over U, is the set of points of
the form :

x=x@u), z=/fi(t, )+l y=0@ v, t+#0, [#0,

where ¢, d are non-negative integers and f;(t, u), ¢(t, {,u) are analytic
functions satisfying

1D, 0| < Cltf*,
Dol <Cltf|¢*"t if d21 and |D. ol <Cltff if d=0.

Put &(1, {, u) = (x(t, u), f1(t, )+l @(t, {, u)); then W =&({t #0,
{#0}). Let W=0({t#£0,{=0}).

We shall not distinguish between W and its germ at &(0, 0, 0).

If we replace t, { by 1 {® (a, BeN), we obtain an equivalent
representation of W. The numbers s/a, c/a are of course the same for
equivalent representations.

Consider a point p, = @ (to, {o, Ug)€ W. As in the case of quasi-wings, in
a neighbourhood of p, we can solve the equations x = x(t° u),
z = f, (t, u)+1t°{* with respect to t, {, u; if we insert the solutions into ¢, we
obtain the decomposition of W into branches:

(8.1)

Wee: ¥ = @gp (%, 2),

where ¢ is a pa-th root of unity and ¢’ a c-th root of unity; the estimates
(8.1) are equivalent to the condition

(82) D, @uel K C, Dy gl <C for i>1, where C is ’
' independent of p,.

We can define similarly the branches of W,, of W.
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Put f5(t, w) = @(t, 0, u). If W z= Si(t, w), y = f5(t, u) is a quasi-wing,
we shall say that W is an extension of W. Note that necessarily we have
D, fal < Cl*

The following selection lemma generalizes Lemma 5.1 and, applied to
every y;, will enable us to select extended quasi-wings.

LemMA 8.1. Suppose we are given the following objects:

1) a function f(t, u) (with values in C) such that |D, f| < C|t|°,

2) | functions ¢;(t, L, u) (also C-valued) such that:

a) ¢;(t, 0, u) = 1(t, u)

b) @i (t, {, u)# @;(t, {,u) for i#jand t#£0, { #0,

c) |D, ol < Cle°, ID;(P:I Cle|g1=1,

3) functions u(t), {(t), y(¢) such that:

a) y(t) # @;(t, (O, u(®) for all i and t+ 0,

b) ord{(r) = 1,

O [y(0)=7 (t, u@)] < CIHEIL (O (equivalently, |y()—F (¢, (1)
< C|t|c+d).

Then there exists a function @(t, {, u) such that:

(1) (P(t, C’ u) 96 (Pi(t, Ca U) for all l and t :/" 0, C 7& 01

(2) q)(ts 0, u) =f(t7 u)a

(3) y(®) = o, L), u(®),

4) D, @l < ClY°,  |Dyol < Clefffg=t.

Proof. If I =1, then we put

o(t, {,w) =@/ @)+ (t, L, w).

Now we proceed by induction on L Clearly, we can assume that ¢, =0.
Then

o;t, L,w=1""g(t, {,u), @ invertible.

Ncccssarily r2c s5>dand |D,3) < Clt|” " Suppose first that there are r;,
s; (suppose that r;, s; are among them) such that r,+s; = ord y(¢):= v. Then

@ will be in the form @ =:1{"' @, @ invertible. Then we must have

@(t, L), u®)=5(t), where J(t) = y(t)/t",
$#g fort#0, {0,
1D, @l < Cle” ™.

These conditions are not automatically satisfied only for those @; for which
@:(0, 0, 0) = y(0), and there are less than ! such functions. Thus we can use
the induction assumption.

Now suppose that r;+s; # v for all i. We note that then the set of all
pairs (r;, s;) is ordered by the relation (r, s) < (v, s')<r <1, s < 5. It is easy
to show that there exists a pair (rq, 5o) such that ro+so=v, ro=c, s, = 4d
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and the set of pairs {(ry, o), (ry, s1), ..., (r, s;)} is ordered by <. We put
e=0°0F(), where F(() = F(0).
We shall need also the following generalization of Lemma 5.2.

LemMa 82 Let X « C™*! = (C*®C'@C™ *" )@ C! be a hypersurface
with a reduced equation F = 0. Let Q be a neighbourhood of 0 in C™ such that
for all £e Q we have the decomposition

(83) F(x+4(¢ 1) =0(x, &, Y P(x, &, 1),
where Q is invertible and P is a distinguished polynomial with respect to A.
Denote by A,(x, &) its generalized, discriminants.

Lett m: C"*'—>C™ be the standard projection. Let W
=®({t#0,{#0})=C™ be an extended quasi-wing. Assume  that
w7 (W) N X — W and m: 2™ (W)X > W, are local isomorphisms
for all branches of W and W. Thus, after replacing t and { by their powers, we
can write Y (W)nX = U W, where W, is the image of {t # 0, { # O} under

an analytic map of the form &, =(&, y).
Let & > 0 be a given number. Let {£;} be a finite set of points of Q, &, = 0.
Put
By={i: |§{~¢]| <¢}
and assume that for all j and o
(84) Z Aa(x) él) @x = Z Aa (xs 5) @x'
ieBy &en

Assume that for every i and | there is an a(i, l) such that for all xe W,

Ag(x, &) =0 for B <a(,l), Aa(t,l)(x; ¢) #0.

Assume we are given an ly and a curve I' c ™1 ( W) N(closure of W‘o)‘
given by { = 0, u = u(t), such that = = n(,) is e-regular with respect to X at a
cusp-like neighbourhood S of T in W,.

Then, for some ¢’ < &, every point of W is e -regular with respect to X. In
particular, W, is an extended quasi-wing.

Proof. It is a modification of the proof of Lemma 54.

To prove that for all i we have a(i, lp) = «(1, l,), we take a curve
I'' = §; its points are e-regular with respect to X and we repeat the first part
of the proof of Lemma 54. Now put 4 = 4, ;. Then A(B,, (1, L, ), &) is

either identically 0 or # 0 for ¢t # 0, { # 0; thus in the latter case
4 (610 (t’ C’ u)y éi) = triCSi Zl(t: Cs u)9

4; invertible. We claim that r; >r,, 5, =5, for all i

3 -~ Dissertationes Mathematicae CCXLIII
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15,‘01(S) contains for some N the set
S ={(t, {,u): 0<|g <[, lu—u(®) <[t}
It follows from the regularity of = that for some M and all (¢, {, wes
0 <M~ <|A(&, (1, L, w), EYA(By (. L), &) < M
for |E—¢&,| =& <e. Put { =tN¢ Then for all ie By
M = NS (1, &, ),

where J, are defined in §' and M~! |8 < M. Then r, =ry, s;=s,. The
claim now follows from (8.3).
We thus have for all éeQ2

A8, (¢, w), &) =11 A, CLw, 8,

and so 'A(d’,o(t, L, u), €) #0 for €] <& for some & <e¢ which finishes the

proof.

To apply Lemma 8.2 we shall have to find points {£;} satisfying (8.4).
This will be done with the help of the following lemma, which is proved as
Hilbert’s Basissatz in [6].

Lemma 8.3. Let B = {xe C": x =(xy, ..., X,), |%;| <¢ for all i}, where ¢ is
a fixed number, let V, be an open connected set in C” and let I be an ideal in
O(B x Vy). For any open set V < V; there exist a finite number of points ;e V
and a finite number of functions F,eI such that

ZFS('s éi)(oxz Z F(" é)@
i,s Fel,leV
Proof. Since C[[x, ..., x,]] is flat over 0,, it is enough to prove the
lemma after replacing O, by C[[x,, ..., x,]]. We proceed by induction on n.
If n= 1, we consider the Taylor expansion of every Fel:

F(x, &= Z &

Let j, be the smallest index such that fjo # 0 for some Fyel. Choose a
¢, eV such that f,o (£1) # 0. Then every F(., &) is divisible by Fq(., &;), i.e.
Fo(., &) generates Yy F(, &) C[[x.]]

Fel eV
For the induction step we consider the expansion of every Fel with
respect to x,

F(x, &) = Zf,xé)x
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where x' = (xy, ..., X,~y). Put B" = {(x,, ..., x,_4): |x|<eforallt} Let j(F)
be the smallest 1nteger for which fjf, # 0. Clearly, {f¥,: Fel} is an ideal in
O(B'x V,). Select points eV and functions F,el such that fj(F)( &)

generate the ideal 3 fin(, &C[[xy, ..., x,-,]]. Then it is easy to

Fel,{eV o

prove, as in [6], that if eV, and j(F)> maxj(F,), then
F(, é)eZF (» &) C[[xy, --., x,]]. To treat the case of j(F) < maxj(F,), we
repeat the argument of [6]. '

9. Proof of Proposition 1.3

The proof of the first part of this proposition is simple; we shall prove
(by increasing induction on k) that if £ are chosen as at the beginning of § 6,
then the generalized normal partition {X7) satisfies (1.8, k).

Let k=1; we have to prove that if ve T, X! then

1D, P,| < Clol/dist(g, X37").

Let y(r) be a real curve in X7 such that y(0) =g, (dy/dr)(0) =v. Then, by
(1.7,0),

lDu qu hm IP‘y(r) - y(O)I/r
< hn; |P1(r) - y(0)|/|"l
< lim Cly () ~»(O)|/Irl dist (¥(0), X3™1) < C Jol/dist (g, X§™Y).
r—=0 ’

For the induction step suppose that (1.8, k) does not hold; let k be the
smallest integer with this property. Then there exist real-analytic curves
a;, (") =q (), 45,1, ..., g;,(r) such that g (r)e X’ (for r > 0) are a chain for

q(r) and for some v = v(r)qujl(r) ,,jk(r) C" and >0
9.1) ID, Pl = Clol/dist(q(r), XK~y ™"

We choose admissible projections 7' (for i > j;) as on p. 36. By Lemma 64
there exist perturbations g; (r) of g; (r9) (which can be chosen to be
arbitrarily small) and  pairwise nicely-situated quasi-wings ¥,
= {(x(+*, ), f;(t, W)} = X} containing {g; (r): r # 0}.

Assuming that n' are the standard projections, we choose (as in [7]) for
every i>j, an analytic function P;(x) such that P, depends only on
Xy, ..., X, is a distinguished polynomial with respect to x;, its discriminant is



36 Lipschitz equisingularity

# 0 outside of X'~2 and X} = {P;(x) =0 for all i >j}, j = j,. If ze X}, then
T, XJ is spanned by the vectors

mO=e-3 (Zf @ )/ap' @)er x<)

i>]

The vector fields w, ((x(¢*, w), f1 (t, w))) are analytic in ¢, u, since (obviously)
they are meromorphic and are bounded (by the regularity of projections).
Thus if zeV;, v'e T, V;, then

1D, we (2] < Cvl/dist(z, Xo™),
and so
9.2) D, .| < Clofl/dist (z, XY,
Now let v = P,;jl(,) P;. nv* v*e C". Puti
, v' =Py ¢ Pt
where P, is (as in § 6) the orthogonal projection onto T, ¥; for ze V. Then
©3) lo—v' < C1;, () —,, 0 [o¥/dist (@, 0), X2,

for
k=1
-v'= ) P; P- (P;, oy —P5 o) P R
= TR TARN A TR TR T ) 25,

and we can use (6.7). Writing D, P = D,. P+D,_,. P and using (9.2), (9.3) and
the inductive assumption we get

D, PEJI(r)l < Clol/dist (g, (), X{‘k-l)_

To get a contradiction, it is enough to remark that (9.1) holds after replacing
q(r) by g(r), provided that the perturbation is small enough.

For the proof of the second part of Proposition 1.3 we first. specxfy
admissible projections 7 (&"). We choose them (using Lemma 8.3) in such a
way that, besides the conditions on p. 31, the following two are satisfied: 1)
there exists an ¢ such that for every m < n and for every curve g(t)e C™ there
exists a £ such that n(£]") is e-regular with respect to X%~ ! in a cusp-like
neighbourhood of g(t), 2) if F=0 is a reduced equation of X™ !, P is
defined by (8.3), 4,(x, &) are the generalized discriminants of P, Q = Q,,, then
(8.4) holds. ‘

Now we shall define an integer N,; we start with a lemma.

LeMMA 9.1. Let P(x,t) (xe C", teC) be a distinguished polynomial with
respect to t of degree p without multiple factors, P(0, t) = tP. Let 4, (x) be its
discriminant. Put B = {(x, t): |P(x, t)] < |x|?|do(x)I"}. If (x, )€ B, then there
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exists exactly one t; such that P(x, t;) = 0 and |t —t;| < |x||d¢(x), while for all
other roots t; of the equation P(x,t) =0 we have |t—t;| > (1—|x]) |do(X)].
Thus the functlon B3(x, t)—(x, t;) is a retraction B— B n {P = Q) preserving
fibres of the standard projection B — C".

Proof. If t; are all the roots of P(x,#) =0 counted with their
multiplicities, then P(x, t) = [ [(t—¢;). Thus if |P(x, t)] < |x|?|4,(x)|?, then for

some i.[t—t;] < |x}|4o(x)|. Since Ao(x T1 (=1, we have |t;—1,] = {4, (x)|
i#k

for j# k, and so, for j#1i, [t—t] 2 |t;—t)|—[t—1t;] = (1 —Ix])| 4o (X)].

Now let I, k be integers, I >k, and let z =(m;,..., nf%") be any
sequence of admissible projections. Put

n' = (m s . L) Let XE(m) = XAk, o...oml) T (XF Y

where X;*~! is defined on p. 12. Using Lemma 9.1 we select for every n 2
sermanalytlc nelghbourhood . of X¥(z) and a retraction rg: Vo— X¥ such
that n} or, =ryom,.

Let L(z) be an integer such that for all peV,
lp—ry(p)l < dist(p, X})/dist(p, X}~ 1)H=.

There exist a semianalytic neighbourhood ¥ of X¥(m), V, = and an
integer M (zm) such that for all p=(p;, ..., p» 9 =1(qys ---» q,)e V’

if rl_z(p) ;l'- rz_r (q)’ n:l (p) = nil‘(q): then
—qy = Cdist (n,'(p) xi-t )M(’)

We take for N, any'integcr such that the following two conditions hold:
1) No>L(m)+1, No> M(n)+1 for all k, | and £, 2) if . C"— C' is any
composition of admissible projections, then 1r(U,\,D ) < V;, for every k, | and
7 (U, is defined on p. 7).

We now pass to the proof of (1.9, k).

LeEMMA 9.2, There exists an o« < 1 and a 6 > O such that, for every j and
k:if ge X), q = Qjys Qigs -+ 15 @ chain for q and ge Uy,;,, then there exists a
we T, X, |w| =1, such that | % (w, Py ... Py, (C) = 5 and

9.4) D, P,| < C/[dist(q, X~ ¥ " dist (g, X7r].

This of course implies (1.9, k), for writing a = 1—n, # > 0, it is easy to
check that (9.4) implies that (1.9, k) is satisfied in Uy;, where N
= 2(No—1)/n.

LeEMMA 9.3. Assume that Lemma 9.2 is false. Then there exist positive
numbers », u and real-analytic curves q(r) = q;, (1), g;,("), ... such that q;(r)
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are a chain for q(r) and for every r # 0 and every we C", |w| =1, we have
(9.5) lf |{ (W, qul(r) e quk(,.) (Cn)l = rx, then

ID,, Pyl > /[ dist (g (), X+~ )"0 dist (q(), X9)]-
(9.5) holds also for sufficiently small perturbations g, (r) of q;, (7).

This lemma is of course a direct consequence of the curve selection
lemma.

Lemma 94. If q(r)e_f({,m Ung.y, Jor v # 0, then there exist an arbitrarily
small perturbation (r) of q(r) and an extended (j; + 1)-dimensional quasi-wing
W< X! (in a suitable splitting C" = C*®C'@®C" ") containing q(r) and
W< X{,".

Proof. Let g'(r)e X’* be a curve such that |g(r)—gq' ()] = dist (g, X{,").
Let q(t), q'(¢) be the complexifications of g(r), ¢'(r). We choose admissible
projections n™ == (&) (for m > ji) such that every n™ is e-regular with
respect to X7~ ! at (n"*!o...on"q'(t). As before, assume that every n™ is
the standard projection C"—C™ ' and let n™: CP—>C? be their
composition. We take n™*g'(¢) for I' of § 5 and define U,, x(t, u) by (5.2)

and (5.1), where s = ord dist (" ¢ (r), Xj:_l), which can be assumed to be an
integer, maybe after replacing r by its power. We take a perturbation §(t) of
q(t) such that 7™ ()¢ Xi™* for t # 0 and j;, < i <j, =j. Let ¢ (appearing in
the definition of an extended quasi-wing) be (Ny—1)s.

By increasing induction on m we shall construct (for m <j) a (j,+1)-
dimensional extended quasi-wing W, < C™ containing n"§(t) such that
W, < X% W,nX"1=0@ and n"*1"(W,,,) = W,.

To start induction we observe that, by Lemma 5.2, Xf,’:ﬂ is a sum of

quasi-wings over U,. Select this one that contains phet q'(t) and denote it
£

by V,+1; we can describe it by x;, ., = f;(t, u). We put
Wit X400 = f1 (1, u)+ {7,

where d is an integer such that the equations of n"""‘“’(q (1)) are: u = u(z),
{ =((), and ord {(z) = 1. )

Now consider Xj:Hn(n -1 (V) +1); this is a sum of quasi-wings
which can be described (after replacing ¢t by its power) as

jk+2)

ij+2,l: X +1 = fi(t, u), Xj+2 = f2i(t, w).
Suppose that V) 4, contains n"'j"+2(q’(t)). The open set

D: Ixjk+l_f1 (t, u)| < e, Ixjk+2"'f2.1(ta u)l < |t
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does not contain the graphs x X +1 = Ji(t, u), Xj+2 = fa,u(t, u) for i > 1. By
Lemma 8.2, Dr\Xj"+ 2 1s a sum of extended quasi-wings. Let u = u(t),

{ ={(t) Xj+2 = %;,+2(t) be the equations of n”"”(q(t)).
ord (xjk+2(t) ~fa1 (1, “(t))) = ord (xj,‘+1 o —fi(t, u(t)))

we can use Lemma 8.1 to find W, ..
Now suppose that

c+a = Ol'd(xjk+z(t)_f2.1 (t, u(t)))
< Ord(XJk.'.l (t)—fl (t, u(t))) = c+ﬁa

where x;, 1 = x; 4+, (£) on Z(r). We take xy,+2 for the z-coordinate of § 8. Let
{(t), ¥ (t) be functions such that ord{(t) =1, ordys(¢) > 1, and

Xyt () = £ (t, w(®)+ € (0),
Xper2(8) = fou (t, w()+1°L (0.
Put ¢ (t) = ¥/ ({ (1)) and define W, ,, by
X, +1 = f1(t, u)+ 15§ ({), Xpe2 = foa (6, u)+1° ("

The induction step is similar. Assume we have already constructed
Wu-1 =®({t#0,{#0}) cC" ! Let x; be the z-coordinate of § 8 (j, <!
<m). Let VI{,,, , be given by x=f{t,u, i=j+1,...,m—1
X tA(@™~(W,-,) is a sum of quasi-wings V, over U,; after replacing t
by its power we can assume that each V, is given by x; = f(¢, u) (i <m), x,
= fmo(t, t). From among all Vs select this one (call it V}) which contains
n™(g'(t)). The set

D= {(xl, cey xm): (xh ) xm—l)EWm-ll Ixm_fm.l(ta u)l < |t>|c}

has empty intersection with each of the sets {(xi, ..., Xp): (X, c-es Xm—1)E
EWop1, Xm = fpna(t, )} for o # 1. By Lemma 8.2 (z™) ™ (W,,_; nD)n X1 i
a sum of extended quasi-wings.

Let x; = x;(t) be the equations of n"(§()), i < m. Then ord[x,(f)—
~fm1 (&, u(®)] > c. If

ord [ Xy, (£) —fom,1 (¢, u(9)] = ord [x, (1) —fi (¢, u ()],

we can use Lemma 8.1 to find an extended quasi-wing W, in C" containing
n"™ (g (1)) such that W,n Xp ' =Q, n"W, =W,_.;, Wa=V.

Now suppose that

c+a = ord [x, (1) —fm1 (t, u())]
<ord[x,()—fi(t, u())] = c+5.
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The z<coordinate of § 8 for W, will be x,,. Let {(t), ¥;(t) (i =jx+1, ..., m—1)
be functions such that ord{(¢) = 1, ord¥,(t) > 1 for all i and

X (®) = S (8, 0(0)+ £ ("
()= filt, u@)+eW @), i=j+1, .., m=1

Put ;(t) = ¥; ({ ()} and define W, by

Xm = fm,l(t’ u)_}_tcca’
X = fit, )+ 0, i=j+l,...,m—1

In this way we get W, < C. Using Lemma 8.2 we can lift it via
w/*l ...,n" to an extended quasi-wing W < C" satisfying all the
requirements of the lemma.

We can now prove Lemma 9.3. Let W=@({t+#0, {#0}) be an
extended quasi-wing containing J(r). As in the proof of the first part of
Proposition 1.3 we construct vector fields w, (¢, {, ), analytic with respect to
t, {, u, which span T, X’ at every point g = @(t, {, ue W. Put w' = &, (§/a0),
w =w/w/|. Then |w| > Cl¢*|{|*"* and so

Dy il < Clow/aLl/1e L1~ < CAF .

But  [f > Cdist(g, X2 1Y, |gf|g¢ > dist(q, X%, so  |gelget

> Cdist(q, X 'YV dist(g, X'~/ which finishes the proof.

10. Proof of Proposition 1.4

Let {X},} be a generalized normal partition satisfying the estimates of
Proposition 1.2. Let j, I be integers, j <! < n, and let ¢, be a number > 2n.
For every I'<! and every sequences of integers j =(j;,...,jy) and m
={(m,, ..., m;) we put '

X{(co; j, m) = {ge X{: there exists a co-chain
q =4y, 4j,s ---» 4y, for q in the stratification {X7j} of
X|™! such that g, (9) < 27" s=2,..., 0.

For every sequence of integers m* = (m¥_(, ..., m§) we put

A

A{(m*) = {le{ Ql(q)< 2_Mis l=.’_17.]—2’ ey 0}

We shall estimate the 2j-dimensional Hausdorff measure | 4] (m*)| 2j of Af(m*)
(induced by the usual metric on C'). We need a preliminary lemma.
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Let k, m be fixed integers, k < m. For every compact K = X* we put

K(r) = {xe X}: dist(x, K) <1},
B(K, r) = {xeC™: dist(x, K) < r}.

For every A < C™ let |A|, be the s-dimensional Hausdorff measure of A.
LemMa 10.1. There exists a constant C, independent of K, such that for
every r < dist(K, X1
[B(K, )lam < CIK (1) r*™ 5.

Proof. We choose a projection #: C™— C* being a composition of
arbitrarily chosen admissible projections #f, s =k+1, ..., m. Since n: Xt
— C* is a local isomorphism, there exist vectors ep(u =k+1, ..., m) which,
considered as vector fields on C™ are transversal to X* at every point of X%.
‘Putting e, (x) = P+ e and applying the Gramm-Schmidt orthonormalization,
we obtain orthonormal vector fields e,(x), defined on X% satisfying

(10.1) |De, ()| < C/dist(x, X5 1).

Clearly, for every point y of B(K, r) there is a point xe K (r) such that
|ly—x| is the distance from y to K(r) and therefore the interval y—x is
normal to T, X%. Thus

y=x+)1,e,(x), tl=trs1, ...t 7.
We repeat the calculation from [5]. We have
dy =dx+Y dt,e,+) t,de,
and dx =) w,e, (where ¢, is an orthonormal base of T. X%, lo =1, de,

=Y w,, ¢;, where the 1-forms w;, satisfy |w, (x)| < C/dist(x, X}~ ') by (10.1).
Thus

k

dy, Ao Adyy= N\ (e + Y t,05,) A Adty,
u

=1
and since
(0, +t, 0q,) (%) < _1 +rC/dist(x, X% 1) < C,

we get the desired estimate.

LeEMMA 10.2. For every I there exist constants K; and C; = C such that for
every ¢, assumed (for simplicity) to be a power of 2, co = 2°, and ¢, = K, and .
Jor every j, m, m* we have the estimates

; s - 2[ma(j1 —Jz)+mala—Jja)+... +mpipl
| X1 (cos j» mlay < C2 ,

A (m*)),; < C27m,
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Proof. First we prove that the first estimate implies the second one. Put

Bj(m*) = {ge X{: a;(@e[2”™ ", 27™] for all i};

since A](m*) is the sum of B{(n*) over n* = (n}_,, ..., n§) such that nf > m}

for all i, it is enough to prove that |Bj(m*),; < C2 22"". This inequality

follows from the inclusion Bj(m*) = X{(j, m), where m =(m, m,,..) is
defined by m, = mj and j is defined (by decreasing induction on s) by:

Jj1=1J, Js+1 is the smallest index <j; for which
mj +1 mj -1 + 1 —_ b
Now, assuming the first estimate to be correct for some /, we prove it for
I+1. We distinguish two cases.

1° j <14+1. We observe that X{.,(j, m) = Af,,(m*), where m¥ =m,;
for ie[ji4+1, j)- Let a be the smallest integer greater than lg,(4n%) and let

m** be given by m}* =m}+a. Since for all s and all i;,; we have
m, L (Xi+1) = X3 and because of (1.3), nfﬁ‘l (Af+1(m*) = A{(m**). By the

inductive assumption, |4{ (m**)|;; < 2 < <C2 Em 3 , S0 it is enough to prove that for
some C, 1ndependent of m*, |4l (m*),; < CIAJ (m**)|2;. Take a finite cover
{Xgra=1,..., 4} of X’{ by measurable subsets X, such that for every X,
there exists an admissible projection n,l +1(a) inducing a homeomorphism of
X, onto its image and being e-regular with respect to X!, at every point of
X,. Then for every Y c X, we have |Y|21 < Clmit @ (Y)l2y where C depends
only on ¢ Thus

IA{+1 ('_"*)|21 < Z[A{+1 (m*) “Xa|21
CZI’HH 1(@) A1+1 (m*) N Xa)lzj <C4 |A{('_"**)lzj-

2° j=14+1. It is enough to compute the measure of
Ay =X}y (cosJ, M {xe C* L gy (x)e[27 ¢+, 27w]),

On A, we have g;,_; > 2c3/2***. We take for K of Lemma 10.1 the set of
all possible second terms g;, of chains for points ge 4,, and for r we take

¢o/2". Then for a suitable K,,, (independent of J, m
have

y) and ¢o = K, we

K () = X131 (co/2: j, m)
and we can use the estimate for the measure of X,+1(c0/2 Jj, m) (since j,

<!+1) and Lemma 10.1.

Now we observe that Proposition 1.4 follows from the following local
statement:
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Let g, (v, w) (xe C", v, we T,C") be a smooth hermitian metric, {X%} a
generalized normal partition satisfying the estimates of Proposition 1.2 and
1.3, defined in a neighbourhood of 0. If P is an invariant polynomial of
degree j and Q is the curvature form of the induced hermitian metric on X3,
then P(Q) is integrable in a neighbourhood of 0.

We shall estimate |P(£2)] on the sets XJ(c,;j, m). As before, | | denotes
the standard euclidean norm on TC". Let N, a, § have the same meaning as
in Proposition 1.3.

If g(r)e X! is a real-analytic curve and q(r)=g;,(r), q Jz(r) . is a chain
for q(r), then we put

Vi(r) = Py, RS q, (€.
LeEmMa 10.3. Let q(r) be a curve in X q(r) = q;,(r), g;,("h ... a chain for

q(r), r > 0. Then there exist vector fields e((r), ..., e,(r)e T, C" such that:

1° for some p every e;(r) is analytic in r'/? and, for some C independent
of r,

CigleyMA... e <C

2° ey (r), ..., e(r)e Tpyy X4, for r >0,

3° for every r > 0 there exist real-analytic vector fields &, ..., &;, defined
in a neighbourhood of q(r), such that &(q()=e () (i=1,...,)) and for
every s

(102)  |D,&(q() < C/dist(g(r), X2™Y),  for ve V() bl =1,
for some C, independent of r. '

If further, q(r)e Uy,;,, then there exists a line-field 1(r) = Ty Xi such that
|2 (10), %) > 6 and

(103)  |D,&(q() < C/dist(q(), ), X, i=1, ..., m,0el(r), o = 1.

Proof. We note that the limit lim ¥;(r) exists in the Grassmannian of j,-
r=0

planes in C" Using the curve-selection lemma we find e;(r), ..., e,(r)
satisfying 1°, 2°. The fields & are defined by &(q) = P,e;(r) for i <, &(q)
=¢;(r), i > j. In a sufficiently small neighbourhood of g(r) (10.2) is satisfied
by (1.8, k). The proof of (10.3) is similar.

CoroLLary: If qe X} and q=g;,, q;,, ..., q;, is @ chain for g, then
! ) _
IP@) < C/T] dist(q, X)™ "2,
s=2
where ji, | = 0. If, further, ge Uy, y=1—a, then

25— Js+1)

! .
IP(@)] < Cdist(g, X9¥/T] dist(g, X7)
s=2
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Proof. We apply the Gramm-Schmidt orthonormalization in the metrjc
g to the vector fields e, (r), ..., e,(r); we obtain g-orthonormal vector fields
e*(r), ..., e*(r) which satisfy, as is easy check, the conditions 1°, 2° of
Lemma 103, and every e¥(r) (i <j) extends in a neighbourhood of g(r),
r>0, to a vector field & satisfying 10.3. For every r > 0 we choose a g-
orthonormal base E(r) of T, X! such that E(r) n V,(r) is a base of V,(r) for
all s and r. Then for all i <j and for all s

D, 2¥ (a ()] < C/dist(g(r), X7 7), veEMN K0

which proves that the connection matrix in the frame Y, ..., & restricted to
XJ satisfies

1,1, () )] < Crdist (a (), X77)
for all iy, i;, s and ve E(r)n V,(r). From the structural equation

n
Qa'a = - Z gty N wua+Qa’a,
u=j+1

where ,, is the curvature form of g on C", we get
|Qua (g () (v, w)| < C/[dist (g (r), X5~ )dist(q(r), Xf,'_l)]

for ve E(r)n V,(r), we E(r) n V;(r). This implies the first part of the corollary.

To prove the second part,- we replace E(r). by another base E'(r).
Applying Lemma 10.3 to the degenerate curve 7(r) = q(0) we get a vector v,
such that |vg|. =1, | & (vo, V(7)) = & and (10.3) is satisfied. Let E(r) be the

base previously constructed. Let vy = Y, A,(r)v; let v, (r)eE(r) satisfy:
veE(r)
v, (N é V() |4y, (r)] 2 max {12, @) ve EM)\ Vi(r) } We take for E'(r) the set

(EM\ {o: (M} {vo}.
The corollary is strengthened by the following lemma.

LEMMA 10.4. There exists a constant > O such that, in the notation of
the corollary,

!
|P(Q)(q) < Cdist(q, X{")ﬁ/n diSt(q, X{Is)zus‘13+1)’

s=2

and if qe Un,js then

|P(R)(q)l < Cdist(gq, Xj')ﬂ dist (g, XJk)2y/H dist (g, XJs)Z(Js-Js+1)

s=2
Proof. Using the curve selection lemma we see that, in order to prove
the first estimate, it is enough to show that for every real-analytic curve g(r),
q(r)e X! for r > 0, with a chain a5, (") =q @), q;,(r), ..., 4;,() we have

!
(10.4) |P(Q)(q(r) Hdlst( (1), X290+ .0 as r0.
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Let e¥(r), ..., e¥(r) and &* (i < j) have the same meaning as in the proof of
the first part of the corollary. Let A(r)={a,(r), ..., a,(r)} be a g-
orthonormal base of T, C" such that A(r) N V;(r) is a base of V,(r) (for every
r and s) and a, (r) is the unit tangent vector to q(r). Now (10.4) follows from
(10.2), by calculations as in the proof of the first part of the corollary, and
from the estimate ‘

|D01(r) gr (‘1("))] <Clr~**"  for all i,

for some > 0, which implies that |w; ;,(a; (M) < Clr{~'*".
We can now finish the proof of Proposition 1.4. Fix a ¢, =2° > K,,. If
we define

u(p, q) = yn if p> Ng,
PP i p<Ng,

then Lemmas 10.2 and 104 imply that on Xj(co;j, m)
-1
-ZSE Mgt (ums 4 1 ms+ 2)Us—Js+ 1) Amy

1 X3 (cos J, mlo; [P(Q) < C2

Proposition 1.4. follows from the convergence of the series

1=1
—2 L ms+ 1ums 1 Mg+ 2)Us = Js+ 1)~ Bmy

22 P ,
Jm

which is easy to establish.



Bibliography

[11 — S. Akbulut, H. C. King, The topology of a real algebraic set with isolated singularities,
Ann. of Math, 113 (1981), 425-466.

[21 — S. Banach, Wsep do teorii funkcji rzeczywistych, Monografie matematyczne,
Warszawa-Wroclaw 1951.

[3] — 1. Briancon, J. P. Speder, La trivialité topologique nwimplique pas les conditions de
Whitney, C. R. Acad. Sc. Paris, t. 280, serie A (1975), p. 365.

[4] — Z. Denkowska, S. Lojasiewicz, J. Stasica, Certaines propriétés elementaires des
ensembles sous-analytigues, Bull. Acad. Polon. Sci, 27 (1979), 530-536.

[5] — P. Griffiths, Complex differential and integral geometry ..., Duke Math. J. 45 (1978),
427-512,

[6] — S. Lang, Algebra, Addison-Wesley Publishing Company, Reading, Mass. 1965,

[7] — S. Lojasiewicz, Ensembles semi-analytiques, IHES 1965.

[8] — J. N. Mather, Stratifications and mappings, Dynamical systems, Academic Press, New
York 1973.

[9) — A. N. Var&enko, Teoremy topologiceskoj ekwisingularnosti ..., Izv. Akad. Nauk
CCCP 36 (1972), 957-1019.

[10] ~ I. L. Verdier, Stratifications de Whitney et théoréme de Bertini-Sard, Invent. Math. 36
(1976), 295-312.

[11] — C. T. C. Wall Regular stratifications in: Dynamical systems, Warwick 1974, Lecture
Notes in Mathematics 468, Springer-Verlag, Berlin 1975, p. 332-344.



	21503.tif
	21504.tif
	21505.tif
	21506.tif
	21507.tif
	21508.tif
	21509.tif
	21510.tif
	21511.tif
	21512.tif
	21513.tif
	21514.tif
	21515.tif
	21516.tif
	21517.tif
	21518.tif
	21519.tif
	21520.tif
	21521.tif
	21522.tif
	21523.tif
	21524.tif
	21525.tif
	21526.tif
	21527.tif
	21528.tif
	21529.tif
	21530.tif
	21531.tif
	21532.tif
	21533.tif
	21534.tif
	21535.tif
	21536.tif
	21537.tif
	21538.tif
	21539.tif
	21540.tif
	21541.tif
	21542.tif
	21543.tif
	21544.tif
	21545.tif
	21546.tif
	21547.tif
	21548.tif
	21549.tif
	21550.tif
	21551.tif
	21552.tif
	21553.tif
	21554.tif
	21555.tif
	21556.tif
	21557.tif
	21558.tif



