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1. Introduction

This paper is devoted to presenting the existence and regularity properties
of solutions to the elliptic system

1.1 rotv =@ in Q,
(1.2) divb=0 inQ,
(1.3) Vlap =b on oQ,

where v, = v'fi and 7 is the unit outward normal vector to the boundary, in
a bounded domain © = R® with edges on its boundary. We assume that the
edges do not intersect one another so that there are at most two-surface angles
between each two boundary surfaces which intersect along one of the edges.
Moreover, the following compatibility conditions are necessary:

(1.4) [ b(s)ds =0,
a0

(1.5) divw = 0.

Although (1.1), (1.2) form an overdetermined elliptic system, it is shown in [15]
that the problem (1.1)—(1.3) is well posed in domains with smooth boundary.

In this paper the problem (1.1)-(1.3) itself is not considered, but is
replaced by the Neumann problem (see (3.2))

9
(1.6) dop=0in0Q 22| =0 onoq,

on |an

together with the elliptic problem (see (3.9))
(1.7) —de=w inQ, el,p=0, divel,, =0 onaQ,

where e, = e'7, is any tangent vector to 0Q, u = rote (see the transformation
(3.6)) and v = V¢ +u. This follows from two reasons. We neither know how to
find a weak solution nor how to apply Kondrat’ev’s theorems to the problem
(1.1)—(1.3) directly. Recently the existence of weak solutions of (1.1)—(1.3) in the
smooth boundary case was obtained by geometrical methods (see [19]) which
are very far from the methods presented in this paper.
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Since the results about the Neumann problem are already available [13],
[14], this paper is devoted to examining the problem (1.7) only.

Replacing the problem (1.1)-(1.3) by (1.6) and (1.7) raises the question of
equivalence. In the case of smooth boundary and sufficiently smooth solutions
(at least of class C?*%) these ways of showing the existence and regularity are
equivalent. For a nonsmooth boundary Kondrat’ev’s relation between the
maximal magnitude of dihedral angles and the regularity of solutions is more
restrictive for the problems (1.6), (1.7) because they involve second order
operators.

The aim of this paper is to prove the existence and regularity of solutions
of (1.7) in such spaces that the solutions do not vanish in a neighbourhood of
the edges. We use the spaces W, (), Ci(Q) (all notation and auxiliary results
are introduced in Section 2). We show that these spaces are suitable for the
problem (1.7) (and also for the Neumann problem).

The proof of the existence and regularity of solutions of (1.7) in a bounded
domain with edges is divided into two main steps. The first step is the proof of
the existence of a weak solution to (1.7) in H!(Q) (see Theorem 10.1). The
second step is to show the regularity of the weak solution in a neighbourhood
of edges (interior regularity and regularity near smooth parts of the boundary
are well known). This is formulated in Theorems 10.3, 10.4. To prove these
theorems we use a suitable partition of unity (see Section 10 and Theorem 2.7)
so that we locally replace the problem (1.7) by a nonhomogeneous problem in
a dihedral angle 9, (angle of magnitude § between two planes I'; and I',
(see (10.24))

(1.8) el =¥, onT,
divel,, = Y., on T,

where i = 1, 2 and 7, are vectors tangent to I';, i = 1, 2. This problem is divided
into two problems: the Dirichlet problem for the Laplace equation (see (10.25))

19 —A_e3 =F; in 9,
e, =@, onl,, i=1,2,
and (scc (10.26))

—de;=F, in @, i=1,2,
(1.10) efl,=® onl, j=12,
A Vien), =9, on ) j=1,2,

where 7; is tangent to I'; and normal to the edge, fi; is outward normal to I';
and also normal to the edge, j =1, 2.
The right-hand side functions of the problems (1.9) and (1.10) do not
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vanish near the edge of 2, which makes it necessary to use the spaces W4, ,(2,)
and C(%,).

Sections 4—9 are devoted to examining the existence and regularity of
solutions of the problem (1.10) (for the problem (1.9) these properties mainly
follow from the results of Maz'ya—Plamenevskii [10]). First, we have to
consider the problem (1.10) in the angle dg (which is the projection of 2, on the
plane perpendicular to the edge; denote this new problem by (1.10)). This
follows from the fact that only for conical domains we have the theorems of
Kondrat'ev [6], [7] and Maz'ya—Plamenevskii [11] on the solvability of
boundary value problems for elliptic equations. These theorems require the
data to be either in V, ,(d,) or in C!(dy). The solvability theorems for (1.10) are
formulated in Section 4 (Theorems 4.1, 4.2). However, the right-hand sides of
(1.10y belong either to W, ,(dy) or to Ci(dy). Moreover, considering the
homogeneous problem (1.10) we see that it has eigenvalue | (the Neumann
problem has eigenvalue 0), which implies that the spaces W,,,(d;) and Ci(d,) are
natural for showing the existence and regularity of solutions of (1.10) also in
the case of data in either V; ,(dg) or Cl(d,) (see the proofs of Theorems 4.3, 6.2,
8.3, 9.3). Therefore there are constructed functions v;, i = 1, 2 (see Lemma 4.3
and relations (4.22), (4.23)) which enable us to reduce (1.10) with data in W, to
(1.10)" with data in V. Moreover, the right-hand side functions of (1.10) can
not be arbitrary but have to satisfy a condition which is implied by the fact that
1 as an eigenvalue (see (4.21)). The construction of the functions v;, i = 1, 2, is
divided into three parts. Let /3¢ N. Then for u+2/p ¢ Z the construction is
based on the Hardy inequality (see (2.1), (2.2) and also Lemmas 2.1, 2.3, 4.2).
For u+2/pe Z the construction needs additional considerations (see Lemma
2.4, 2.5 which are generalizations and modifications of Lemmas 4.17, 4.19 from
[7] and Lemmas 3.2, 3.3, 3.4 from [13] where they are obtained for 4 = 0 and
p = 2). For n/3e N some compatibility conditions for the derivatives of the
right-hand side functions at the vertex of d; have to be added.

We have to underline that in this paper the compatibility conditions which
are necessary for the existence and regularity of solutions of the problems
(1.10), (1.10) in the case of angles equal to t/m, me N, m > 2, are not explicitly
formulated.

Constructing the functions v;, i = 1, 2, for data in W, , (Lemma 4.3) gives
that they are determined up to some polynomials, which are not important for
data in L',, (Lemma 4.4).

The main result of Section 4 states the existence of solutions of the
problem (1.10) in the spaces L', ,(d,) if the data are also from these spaces and

(1.11) A(8)>l+2—<u+ §>>0

where A(9) =n/9—1 for <n, A®)=1-n/9 for n<9<3n and
A(9) = 2r/9—1 for 3n < 3 < 2n (Theorem 4.3 for I+2—(u+2/p) # 1 and
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Theorem A.1 for [+2—(u+2/p) = 1). The proof is based on the existence of
a generalized solution, construction of the functions v;, i = 1, 2, and the result
about the solvability of the problem (1.10) for data in V%, (Theorem 4.1).
Similar results in the case of weighted Holder spaces are formulated in
Theorem 4.4.

Section 5 is devoted to obtaining results which enable us to replace the
problem (1.10) with nonhomogeneous boundary data by the same problem
with zero boundary data, and conversely (Lemmas 5.1, 5.2). The most
important result is the construction of functions v,, i = 1, 2, which give us
a possibility of replacing the problem (1.10) with data in L',, by the same
problem with data in V,, and conversely (see Lemma 5.2). Hence using
Lemmas 5.1, 5.2 instead of the problem (1.10) we can consider

—de,=f in D, i=1,2,

(1.12)
e.filrl = 0’ ﬁi.V(e.ﬁi)lI‘,- = Os i = 15 25

and 7, A,i =1, 2, are described in (1.10).

We have to underline that the eigenvalue 1 imposes the compatibility
condition on the data functions (see (5.4)) which implies that the functions v,
i ="1,2, have to satisfy some restriction (see (5.7)).

For n/3 € N the above construction needs some additional compatibility
conditions on data functions at points of the edge of 2,.

In the case of Holder spaces similar results are formulated without proofs.

In Section 6 the existence of a weak solution in H(2,) for (1.12) is proved
(Theorem 6.1). Then using the Fourier transformation with respect to the
direction parallel to the edge of 2, and the results of Kondrat’ev for general
elliptic boundary value problems in conical domains (Theorem 4.1, p = 2, with
right-hand side functions in H'(d,)) we show that the weak solution belongs to
L'*2(Dy) if the condition (1.11) is satisfied (Theorem 6.2).

By using Theorem 6.2 the existence and estimates for the Green function
(Theorem 7.1 and (7.16)) are found in Section 7. Solonnikov’s methods [14],
[16] are applied here. By means of the Green function a solution of (1.12) can
be written in the form

2 .
(1.13) e(x) = Y [ Gylx, 0fdy, xe2,i=1,2.

J=1 924

In Section 8 using the methods of Solonnikov [14] we find the estimate in
L2 (2,) for solutions of (1.12) in the integral form (1.13) ((8.5) and Theorem
8.2). The main result of this section states that a solution of (1.12) belongs to
LyX 2y if fiel, (D), i =1,2, and (1.11) is satisfied (Theorem 8.3).

In Section 9 by repeating the argument of Solonnikov [14], estimates for
solutions of the problem (1.12) in the form (1.13) are found in Hélder spaces
(Theorems 9.1, 9.2). Then we show the existence of solutions of (1.12) in Holder
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spaces Ci*%(9,) if fie C{(9D,), i =1, 2, and
(1.14) s < A9)

(see Theorem 9.3).

The author is very indebted to Professor V. A. Solonnikov for very fruitful
discusions during the author’s staying at Steklov’s Institute of Mathematics in
Leningrad.

It is also a pleasure to thank Professor M. Dauge for many useful
comments about the subject of this paper.

2. Notation and auxiliary results

In this section we introduce some notation and results which are also used
in [13], [14].

Let r, ¢ be the polar coordinates in the plane; d; = R? the infinite angle
{r > 0,0 < ¢ < 9} with magnitude & y,, y, the sides of d; described by ¢ = 0
and ¢ =9, respectively; D4 = dyx R' the dihedral angle in R® with sides

t=9,xR, i=1,2, and with edge M =T, nT,.

The points of 9, are denoted by x = (x', z), where x' = (x,, x,) €d,,
z € R'. Moreover, we introduce a coordinate system such that y, is the x, axis
and the pomnt x' =0 is the vertex of d,. Finally we write V¥ = grad and
V' =(9,,, d,,)-

By {(x)e CZ(R?) we denote a monotonic function of |x| equal to one for
|x|] < 1/2 and to zero for |x| = 1. Moreover, let

K, (2) = {xeD,:|x—z| <r} for ze %,

For a function f(x), x€ @, and j =0, 1,..., by fU9(x) we denote the

Taylor polynomial of f of degree j with respect to x"

X3 x5
o o,
142"

P = Y  Df(leo

|la|=ay +as <)
and for a function ¢ defined on I';, i=1, 2,

oV (r) = L1 & k
r) = kgomw lp=o?".
Now we introduce some function spaces for the domain 2, (which for the
domain dy = R? can be defined similarly) [13], [14]: #(2;) is the space of
functions with finite Dirichlet integral

”u”,#’(_@a) = ( j |l7u|2dx)”2;
Ds
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Wk (D), VE(Dg)(p, neR, p> 1, keN) are the spaces with norms

el o =(% [ x| (D5uldx)'?,
Wenl@s)  4lsk 24
x!|pe— =l pa g, P dx)i/p
Il gy = (2, I ¥ IDgulPd)',

L*, .(2,) is the closure of the set of smooth functions with compact supports in
the norm

/|PB Y% 4,|P L/p
lju IIL,; @) (lﬂZ:k Js x| |D§ulPdx)'/?.
For k = 0 the above spaces coincide and are denoted by L, ,(9,). Moreover,
we write that V¥,(2,) = HY(9D,), L% ,(2,) = L“(9,), k>0, and we use
the following standard notation: L, o(Dg) = L,(¥y), Wyo(%y) = Wy(Dy),
Wz".o(ws) = Hk(@s\)-
For k > 0 the elements of Wy ,(2,), VE(D,), LY, .(D,) have traces on
every two-dimensional plane I' passing through the edge. These traces belong
to the following function spaces: W,'/P(I'), Vi;'/P(I'), with norms

ul? + DeulPEird

[l sy = WilEpony 3 [ID*uPEdE,
ull?,_ = |lull*, _ + D®ul? p(u—k+|a|)+1d¢:
iy = ot T (1D :

and L%,'P(I), which is the closure of the set of smooth functions on I with
compact support in the norm

d i/p
”””L:.;“nn=<l,|z j&rdg | |D°u(¢+n)—D“u<c)|PW—”+,,) :

=k-1T K+(®
where ¢ =(¢,,&,) are the Cartesian coordinates on I’ such that
I'={(eR* & >0}, and K, (&) ={nel: Inl <&}
By #.(R"), leZ, we denote the closure of the smooth functions with
compact support in the norm

WY = ( S ]

la| =({] R» R"

D*u(x)—2D%u < ;y>+D“ )

P dxdy )1“’

|x _y|"+p(l_[l])

where (1] is the maximal integer less than /. This norm is the principal part of
the norm in the Besov space Bj(R").

To consider the Fourier transform of functions in H%(2,) and Lk(2,) we
define the spaces &%(d,) and £%(d;) with norms

feell —(Z Eul? -, M2,

Suds) S Hy' '(do)
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k
lull o =(X &lul?., )2

Zu(ds) i=0 Ly (ds)

Now we introduce weighted Hélder spaces Ci(@s)(l > 0, I¢ N) denotes
the space of functions with the norm

[uleiay = ¥ sup [ ~*D=u(x)|+ sup X1 [w]¥. oo

la] <! xeDg xePa

where

[ulf = ) sup [x—y™~"|D*u(x)—D*u(y).
lal =00 x,yeK
Ci9D,) (s€(0,1],1 > 0, le N) denotes the space ol functions with the
norm

M1, = Whoet T sup D)

Ca(Ds le|<s D

where

()t 9y = sup I Tu1D) o+ [W15)-
D9

For se(0, 1]
CDy) = {u = CYD,): D*ul -, = 0,0 < |of < [s]}.
1

Moreover, for ueCi2,),se(0,1] the norms lule! @, and <udl, are
equivalent.
For s < 0, we let

uplp, = |t @4

We denote 2 a bounded domain in R® with boundary Q2 = | J S,, where
v=1

S,, v =1,.., r, are smooth manifolds which can intersect only along an edge.
Let L=S;n S, # @ be one of the edges. Then at xe L we have the tangent
spaces I.S;, T.S; and the daihedral angle 9,,,. We introduce curvilinear
coordinates in a neighbourhood of each §,,v =1,..., r. Let x = (x;, x,, X3)
be the Cartesian coordinates and 7,, 7,, n the orthogonal coordinates such
that n(x) = C is the surface S, and t,, 1, are coordinates on S,. Let
x =Xx(ty, T, n). Then x., =H,t,Vt,=H,'%T,v=1,2,x =Hn, Vx
= H, 'i, where 7,, ,, il are orthonormal vectors and H,, H,, H, are Lamé’s
coefficients [5, § 18]. Mainly we shall assume that H, = 1.

Finally we introduce the spaces W}, (Q) and CL(Q) with the following
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norms
lull . =(Y [e™®ID*uPdx)"",
Vel ai<ika
Uiy = <udSa+ 3 sup|Dtu(x),
laj<s 0
where

u)l = supg(x) ~*[u]® +[u]®
0

a(x)/2t*

and g(x) is the distance from x to the nearest of edge.
First we recall some theorems from [13], [14].

THEOREM 2.1. Let ue Lt ,(2,), |o] < k. Then D*ulpe L~ °(I') and
”Dau”L’,‘,,'“'“"””(r) < C”“"z.’;,,“(gg)-

Let ue W (D), p > 1—1/p. Then D*uj.e W =12 (T) and
“Dau“w';.—u'"“ "7y < cllullwy e

THEOREM 2.2. Let on I be given functions ;€ Ly )~ 17(I),j=0,..., k—1.
Then there exists a function ue L ,(2Dg) such that

o
awl, = ¥
and
k—1 ;
"u"L:,p(Qs) < CI;O ||(Pj"1:t;.—“1—l/p(r)-

If o€ W, J7YP(I'), then there exists a function ve W (D), such that

v
onl|.
and
k=1
v <c ol -,- .
Bl gy < € 5 100,

THEOREM 2.3. If ueV} (D), lo| < k, then D*u|.e VE =PI gnd

D*ul| .- < clu .
I "V'Z.»" YRy | "V'E,u(@s)

Let ohe Vi, /7VP(),i=1,2,j=0,..., k—1, then there exists a function
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ueVk (D), such that

du ;
anjl‘t q)j
and
2 k-1
u <c
| "V:;."ms)\ ‘;1 & I(pJ“V';“j VR

THEOREM 24. If uelL! . (D,), u> —2/p and |o| < k—p—1/p, then
D*ul,, € B+ 14~ 20 (M) and

KD up e ™M= < cllul|

Lp, »(93)

Let ¢,e &% »~14=2P(M) with compact supports be given for all multiindices
a = (a,, a,) with || < k—u—2/p. Then there exists a function we L% ,(2,) with
compact support such that D%ul|,, = ¢, and

lull o = <Y oDkt~ lel-2m,
Lp,u(Ds) "

THEOREM 2.5. For arbitrary ue H'(9D,) the following interpolation inequality
is valid:

[ wix|"dx < 2070 ul?,
2 Ly ol@s

Jor ue(0,1) and ¢ > 0.

Now we prove some results based on the Hardy inequality and partly
obtained in [13], [14]. We use the following Hardy inequalities [17]:
Let fe L} (dg). Then for f(0)=0, 1—2/p—v > 0 we have

s (e an,

+Ce™* |lul?
) Ly@s)’

2.1) ({1fre=esrane < 2/p

and for f(0) =0, 1-2/p—v < 0, we have

2.2) (I |fiPree P tdr)tie < (5 | fAPrev* L)t

+2/

LEMMA 2.1. Let ue L% ,(dg), p, peR keZ, p= 1, k> 1 and u+2/p 2 0
(@) Let s=pu+2/peZ. Then there exists an integer j such that
k—s—1<j<k—s and

()]
(2.3) lu—=uPlL, ., ey S Cltill aa

where uY is defined at the beginning of this section. For j < k—s < 0, u? =0,
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) - Yk
Moreover, u—uY eV} ,(dg) and

24) lu—u?| . cllull

VE uds) lds)
(b) Let s=pu+2/peZ. Let D**uel,, (d)) and j=k—s. Then
—ul™VelL, ,_(dg) and
(2.5) le—uY™ 1)”1_.,,,. ds) = < || D*” u“L,,,. a(dg)*

Moreover, u—uY~ e V% (dg) and
k-
(2.6) llu— —ul- 1)”VP ude) S C(”u“l,“J ”(ds)+ 1D su“L,,,, ,(ds))

Proof. (a) For ueL¥ ,(dg) one has
| |DkulPrPettdr < 0 for ae. @e[0, 9].
0

Let j be an integer such that
2.7 s—o>0 foro<<k—j—1.

Hence the inequality (2.2) can be used k—j—1 times to obtain
(2.8) [ IDi* ty|pyple=mi=N* L gy < ¢ [ |DEu|Proe* dr,
1] (1}
where p[u—(k—j—1)]+1 > —1, which is equivalent to (2.7) for 6 = k—j—1.
From (2.7) and the fact that s¢ Z it follows that j can be so chosen that

plu—k—-N]+1 < -1 and plu—Gk—-j—-1)]+1<p—1.

The last inequality implies that the Hardy inequality (2.1) can be used for the
function u—u" because D{*'u¥ =0 and DZ(u—u?) =0 for ¢ <j.
Applying (2.1) (j+ 1)-times we obtain (2.3).

To show (2.4) we apply the above considerations to the expression
lu—ud| s ds) using polar coordinates.

x'=0

(b) In this case the inequality (2.8) for j = k—s is valid. For j = k—s the
left-hand side of (2.8) is

© o
j' ID,If—s+1u|prp(p—s+1)+1dr _ le’,‘"“uI"r”_ldr.
[} 0

Therefore the parameter v from the inequalities (2.1) and (2.2) is such that
v+2/p—1 =0, and so they cannot be used. Hence to estimate the derivatives
of order < k—s+1 we must assume that D""ueLP_M‘s(ds), so that

ID**ulg, , ae = § ID¥*uPr~tdrdg.
ds
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Comparing this expression with the right-hand sides of (2.1), (2.2), we see that
—1=vp+1l,s0v= —2/pand v+2/p—1 < 0. Therefore, the Hardy inequality
(2.1) for u—uY~Y can be used. In this way we get (2.5). Using (2.5), we obtain
(2.6) just as (2.4) above. This concludes the proof =

From Lemma 2.1 we have
LeMMA 2.2. Suppose ue Lk (D), k, p, u as in the previous lemma.

(@) Let s = pu+2/p < k,s¢Z. Then there exists an integer j such that
k—s—1<j<k—s and

) U— ) cllu
( 9) " u "LF“ u(gS)\ " "Lp F(Qs)

Moreover u—u% eV ,(9,) and
(2.10) llu~ | iy clull «

Vp,u(23) Lp, M(QS)

(b) Let s=pu+2/p<k seZ D Suel
u—ui Vel (D) and

D) and j=k—s. Then

pru‘s(

(2.11) flu—ul™ ””L,,_“_k(@s) < C"Dk_su"z,,,,,,_,(eas)-

Moreover u—u~Ve V% (2,) and

(2.12) lu—uf™ Pl . gy Sl w +|ID""u|le_,._s(%,).

P K 8 p u a)

Lemma 2.3. Let ueL¥ (dy), p+2/p = s > 1, se Z, Di,ul, e Vi i~1P(y)),
j=0,....,k—s. Then ueV* (dg) and

k—s
< ] -, )
(2.13) I g S Sl gt B 1Pt e )
Proof. The inequality (2.2) implies

ud K
2 lul®, <c ) leiul"T"‘+’("""1drdgp

i=k—s+1 Lp,u+i-x(ds) i=k—s+1ds

< c | [D*ulPrr=tdrde.

dg
On the other hand we have
. . > k_s
Z IID;1Di1u|prp(#+l+j_k)+1drd(P c Z “szu” k j 1/p
i+jSk~sdg j=0 (1)

and p(u+i+j—k)+1 = p(s+i+j—k)—1 < 1, so (2.2) yields that all remaining
derivatives in the definition of the norm in ¥V} ,(d,) can also be estimated.
Hence (2.13) is valid. =
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LemMma 24. Let k, |, seZ,peR, k>0, u+2/p=sz1,12s5-2,p>1.
Then for any we WEITVP(y,) there exists w e Wiphf 17 UP(y ) PA2s™171r(y,)
such that

d*w, -
dxk —weV,1Y8,0,)
and
2.14 W R < c|lw -
( ) " k"W;zT:H ”p(vx)\ ” ||W;:+ul 1/"(71)’
dw
2.15 ko < clw -
213) ok o, sl
Vp.1-2p(71)
2.16 0] sot- < cllw _ .
210 10 oty < NNy s

Proof. Define

.17) an(e) = gy | 0= 01+ K,

where K(r) is a smooth function with compact support such that
lim K(t)t~! < oo. From (2.17) it follows that
=0
do d*w
18 Hoo=0,jgk-1, ——f= 1+ K(x,)),
@) T =0 T = 001K (x,)

so the inequalities (2.14), (2.15) are satisfied. To show (2.16) we use the
one-dimensional Hardy inequalities [17]:

(2.19) (I |f|"x"(‘“1)dx)1“’ < __1_“. If;lpx“”dx)””,
0 1—1/p—pu-y

1/
where f,eL,,(RY), f(0)=0,1~1/p—p > 0, and

(2_20) (j' ,f'pxp(u—l)dx)llp < ! . (]‘ |fx|"x“"dx)”p,
0 0

p+1/p—
where f.e L, ,(RY), f(00) =0,1-1/p—p < 0.
From (2.14) and Theorem 2.2 it follows that

e A Iy

(r1)

n/2

where @, is an extension of w, to d,,. Therefore (2.18), implies that

© am—-rca 2 @ am :'-)
k .pu-r) k| pu
— | x} dx, <c¢ xBdx
g oxTr 1= g oxm| Tt
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r<mm=k+s—1<I+k+1, s0 &, e Vy,(dg), where (2.20) for r < s—2 and
(2.19) for r < s—1 have been used, because

1—%—(;1—(3—2)) <0< l—i——(u—(s—l)).\

Hence Theorem 2.3 implies (2.16). =

LEMMA 2.5. Suppose v, € Wi,fuf(ds), where | < p, u are real, s, l are integer
such that u+2/p=sz21,j+s<l, and a = (al, o,) is a multiindex with
la| = &ty +a, = j. Then there exists a function ve W, ,(dg) N V45=1(dg) such that

2.21
@21 9, 0y € 2 T0elyicyy
222 171/ -
(222) 190 rny <€ T Dol
2.23 D*v—v <c
(2.23) Dol <o X o,
Proof. Let v, = vy ;_4), k =0,....j. We construct a function w
dk
T Ced-0"Vus-n| €ViuTP0),
1 7
dl'
T W - =0, i<g<k-1,
dly IR s

in the form
(2.29) O j-ry(%1) = 7 ! (X =T 04 y-p (T, 0)(1 + K (1)dr,
where K(7) is described in (2.17). Hence Lemma 2.4 implies

(2.25) "(D(k,j——k)"w;“1+k— 1/;(),1)"‘ "w(k,j—k)"l’nx;-n -upg

dw,
(k,j—k)
+ d k _v(k.j—k) < c"v(k.j—k)" t-j-1/p
X1 a—1/p Wp,u (v1)
Vo' (71)

< cllog - - .
< cllvg, k)llw;m,(ds)

Now we seek a function v such that
al=k
&EF,

which can be constructed s1m11ar1y to/L4r.Part 2, Ch. 2, § 6] in the following

Cl)(kj ks k=0,...,j,

2 — Dissertationes Mathematical CCLXXIV
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form

( ]
2.26 v(Xy, X3) = ;
where K,, k = 0,..., j, are smooth functions with compact support such that

| Ki(ydt =1, [ t"K,(t)dt =0, for m = 1,..., k. Then
R1 Rl

x4k j K, (D) wg, j-iy (X +1tx,)de,
nl

dk dj—k

—

dxk dxf™* ),
Therefore for |«| = j we have

D*v—uv| , < c||[D*v—v,| .- < ¢|K()v,(, O .-
" a”Vp.;a(do) = " a"vp.“l/p(“) = ” () a(: )"V;'”l/p

= Uy j-ky (X1 0)(1 +K(x1)).

(y1)

< cfiK(D < cffvg

0, |l
RN Wh.ulde)’

where Theorem 2.3 and the properties of the space V5 ,(d;) have been used.
Hence (2.23) is proved. The inequality (2.21) follows from (2.26) and (2.25).
From (2.25) we see that

-

mv € V’;;”p('yl).

71

Therefore Lemma 2.3 gives (2.22). m

LEMMA 2.6. Suppose ue Lk ,(D;), p, peR, keZ, p> 1, u+2/p=s5s21,
s€Z. Let D}, ulp e Vi, )"UP(I'), j=0,..., k—s. Then ue V% (D,) and

k—s
+ Z ”Diz“” k-j~1/p )
8) j=0 Vp.u

2.27 u < cl|u
(2:27) I IIV:.“(%)\ {l lle_“( "

2

Proof The inequality (2.2) implies

k k
Y lul”, ¢ ID! PPt == grdp dz
i=k—s+1 Lp,u+i-k(Dg) ,.,,;s“ 9;[9 @
< ¢ f IDufPredrdgdz.
Ds

On the other hand, we have
k—s
S JIDLDL DIyt e drdpdz < ¢ Y, IDLul ey s
itj+aSk—s Dy j=0 Vp.u (r1)
and
plu+i+j+o—k)+1 =p(s+i+j+o—k—1< —1,

so all] _gerivatives V¥ .(2,) with corresponding wedges appear. Therefore (2.27)
is valid. m
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LemMMA 2.7. Let I''1eN U {0}, <. Moreover let p, peR, p> 1,
p+2/p =s = 1,s€Z. Then for arbitrary functions v, € Wi 1 (D), & = («y, &),
o,e€Z,020,|d| =a,+a, </, there exists a functton Ve Wﬁ,,p(@s) such that

r

(2.28) “v”W::.p(ezs cjzo |az ”WLJ(-%)
r
(2.29) Y, [ lippo” U“Uﬁ)”" Z > loed? -,
|81=i" R! =0 le=/ Wpu(@)
where ' = (B,, ), BieZ, B,20,i <1, i'+ay <l—s,
I
(2.30) ID2 (D v—vp)lly, om S € 2, Z [[vg- || ,
r=o)ry= el

where || < k' <, ag+1 =1,
(2.31) D¥r| -, =0. Jx]<!I~1.

Proof. To prove the statement it is sufficient to consider smooth
functions with compact support with respect to z. Hence we can use the results

of Lemma 2.5 for derivatives D7*v,.. From (2.21) after integrating over z one
has

I 1Dz 0l?

R! F

<c Z [ 1D%v, -z

3
la'[=j R! (ds)

™ 3(ds)

The right-hand side is estimzlted by

st i-

) ST [ pee, 12 ong,

=0a3=0 |ja'|=j R!
st

=cy Y lvl?, = cX?.

J=0al=j Wi (25)

Therefore one has

!
Y [ 1Dz ll". o, 02 < cXP,
a;=0 R! u3(dg)
so (2.28) is satisfied.

From (2.23) for j+a, < l—s we have

Y., [ ID®D*v—D%v, Il"
|2'| = j* R? Vo )
Therefore (2.29) is satisfied. Using (2.28), one gets (2.30). The equalities (2.31)
one obtains by (2.22). m
Remark 2.1 (see [13, p. 21]). Lemma 2.7 will be used in the case
I'=k—s,] =k. In this case after the transformation x =17 x, v—=v(l 7" !x)

Z I"Daav "pl e dz < cXP?,
a’|=j" R! da)
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v, =A%y (A" 'x) and 1—0, instead of (2.28)—(2.30) we get

k—s
2.32 N <
(232) lv ”L,, (@0 C,-Z:o |a'|Z=J IIL,; -/ 9a’
233) Y [ IDpz@DF u—vﬂ)ll” dz
pT=1" RY @)
<ec , 4oy =k—s,
JZO |a|21 < @9 ?
(2.34) IIDZ’(D"'U—vp')llL,,,,,ws) sc Z Y Mogll w-s

Aoz L @)
where |B| =k, a,+k' =k, k' < k-

THEOREM 2.6 ([14]). Let |, s¢ Z, 0 < s < I. Assume that for each o with
lof = &, +0, < s we are given a function @, € C*"(M), la| = o, +a, < s, with
compact support. Then there exists a function ue CY(D,) with compact support
such that D3.uly, = @, for all o and

(2.36) (uras < ¢ Lol ™.
Let L be one of the edges of 2 which is the intersection of two boundary
surfaces S,, S, and let Q,(&) = K ({) n Q for LelL.

THEOREM 2.7. There exists a number d such that Q,(£) can be transformed
onto the dihedral angle 9, between the half-planes T,S, and T,S, (3(¢) is the
angle between T.S, and T,S,) by a transformation Te C**(Q) (S,eC'*?,
v=1,2)

3. Statement of the problem (1.1)-(1.3)

The solutions of the problem (1.1)—(1.3) will be sought in the form
(3.1) v=Vo+tu,
where ¢ is the solution of the Neumann problem
(3.2) 4o =0, %(S—m = b,
where 0/on = n-V, and u is a solution of the problem
(3.3) rotu = o,
(3.4 divu =0,
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(3.9 Upon = 0.
By [1, Lemma 1] (3.4) and (3.5) there is a vector e such that
3.6) u=rote, dive=0, el;n=0,
where e, = e-%, T in any tangent vector to 0Q.
The vector e is defined as
(3.7 e=¢el+e?,
where ) )
uly
el(x) = —rot [ ——dy, e*=V
4n glx—yl Y v

and { is the solution of the Dirichlet problem

(3.8) 4y =0, ‘//lag = —V¥Yo,
where e]|,o = ¥, .. Using (3.6) we can replace the problem (3.3)—(3.5) by
(3.9 —de=w, el,n,=0, dive,,=0,

where we have taken into account that Adive = 0, divel,, = 0 imply dive = 0.
In a curvilinear system of coordinates (t,, 7,, 1) in a neighbourhood of 4Q
2

the vector e can be written in the form e = ) e,t,+e,f. Therefore (3.9) can
n=1

be replaced by

(3.10) —de=w, el,p=0, (AVe,+e,divi),, =0.

To consider the problem (3.10) in domains with edges we must examine it
in dy and 2. In 2,, (3.10) reduces to the following two problems:

—de,=w;, i=1,2,

eilr, =0, (e,cos3+e,sind), =0,

(3.11)

% =0, (‘?‘j; §ind — ‘;—‘;Zcos9> =0
and
(3.12) —de; = w3, eslr,or, = 0.

In the subsequent considerations it will also be necessary to analyse the
nonhomogeneous problem corresponding to (3.11):

—de,=f, i=1,2,

G.13) elr, =P, (e,cosI+e,sind)., = P,,
e,
on

de, . de
5 =Y, (—(,#smS— 5,}2'005‘9>. =Y,

I
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Moreover, we shall have to consider the problem (3.13) in dy:

—Ale,=hi, i= 1, 2,

(3.14) ey, = @y, (e;c088+e,sind)|,, = @,,
6e2

de, . de, _
on |, =V, (asmS—Ecosé}) =y,.

Y2
Finally, we shall also examine the homogeneous problem corresponding to
(3.14) in d,:

_A’el.=j;., i=1’2,
ey, =0, (e,cosd+e,sind),, =0,

dey de,
=0, <6n sin9— Ecos&)

(3.15) e,

an 71

=0.

Y2

4. The problem (3.14)

In this section we consider the problem (3.14) in d,. First we calculate the
eigenfunctions and eigenvalues of the homogeneous problem (3.14). Secondly we
formulate solvability results for this problem in V3 ,(d,) and next in W¥ ,(d).
The first result is a particular case of results from [11], where Kondrat'ev’s
results [7] are generalized. The second is a modification of Theorem 3.2 of [13]
for the Neumann problem to the case of the problem (3.14).

Moreover, by using [11] the existence and smoothness properties of
solutions of the problem (3.14) in weighted Holder spaces Ci(dg) are formulated.

Li:mMa 4.1 The homogeneous problem (3.15) has eigenvalues

(4.1) A;f=m§¢1, m=0,F1, ¥2,...,

and corresponding eigenvectors

4.2) (e7, €3) = (a,r*sinA,, @, b,r*mcos i, 0),

where a,, = b, for A, = mn/3—1, a, = —b,, for A, = mn/3+1. The number

A = 0 is an eigenvalue for § = n only, and the corresponding eigenvector has the
form: (e, e;) = (0, a), where o is an arbitrary number.
For further considerations it is necessary to know the smallest positive
eiyenvalues which are:
T
1 for SSE, ——1 for
4.3)
1——for n<d<<n, —-—1 for -t <9< 2n.
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Proof. In polar coordinates, (3.15) with f;=0, i =1, 2, has the form
de 4 1 de; N 1 d%e,
ot " ror  r?ogp?

ellvl = 0’ (910039+ezsin9)]h = 0,

=0, i=1,2,

deal _ 0, (ae‘s 98— a—e-cos.9) = 0.
09, 99 d¢ v
Introducing the variable T = In 1/r we obtain
ei.tt+ei,¢¢ = 0» i= 1’ 2:
4.9 el,, =0, (e,cos8+e,sind)|,, =0,
ey _ 0, <6e1 ing— a—cosS) =0,
09y, % 9 v

The Fourier transform of e,(r, ¢) with respect to t satisfies
1 L
e, ¢) = %é[l &(A, p)e*da

so instead of (4.4) we have
4.5) Cop—A6=0, i=1,2,

do =0,

?=0

(4'6) él|¢=0 = 0)

= 0.

- . 0é 0é,
4.7)  (&,c089+&,5in9),_, =0, <5¢1 n9— —%—coss>

We look for solutions of the problem (4.5)-(4.7) in the form

¢=3

4.8) ¢, = a;sinilp+bcosilp, j=1,2.
From (4.6) we obtain b, = 0, a, = 0. Therefore
(4.9) €, = a,sinily, &, = a,cosilep.
From (4.7) and (4.9) we have
o, siniA3cos 3+ a,cosiAdsing = 0,

4.10)

iA(x, cosiddsin$+a,sinidScosY) = 0.
Now (4.10) implies
(4.11) sin%iA8cos?9 ~cos?iAdsin?9 = 0,

hence sinil3cos3 = FcosiAdsind, so sin(iA+1)3 = 0. Therefore we have
il+1 =mn/3. Thus (4.1) and (4.2) have been obtained.
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Finally, consider the case iA =0. From (4.5) we have & = a,+f,0,
i =1, 2. Hence, from (4.6) we have a, = 0, 8, = 0. Moreover, (4.7) implies
B.9cos+a,sind = 0, B,sin@ = 0. Therefore for § # n we have o, = f; = 0,
but for 3 =n we have f, =0, a, # 0. This finishes the proof. m

THeoreM 4.1 ([11]). Let pe(l, ), k.ke N U {0}, u, ieR and

2
(412) S tk—n A A
where
Lol =% o 4=Ti ico 71,72,
p p |q |; )

Then, for arbitrary h,e V} (dg), @, € VEX271r(y), e VER = 1e(y) (= 1, 2,
there exists a unique solution e,e Vk*2(d,), i = 1, 2, of the problem (3.14), and

2 2
4.13 e, <c : + ||, - = 1/ . .
( )iz:l I '"V’,‘,Lz(d.q) = i; ("f;" VY (do) l (P'”V’;Lz e, "\b."VA’«L“z e, ))

Let EcVii2(dy), Ee VEAdy), & = (e,, e,), = (&,, &,) be two solutions of the
problem (3.14) with the same right-hand sides such that ke V% (d,) ~ Vi (dy),
Qe VoL TP ) N VIR Ty, e VLT A VRS, i=1,2, K

Pl

=(hy, hy) and k—p < k—fi, 2/p'+k—p # Ap 2/0+k—p # Ay then
e, =&+ ) a,rsind, g,
(4.14) !
ey, =&+ ) brticosd,p,
q

where

8= by for Jy="F =1, ay= b, for by=2T 41

and the summation in (4.14) is taken over all q such that 2p' thk—p< 2, <2/
+k—p

Using [12], the parameters a,, b, can be calculated.

THeoREM 4.2 (117). Let I, [, s, §¢ Z and
(4.15) 5 # A,
Where A =in/8—1 or A =in/9+1, i=0, F1, F2,... Then Sor arbitrary
hie Coaldg), 0€ CH*2(y), Y e Gt i) i = 1. 2.

there exists a unique solution
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of the problem (3.14) such that e, C'*2(d,), i = 1,2, and

(4.16) Z ledair2gy < € Z (Pl sy F @it 2+ W etr i)

Let e;€ C’i” (dy), eieég“(ds), i = 1,2, be two solutions of the problem (3.14)
with the same right-hand sides such that h e C_,(dg) N Cf_,(dg), @,€ C2*2(y)
N CHF ), e ClRi () n CEL ), i = 1, 2,5 < §, 5, § satisfy (4.15). Then e, &,
i =1, 2, satisfy (4.14), where the summation is taken over all q such that
s <4, <8

In the case 3 = n/m, 2 < m natural to guarantee the existence of solutions
of the problem (3.14) in the cases of Theorems 4.1 and 4.2 some compatibility
conditions on the right-hand side functions of (3.14) at x’ = 0 must be imposed.

LEMMA 4.2. Let h(x'), ¢;(x), ¢,(x'), i = 1, 2, be homogeneous polynomials of
degree 1—2, |—1, I, respectively, i.e.:

hi(x) = Z h:u;lel x%, Yi(x) = bi1—1|x1|1~1a @;(x') = aulxllla
i\ +ia=l-2
where K., by_,, ay are constants. If | # sn/9F 1, 1> 2,5=0, F1, F2,...,
then the problem (3.14) has a unique solution in the form of a homogeneous
polyvnomial of degree I.

=) elL,xixg, i=1,2.
iy +ia=l
For | = 0 we get a unique polynomial of order zero determined by the Dirichlet
type conditions of (3.14) only. In this case for $ #n we have e}y = a,q,
€50 = [ay0—a,,c083]/sin3. For [ = 1 the following compatibility condition must
be satisfied

4.17) a1 +bye = ay +byo
and then for 8 # kn/2, k=1,..., 4, one has
(4.18) eio =dy, ecz)l = _blo, el})l +e%0
1
311129[ 21+ byo+c0829(a;; +byo)]

In the case 8 = n/m, me N, m = 2, to ensure the existence of solutions of the
problem (4.19) below some compatibility conditions are necessary. Then a solution
generally depends on arbitrary parameters.

Proof. Any homogeneous polynomial of degree m has the form

[m/2]
Gu(x’) =" Y. [a;cos(m—2j)@+b;sin(m—2j)¢],

j=0
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where a;, b; are constants. Let e; = Fpu(@), i=1,2, 122, where p,(¢p) are
solutions of the problem

2 [(1-2)/2]

d’p, , . . .
sz” +12p, = ;Zo (cx,.jcos(l—2—21)cp+ﬂ,-jsm(l—2—2j)cp), i=1,2,

(4.19) Pidp=0 = 11> (P110059+P215in9)|¢=s = Q3
2 — —by,_., ((31’11 ng— alecoss) = by,
a(P @=0 a(P a(/) =38

where o, By j=0,..., [([=2)/2], i =1, 2, are constants. We look for
a solution of (4.19) in the form

=2)y2]
pa= . (cco8(l—2—2))¢+Bisin(l—2—2j)¢)+y,coslp+8,;sinlep,

J=0
i=1,2.
Inserting this into (4.19),, we obtain

1][12 1_2 2})2] = ai_ys ﬂlj[lz l_2 2])2] - ﬁ!js

where i =1, 2,j =0,..., [(I—2/2], so all coefficients ai;, fi; can be calculated.
Now the boundary condltlons (4.19), 5 determine y,, §,, i =1, 2, because
I # mn/3F 1, for any integer m.

For [ = 0 the proof is trivial. For | = 1 from the boundary conditions
(4.19) one gets

1 0 0 0
cos?9 sinScosd sindcosd  sin? Y
420) AZ = . . ) ol z=v

—sin?3 sin%cos9 sindcosd —cos? Y

where Z = (efo, €41, €30, €§1), Y= (a4, a1, by bag) Since the vector
(1, =1, —1, 1) is a null vector of the matrix in (4.20), one has the compatibility
condition (4.17), and a first order polynomial satisfying (4.18) can be found.
From (4.18) it follows that its coefficients depend on the arbitrary parameter.
This concludes the proof. m

LEMMA 4.3. Let g, € pr( o), O, € W’,‘,;z Up(y), v, e W"J'1 Ur(y), i = 1,2,
be such that

0 d .o 0
(4.21) l:a—XIqol—(cosSa +s1n9a>(p2—|pl+|p2j|

Then there exist functions v, such that D*v,e Wk ,(dy), i =1, 2,

= 0.

x'=0
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fi= d'v;+g€ V’z‘:.n(ds\),
o, = ‘P1_1’1|11 € Vﬁlz_”p(ﬁ)’
(4.22) @, = ¢, —(v,c089+v,sind)|,, € VEL2~1P(y,),

V=, - € Vo' "7 (r0),

71

o . 0vg ov,
2 =V, <sm9%—cos\9§>

eViL ")

Y2

and

2
(4.23) Z(IIDzvillwk p +||ﬁl| e P xazoie FIPll eviorm )
i=1 )

Vp,.uldg) Vo (0 Vp.u (ri)

<c Z (lg; i W uido )+ II(,D,-Ilw;L,_‘,,,m)+ “w‘”w';,",.‘“”"(y,-)) =cX.
If ;=4y;=0, i=1,2, we assume that v,, i = 1, 2, satisfy the homogeneous
boundary conditions (3.15).

In the case /9 = m, me Z, to obtain the existence of solutions of the
problems (4.25), (4.29) below some relations among g, ¢, ¥, i = 1,2, at x’ =0,
must be imposed additionally. The functions v;, i =1, 2, can be constructed in
such a way that they have compact supports.

Proof (a) Let pu+2/p=s¢Z. Let us introduce the homogeneous
polynomials

A k 2
iqg — T\ An ilr=0> < 2— » [ = 1’ »
(plq q| <ar> qD:Ir—O q + §, 1

rq a q .
(424) .)biq = ;(5) 'pilr=0’ q < k+1—87 L= 19 2’

x"’x’2
Z D g[lx— ! ’: q<k—S, |a|=a1+az,i=1,2.
lal=q
Then using (4.24) we construct homogeneous polynomials v, i=1,2,
satisfying

! —
~ A2 = Gig»

(4.25) Vigly, = @140 (01,6058 +0,,sIn9),, = @y,

= wzqa

Y2

ov ov
2941 gl ging— Z228+1.560
§ Yigs ( P sin§ 3OS )
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where g < k—s. By Lemma 4.2 solutions of the problem (4.25) in the form of
homogeneous polynomials exist. To calculate the first order polynomials the
compatibility condition (4.21) must be imposed. Moreover the first order
polynomials are determined up to an arbitrary parameter.

Let

= 3 plx), i=1,2.
g<k+2-s

Then by the Hardy inequality (2.4) and its version for traces of functions the
properties (4.22) are satisfied. In (4.22) the arbitrary parameter disappears. The
inequality (4.23) for the last three terms on the left-hand side also follows from
the Hardy inequalities. Finally, Lemma 4.2, (4.24), (4.25) and embedding
theorems [20] imply the estimate for the first term in (4.23).

(b) Let u+2/p =seZ. In this case the construction of v is in two step.

First we take polynomials v;,, i = 1, 2, satisfying (4.25) for g < k—s—1. Then

we define
(4.26) =) 0,{(x), =12
qSk=s—1
Introducing
fr=dvi+g, i=1,2,
& = ¢, —0vil,, Pi= ®,—(vicosd+v3sind),
ovl ov ov}
pl=y, -1 lsingd— —2
1=V, on " =V2- (c?n an cosd 42

from (4.25) we have

DLftlieg=0, j<kos—1,i=12
4.27) DIl _, =0, j<ktl—si=1,2,
DivH, =0, j<hk—si=12.

Therefore from (4. 24) (4.25) and the embedding theorem [rom [20] we derive

that D*vie Wi, (dy), fleW},(dy), ®feWii2~'r(y), Wlewkii=ting,),
i=1,2 and

P P

(428) Z("DZUIH n " +||fl ” k " +||(Dilllwu+z—1/,

i=1 Wp.utdy) Wp,uidg) N Yi)

+“lj/l“ whri- by )\(-X

ll‘

Now we shall construct functions v?, i = 1, 2, such that v, = v} +v?,i = 1,

2, satisfy the assertion of the lemma. First. we introduce functions Vita)»
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(@) = (¢, @), |&| = &y +a, = I, by the relations
— 85,0572 (020, + Vi0z) = 04,0520, s =0,...,1-2,
0%, V100) = 0%, B,
)(cosé)axl +5in98,,) (V1 00y 005 9 + U300y SINI) = (c08 90, +5sin9d,,) &3,

-1 _ aAl—-1g1
_axx Vyony = axx Wl’

4.29

(c0s 98, +5in38,,) "' [—sin? 9v, ;o) + 50 ICO8I(; 1)+ U2(10)) —COS* 501
= (cos 99, +sin94, ) ~1 3,

where &}, P!, i =1, 2, are extensions of ®f, Y}, i=1, 2, to d;. These
extensions are such that (4.27) are satisfied and

P! < clét _ i=12
" i "W:T:(da) = " IHW::i-: llp( i), 4

(4.30) » _
" Tii “ ,;.*‘ul(ds) S Cll Tll Ilwk+ul—l/p(yi)’ 1= 1’ 2

Moreover, we write
e, Uitapy = Cia 4 1y axzui(:li) = Diapr1yp P E 1,2

Similarly to [13, p. 20] we can show that the functions v, |¢| = 1 > 2,i = 1,2,
can be uniquely calculated from the system of algebraic equations (4.29).

By Lemma 2.5 for | = || = k+2—s there exist functions v?, i = 1, 2, such
that

Dav‘2 —U; 5 b
| D*vi — vyl Ve de) y =’§ - [l W uids)’

4.31 Hoeer < P
(4.31) lofll, ( c Y, Ilvua,llw s

Ve.u (ds) la|=k+2~s p.ulds)

”vi I en <c Z “vi(a)”W; s

Wou (da) laj=k+2 ~s wwlda)

where i = 1, 2. Expressing the functions v, i =1, 2, ¢l = k+2—s, by the
right-hand sides of (4.29) and using (4.30) one gets

(4.32) Y ol <cX, i=1,2

s
la|=k+2~s Wp,uids)

By (4.31),,
4.33) D% vkyli—o =0 for jo| <k+1-s.
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On the other hand, (4.31); and the trace theorems imply that

(4.34) Do+ D, <X, i=12
D842t -0 oo <X,
|D¥*2 s(vicos9+visind—dI)| ,.,,, <X,
(435) Ve (22)
’ 2
D,’f+1_s glfi _Ti < CX,
on s-1/p
Vo' (1)
k+1-s a i a 2
D¢ ind— ——cosS 2 < cX.
6n on yosie

(y2)

Now (4.27), (4.33) Lemma 2.1 and the embedding theorem in [20] imply (4.22)
and (4.23), where v = v' 402,

(c) Let 8 = n/m, meN, m > 2. Let u+2/p =s¢Z. In this case we have
solutions of the homogeneous problem corresponding to (4.25) in the form

ol = AGRr"* sin(m £ g,

4.36 ]
(4.36) ¥ = B{E)rmE1cos(im+ 1),

where relations between A4$%) and BY%) are described in (4.2) and j > 0 for
+ andj > 1 for —, because we are interested in solutions of the problem (3.14)
in a space to which a generalized solution also belongs (see the proof of
Theorem 4.3 below). In this case to obtain the functions v;, i = 1, 2, we repeat
the considerations from part (a). However, to solve the problem (4.25) some
compatibility conditions on the right-hand side functions must be imposed
and a solution is determined up to an arbitrary polynomial (4.36) for
jm+1 < g < k+2—s5 (because we look for solutions in the form of poly-
nomials of degree not greater than g). Let vj,, i=1, 2, g < k+2—s be
a solution of (4.25). Then

= 3 vplix), i=1,2.
g<k+2-s
We not continue as in (a).
Let p+2/p = se Z. We first find a solution v, i =1,2, g < k+1—s of
the problem (4.25) (with compatibility conditions on the right-hand side
functions) up to an arbitrary polynomial (4.36) for jm+1 < ¢ € k+1—s. Let

v= ) ollx), i=12.
gsk+i-s
Then we find solutions v,,, i = 1, 2, || = k+2—s, of the problem (4.29) with
right-hand side functions satisfying some additional compatibility conditions.
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They are determined up to an arbitrary pdlynomial (4.36) of degree
jm+1 < k+2—s. Constructing a function vZ, i = 1, 2, as in (b) and letting
v, = v} +vf, i= 1,2, proves the lemma.

To obtain the estimate (4.23) the arbitrary polynomials appearing in v;,
i = 1, 2, must be suitably chosen. However, as we shall see in the next lemma
this is not important. This concludes the proof =

LEMMA 4.4. Let g€ Lk ,(dg), @, € LEE271P(y), e LEEI"1P(y), i = 1, 2, be
such that (4.21) is satisfied. For 8 = n/m, m = 2 natural, some additional
compatibility conditions are needed (see Lemma 4.3 (c)). Then there exist
functions v;e LE%2(dy), i = 1, 2, such that (4.22) is satisfied and

2
@37 3 (ol ra FUAN e H NP e FNEl i )
=1

P (do) p.u(ds) e Vp,u (r1)

2
4 Z ”gl" k "(p|" k+2-1/p +"'// ” k+l-1/p )'
i=1

Lp, p(d ) Lp.p (i) Lp u ()

Proof. Using the Remark at the end of Chapter 3 in [13] we consider the
transformation r;(x) > 2%c;(4 ') gix) =g, (A7), @x) o AT g4 T x), Pi(x)
=AY (A7 x), Bi(x)— A2 (A7 x), W(x)~> AV (A" 'x). Then after letting 21— 0
Lemma 4.3 implies (4.37). m

Remark 4.1. The arbitrary polynomials which appeared in the proof of
Lemma 4.3 are not important in Lemma 4.4.

LEMMA 4.5. Let u,e #(dy), i = 1, 2, be such that
(4.38) ul,, =0, (u,co83+u,sind),, =0,
and sin8 # 0. Then

2 2
(4.39) Z ”ui||12.;,_1(ds) <c Z ”ui”x’(as)-
i=1 i=1
Proof. From the assumptions of the lemma and [6] one has

N1l Ly, gy € €ty llspiagys
2
luycos®+u,sind|, . <c X 1wl e agy -
i=1
Therefore for sind # 0, (4.39) is satisfied. m

THEOREM 4.3. Let p, peR, p> 1, u>0, keZ. Let fieLt (d,), i=1,2,
have compact support and

(4.40) A9 > k+2—<u+ %) > 0,
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where
T 3
A(9)=§—1 for 8 <m, A(9)—l—§ for t <9< <5
A(S)—%n—l for %n<9<2n.

Assuming that
2
(4.41) k+2—(,u+;)#= 1 for p# 2,

(4.42) k+l1—p=1 for p=2.

Then there exist a unique solution e;e Lk*2(dg), i = 1, 2, of the problem
(3.15) such that

2
(4.43) Z ll&;l el <c ) llf;llLk
dg) i=1 p,u(dg)

i=1

In the case 3 = n/m, me N, m = 2, the right-hand side functions of (3.15) have to
satisfy some compatibility conditions at x' = O which are implied by Lemma 4.4
and Theorem 4.1,

Proof. Lemma 4.4 implies that there exist functions v, & Lt >(d), i = 1, 2,
satisfying the homogeneous boundary conditions (3.15), that f;, i =1, 2,
‘are replaced by h, = A'v,+f, € VX ,(d,), i =1, 2, (which also have compact
supports), and

2
(4.44) 2l <c Z Il
i=1

Vp.ul(ds ) Lp.uldg )
Then instead of (3.15) we have
—A'u,=h, i=1,2,

(4.45) ul,, =0, (u;cos3+u,sind),, =0,
auZ — aul . 5u2 _
(3n 0, <6n sind — o cosd ; =0,

and

(449 o=t =12

We define a generalized (or weak) solution of (4.45) to be functions
u e #(dy), i = 1, 2, such that (4.38) is satisfied and

2 2
(4.47) Y fVuVndx =Y [ hndx

i=1dg i=1dg

for all n,e #(dy), i = 1, 2, satisfying (4.38).
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From h;eL},(d;) and the compactness of supp h;, i = 1,2, one gets
h,eL, (), i =1,2. Then by Lemma 4.5 the right-hand side of (4.47) is
a continuous linear functional on #(dy), because

2 2
l Z j h,-r],dx’l <c Z ll'h“mds)-
=1

i=1dg

Hence by the Riesz Theorem there exists a unique weak solution u;, i = 1, 2, of
(4.47) such that

2
(4.48) Z ”ui“x’(ds) ¢ Z Ik, ”Lz 1(ds)*
i=1

Let (4.41) be satisfied. Then Theorem 4.1 implies that the weak solution
belongs to Vi*2(dg) and

2 2
@) X hl g, <0 X M S z T

Let (4.42) be satisfied. In this case k+ 1 —pu is equal to 1 which is an
eigenvalue of the problem (4.45). The corresponding eigenfunctions are ax,,
—ox,, where o is an arbitrary parameter. Hence they belong to ker DZ.
Therefore Remark 1.1 of [7] implies that the weak solution satisfies
Diu,eV} ,(dy), i=1,2, and

2 2
2
@S0 % DRul, . <c M < cz 1

Lp.ulda )

Using (4.46), (4.49) and (4.50) one has (4.43).

The necessity of the condition (4.40) follows by arguments similar to those
in the proof of Theorem 5.1 in [7, p. 279], where the eigenfunctions (4.2) are
used. Moreover, in order to have a weak solution, (4.40) must be assumed. This
concludes the proof. m

Remark 4.2. The eigenvalue A =1 does not intervene in the proof of
Theorem 4.3 because the compatibility condition (4.21) is obviously satisfied
here.

Using the anologue of Lemma 4.3 in the case of Holder spaces, we can
obtain instead of Theorem 4.3

THEOREM 4.4 Let f;e Ci_,(d,), supp f; compact, i = 1,2, |, seR. Let
4.51) A@) > 5.
Then the generalized solution of the problem (3.15) belongs to Ci*?(d,) and

2
(4.52) Z ledl ez, S € }: 1/l

_2ds)’

3 —~ Disseriationes Mathematical CCLXXIV
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5. Auxiliary results in 9,

This section is devoted to obtaining results which enable us to pass from
nonhomogeneous boundary value problems to homogeneous ones and conver-
sely, in the case of weighted Sobolev as well as Holder spaces.

LemMaA 5.1. Let @, € VER2=YP(T), e VLI ~UP(T), i =1, 2. Then there
exist functions v;e VE*2(dy), i = 1,2, such that

Vilp, = @1, (0,088 +0,5in9)|r, = @5,

(5.1) s s o,
2. vy . o 0v, _
on|p, Vi <6n nd on cosS) r V2
and
2
(52) Z ”vi"Vl;+z sl Z (||§0|| k+2 |/p +"¢i” k+l ]/p(r))

Conversely, let v,e VEE2(9,), i =1, 2, be given. Then

@1 =V4r, € Vil MRy,
@, = (v,c088+v,8in8)|r, € VEL2TVE(T),

0v,

b= 2| eviprnry,

r,

Y, = (avls 9—%——cos9>

€ Vi 1T

iy}
and
2
(5.3) =Z (sl peeamue gt (A Jeeimite ) sc Z llvilly,;+“z(%)
Proof. To prove the first part of the lemma we replace the relations (5.1)
by

(v,c08¢ +0,8IN0)|r, = @, .
i=1,2.

i} )
n (vysinp—v,co89)lr, = @+,

Now the results from Section 1 of [10] can be used. The second part of the
lemma also follows directly from [10]. =

LEMMA 5.2. Let g€ L} (D), ¢, € LA327VP(M), e LA21-V(T), i = 1, 2,
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be such that

0 0 .. 0
(5.4) ((.,—Y-l ‘P1_<C°S‘9;~,—x—l +Sm'9(ﬁz)¢z‘¢1+¢’2> =0.

x=0

For 3 = nm m 2 2 natural, additional compatibility conditions on the functions
Ois Wi g 1= 1,2, at x€ M, must be imposed in order that the problems (5.8),
(5.20)—(5.21) below be solvable.

Then there exist functions v,e LX12(2,), i = |, 2, such that

fi = 4v;+g,e V',‘,”(gs),
P =0,— vylr, € Vk+2 llp(rl)

(5.5) P, = ¢, —(v,cos3+v,sin )|, € V332 HP(T,),
dv
P, =gy — 22 Vi,
ry

é ov
P, = !pz—-(aunl sin8— a—cosS) e VEkE1-tr(T ),

I

and

2
56 X e P/ I 1 perz=us Tl eiovm )
=1 po

Vp.u(2s) (i (rv

ry

2
<cC Z (”g;” * +”¢ [l k+2 Ve |]l// [ il ) =cX,
i=1 Lp.u( P

and moreover,

.7 gv—’— sind — 0 +cosd — g (v,cos3+v,sinY)
0x4 0x, 0x,

ov, . 0 0 .
+ — +<—sm95x— +cos.96—x2)(vlsm.9——vzcos.9):| =0.

0%, 1

x'=0

Proof. (a) Let u+2/p =s¢ Z. We first find homogeneous polynomials
R, i =1, 2, of degree q with respect to the variables x' = (x,, x,) satisfying the
following inductive conditions [14]:

—A'Ryy =DiRy+ygy, =12 q<k-s,
(5.8) Ry, = 014 (R c083+ Ry 8ind),, = @55, g <k+2—s,
dR R, . ., OR, '
= 9— cosd
” Vig-1. ( an o0 on

29

on

=ll/2q_1, q<k+2—-S,

Y2
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where

The polynomials R,y, i = 1, 2, are calculated from the Dirichlet conditions
(5.8), only in the form R,y = @4, R0 = [@40—Cc083¢,]/sin3. The polyno-
mials of the first degree are determined by the boundary conditions also. Let
R, =a;x,+a,%,, Ryy = fB,x,+f,%,. Then Lemma 4.2 implies that the
coefficients «,, «,, f,, B, are not uniquely determined. They are solutions of
(4.20) with Z = («,, a,, By, B;) and Y= (9,1, @21, Y10s ¥20) Hence the
compatibility condition (4.17) has the form

(5.9) 11t V20 = @210V 10s
and for 9 £ kn/2, k=1, 2, 3, we have
(5.10) oy = ¢y, By = — Vo,

1
Bi+a, = 5079 (@21, + Va0 +€0828(0y5,+¥ )],

so the polynomials of the first degree are determined up to one arbitrary
parameter. Therefore (5.8) implies that all odd degree polynomials are also
nonunique. By choosing the arbitrary parameters appropriately Theorem 2.4
implies that all above polynomials make sense and

(5.11) Y ((DLRy &I < eX.

la| STk+2 —5]
Now by Theorem 2.4 we find functions v;€ LE%3(9D,), i = 1, 2, such that
(5.12) Divlyeo=D3Ryy, lof <[k+2-s],i=1,2,

and
2
(5.13) Z [l L2 ey Y DRI <X
P -‘”) i=1Ja| <[k+2-3]
We shall show that the functions v, i =1, 2, satisfy (5.5) and (5.6).
Considering the expressions
Di.(dv,+g) = DzzDg'(vl‘_Ri|/i|)+AIDE’(U;'_Ri|ﬂ|)+D£’(gi—gi|ﬂ|)
for |B| < k—s, from (5.12) we see that DA f)|._, =0 for |B| < k—s, i=1, 2.
Therefore Lemma 2.2 implies that fie V% (2,), i =1, 2, and

(5.14) WAl S ellfill oy S X =12,

Vp.u(@ Lp.u(@a
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Moreover, from (5.8) and (5.12) one has
Did),_,=0, |fl<k+2—s5 i=1,2,
DPW | _o=0, [fl<k+l—s, i=1,2.

Hence Lemma 2.2 and Theorems 2.2, 2.3 imply (5.5) and (5.6) for &, and ¥,,
i=1,2

The compatibility condition (5.7) follows from (5.9), (5.10) and (5.12)
because

(5.15)

oR 0 0
1 ke T — +sind— i
(5.16) x, (cos.‘)ax1 +sind ax2>(R“cos.9+R21s1n8)

R
+ 6x221 —(——smSa% +cos£)aa )(Rusms —R,,c089) =0.
1

Hence (5.16) and (5.8) imply some relations for odd degree polynomials R,,,
i = 1, 2. From these relations and (5.12) we obtain (5.7) and some relations for
odd order derivatives of v;, i = 1, 2, at x' = 0. Moreover (5.9) is equivalent to
(5.4

(b) Let u+2/p =s > 1, se Z. In this case the derivatives D%.g;, 6| = k—s,
Di*273¢,, DE*1=sy, i =1, 2, do not have traces on M. Hence we construct
the functions v;, i = 1, 2, in the form v, = v} +v?, i = 1, 2, where v}, i = 1, 2,
satisfy the relations (5.12) for |o| < k+ 1-s.

Then Theorem 2.4 1mplles that vl € LE52(2,), i =1, 2, and

(5.17) Z B ey \CZ Y, KDERy Mo g eX.

. (Do i=1|e|<ktl-s
Let
fll = A’vil-lh:gh l = 1’ 2:

&1 = ¢, —vily,, @i =p,—(vicosI+visin),,
6112 51}1 51)1
_On) in8— 22 cos9
=y, on ;. =y,— ( n cos

Then from (5.8) and (5.12) we have
Diflleo=0, l<k=1-si=12,
(5.18) Db}|,_o =0, a<k+1l-—s,i=12,
Di¥}l,_o =0, a<k-s, i=12,

and the compatibility conditions described in (a) are satisfied. Moreover, (5.13)
implies that

flelf (D), @reLli2 e, WYreLi =Yy, i=1,2,

I
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and

Lp.u(@s Lpou (r 'y

2
(5.19) Y (S +||¢‘|| K+ 2-1/p +||‘I’1|| L ) € cX.
i=1

To construct the functions v?, i = 1, 2, we must calculate the functions
Uy |2] = k+2—s5, considered in Lemma 2.7. To calculate them we consider
the following system of equations

(520) _D::lD‘.Ir—z_z_lez(vi(Z 0)+Di(0 2)) = D;|D{cgz_vDL(ngi(O.O)_*-./‘il)s
where i=1,2, 2<j<k+2-s5,v<j—2, j+1 <k+2,
Dszvuo,O) = Danlzq)n

0 ay .
<cos9 5 T sind E) D1 (vy0,0)6088 + 1, 0y5In9)
1 2

9 VY <
cosd— +sind— | DLPL,
0x, 0x,

(5.21)
~D{'Dlvyg ., = DL DL P,

0 a V! . .
(cos& poul sind E) D;[—sin®8v, ; o, +5in8cos vy g 1)+ Vy(1.0)
1 2

2 a : a /1 1 g7
—c08” v, )] = COSBEI +sm‘9a—x2 D, V3,

where j < k+2—s, j+1< k+2,

_0 _6 i=1,2
o Ditasez) = Vg + 1,a2)2 Ax Viy,az) = Vigegea+1ys P = 1 4
1 2

and &}, ¥}, i =1, 2, are extensions of &}, ¥}, i=1,2, into 9, such that

”611” k+2 <CI|¢11” k+2—1/p s [ = 1’2’
(522) ~1 Lo (@8) ro
" 'Ili ”L’;Ll( C"W ||Il’(,+“.l l/p(r” L= ]7 21
and (5.18), , are satisfied.
The functions D’,u,.(o.o), i =1, 2, are calculated explicitly {rom the first two
equations of (5.21) for j =0, | € k+2. To calculate D! iy =12, || =1,
I'< k+1, from (521) we have to consider the algebraic system (4.20) with

__ ] ! ] {
Z = (D2v,(3,0y D203(0,1)» Dz03(1,0)» D2V20,1y5)

0 0 J \ = ~ =
Y= D’z Pt 1 H 1 [ 372! [R173)
( ax; o0 Dz<cos\95x1 +sm93x2)(bz, DY, D, '1”2).
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Therefore to solve the system the following condition, similar to (6.9),

d . -
(5.23) a—mcﬁi—(cosSaixl +sin9£z—>¢§— vyl =
must be satisfied. Then solutions have the form (5.10), so they depend on one
arbitrary parameter.

The condition (5.23) is stronger than (5.9) because it must be satisfied for
all xe 9, while (5.9) for xe M only. But on the other hand (5.23) describes
a relation among extensions of @}, ¥{, i = 1, 2. Hence to obtain the extensions
such that (5.23) is satisfied we must know that (5.23) is satisfied for @}, ¥},
i=1,2, and for xe M, which follows from (5.18), . Hence (5.23) can be
satisfied without any additional assumptions.

To calculate the higher derivatives we use induction. For j =2, I <k,
Divyg, i =1, 2, |a| = j, can be calculated from (5.20) and (5.21). Assume D! Vita)
lo| <j—1, 1< k+2—(j—1), are found. Then inserting v,,_,,, i = 1, 2, where
(x—1) is either (x,—1, «,) or (o, a,—1), into (5.20), from (5.20), (5.21) we
obtain v, i = 1, 2, and its derivatives with respect to z. In this way we
calculate all Dy, i =1,2, |af < k+2—s, I+]a] < k+2.

Now by Lemma 2.7 and Remark 2.1 there exist v?; i = 1, 2, such that
v}eLit?(2,), i=1,2, and

(5.24) Div? =0, i=12 o) <k—s—1.
Let
fE=dvi+fi, i=1,2,
®1 = b1 —0v}l;,, P = Di—(vicosS+visind),,

6v2

v{]l
on

on on

a 2
. wrowl_ (”1 i 9—%cos9>
r,

I
Then Remark 2.1 implies
2

[CE R I N (e - I 1 o SRS | 1 IO

& 25) ry ry

+ T (R, ae 5 (f1pe u",-,,,,“dz)“"

=k-s R! p.ulds la[=k+2-s R!

+ % ([ DR, d2)77) < oX.

la]=k+1~-s R?

From (5.25) we have

(5:26) zum [P L. e | ) IR R0 ¢

Lp.u~-s(29) Lpu-s
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Therefore using Lemma 2.2, (5.18) and (5.24) we see that (5.5) and (5.6) are
satisfied.

In the case § = n/m, me N, m > 2, in addition to the previous consider-
ations, first polynomials of the type (4.36) appear as solutions of the problems
(5.8) and (5.21) if suitable restrictions on their right-hand sides are imposed (see
Lemma 4.3); secondly, since solutions of problems (5.8) and (5.21) are
constructed inductively and the polynomials of the type (4.36) of lowest degree
are of the form

ol = Abtirsing, of) = Bijircose,
(5.27)
0l = A Jrsing, % = B{Jrcosp, for m=2,
we are able to get the form of polynomials generated by (5.27) which appear in
the solution we are looking for (these polynomials are arbitrary in such a way
that they depend on arbitrary functions of z). Now to obtain the estimate (5.6)
the arbitrary functions have to be properly chosen. This concludes the proof. m

Lemma 5.3. Let ¢, e CYTI"), w, € CLZ1(I")), with compact supports, i = 1, 2,
¢ Z. Then there exist functions u,e C{(Dy), i = 1, 2, such that

uglp, = @, (430088 +u,sind),, = o,,

(5.28) 5 5 ou,
u,| Uy _ Ouy _
on |y, Vi, <6n ind . cos-9> . 2
and
2 2
(5.29) Z ilf_‘_l,(.ds) Z, |(Ptlcj,(r.-) + |‘/’i|C_',Z’,(r,))-

i=1

The inverse statement is trivially valid.

LEMMA 54. Let g,e Ci_ 5(Dy), @,e C*2(T), W,e CLYi(I), with compact
supports i = 1, 2, s > 1. Then there exist functions v,e C:*%(9y), i = 1, 2, such
that

fi=g+4veC_,(@,), i=1,2,

P, =, —v|,, e CYYT), D, = ,—(v, cos3+v,sin ), € CLH2(I,),

e Citi(ry),

9 v
¥, = %—0— eClri(r)), =y,— < ! s1n9—a—cos.9>
I's

2
(5.30) Z (<vi>g.$sz)+ |filc" ,(%)'H‘p |c'”(r.)+|¥’ |C” 1(r,))

i=1

<c
{

M

(K905 2.0 H<@DEED + QUL ).

1
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The given functions have to satisfy some compatibility conditions both for
arbitrary angles and equal to w/m.

Proof. The proof is similar to that of Lemma 5.2. We underline
differences only.

The functions v;, i = 1, 2, are determined by Theorem 2.6 by using (5.13)
for o € [s] and s < n/S.

For n/3 = m < [s] the polynomials R, are determined up to polynomials
described by (5.27). Therefore the solutions of the problem (5.8) and (5.21) exist
if some compatibility conditions are satisfied. This concludes the proof. =

6. Existence of solutions of (3.14) in H:(2,)

In this section we prove the existence of generalized solutions of (3.14) and
next we show that the generalized solution belongs to H%(2,) for sufficiently
smooth right-hand sides.

Using Lemma 5.1 and 5.2 we can reduce the problem (3.14) to

(6'1) _Aei = _ﬁa i = 15 25

elr, =0, (e,cos9+e,sin9)y, =0,

62 de, de, . de,
En =0, (WmnS—EEcosS)rz = 0.
LEMMA 6.1. If u,e #(2,), i = 1, 2, satisfy
(6.3) udr, =0, (u,cos3+u,sing)|., =0,

and sind # 0, then

2

2
(6.4) Y iz, - vo0 < € X Nullle@a-
i=1 i=1

Proof From the assumptions of the lemma and [6] we have
""‘1"Lz,-|(@s) < c""]”_#(gg)a

2
lluycos8+u,sind |y, _,@s < Cllu;cos9+u,sind| pg, < ciz 141 ()
=1

Therefore for sin3 # 0 we get (6.4) m

DEFINITION 6.1. A generalized (or weak) solution of the problem (6.1), (6.2) is
defined to be functions ¢;e #(D,), i = 1, 2, satisfying (6.3) and

2

(65) Y fven=73 { fm

%y i=12s
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for all e # (7,). i = 1.2, satisfying (6.3). A motivation for (6.5) comes from

1
9(ﬂ100s9+nzsm. )=0.

=|

2
S | aven = fAven + f” Ve2

[ R Iy

2
THEOREM 6.1. Let Y, || fill L, ,@s = N < 0. Then there exists a generalized

i=1
solution of (6.1), (6.2) and

2
(6.6) Y. leilleizs < eN.
i=1

Proof. By Lemma 6.1 the right-hand side of (6.5) is a linear continuous
functional on* #(2;), because

IZ J.f’hl cN Z ll7; ||mgas)

i=1 9p

Therefore using the Riesz theorem concludes the proof. m

THEOREM 6.2. Let ke Nu [0}, neR, u = 0,

(6.7) AQ > k+1—pu>0
where
A =T —tfor8<m AP =1-Tform<9<o
I S 9 s3"
(6.8)
A®) =2 1 for Sn<8<2
=3 7T <8< 2m
Let f,e LK(2,), i = 1, 2, have compact supports. Then the problem (6.1), (6.2) has
a unique solution e;e L\**(24) N # (D). i = 1.2, and
2
(69) 3 ey, <€ 2 Uy,
In the case 3 = nnfm, me N, m = 2, some compatibility conditions on the

right-hand side functions of (6.1), (6.2) have to be imposed at x € M; they follow
Jrom Theorems 4.1, 4.3 and Lemma 5.2.

Proof. Since fieL:(2,) and supp f; is compact, i = 1,2, it follows
that f-(x’)eL (RY), x'ed;, i=1,2. Thus the Fourier transform is

f(x, & =Q@mn)~Y2 | f(x)e"'*dz. After taking the Fourier transforms the
Rl
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problem (6.1), (6.2) has the form
—de+E¢=f, i=12,

él,, =0, (&;,cos3+¢&,sin9),, =0,
(610) a~ 1ly a.1 2 )I
%2 o, ( ing— 220059 = o0.
on o 6n on '

A generalized solution of the problem (6.10) is defined to be functions
é,e H'(dy), i = 1, 2, such that

(6.11) &l,, =0, (& cosd+&,sind),, =0,
and
2 2
(6.12) Y [ (7e-va+Eteqydx = Y, | i dx,
i=1dg i=1dg

for all n;e H'(dy), i =1, 2, satisfying (6.11). In the above expressions all
functions are complex-valued and 7 denotes the complex conjugate function.

The identity (6.12) implies that for almost all & there exists a unique weak
solution of (6.10) in H'(d,).

(a) Let k=0, ue(0, 1]. Then (6.7), (6.8) imply that

.9<2L for § < and ue(0, 1],

9>§ for n <9< 3n and pe, 1],

3 <22—_n# for 3n < 9 <2r and pef3, 1]
Putting 7, = €27, i =1, 2, in (6.12) one obtains
2

(6.13) Y &7 [ (Pl +E2)E2)dx’

i=1 da
2 2
< E7H(Y [IPRPA) (Y [ 182 dx)
i=1dg i=1da

~
Theorem 2.5 for pe(0, 1), I =1 and ¢ =3 ' gives

(6.14) g2 Z fle?1x| " 2dx < ¢ Z [ av el +&1el?ydx’

i=1dg i=1dg

so using it in (6.13) one gets

||[\/]n

(6.15) gr-2m Z [ (7e)*+£%1é))d

i=1dyg

I |fi1? 112 dx’
dg
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for ue(0, 1). Putting u =1 in (6.13), then using

"MN

(6.16) j 2% 2dx’ < cz {17'é|2dx

i=1dg

which is obtained snmllarly to (6.4), one has (6.15) for u = 1. To show the
estimate

2
(6.17) Y e[Vl + 2P x*tdx < ¢ Z [ 1412 1x' 2 dx’
i=1 dg i=1ds

we repeat some considerations from the proof of Theorem 4.2 (a) in [13]. We
put n; = &V.(x', &) in (6.12), where

', &) = min(s|¢| ™%, max(|x'[*, [¢]72))¢%, s > 1.

The function is bounded and continuous in x'. Therefore

Vi(x
v,
(6.18) J, 2 § (v e)>+ &8> Vdx'
t=1ds
2
Z j (fie,V,—V'EV'V.E)dx'

2 .
<(X TP (Y, [ 1o VI )
=1ds

i=1ds

(Z I|V' |2de)1/2(2 Ilel |V' |2V 1dx)1/2

i=1dg i=1dg

Since &,eH'(d), i = 1,2, J, makes sense. From
P VIRV < 2uP et
we have

2
Y [ 1627V RVt < (2u)retT 2#2 [ 1/2dx'.

i=1ds i=1dg

Hence (6.15) implies that the right-hand side of the above inequality is bounded
2
by ¢ Y. [ Ifi*1x"[**dx". Moreover,

i=1ldg

||[\/]N

2
[IBRV2XI"2#dx < Y [€2 [ 6 Vidx'+ | lgf|x] ¢4 *axT],
1dy

i=1 ds dg\ds

where dy = {x'ed;: [x'| > |£|~"'}. From (6.14) and (6.15) we see that the last
2

term in the last inequality is estimated by ¢ ¥ [ |f2|x'|**dx’. Therefore using
i=1ds
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the above estimates in (6.18) gives

||MN

U2 ax,
1dg

and letting s— 0o we obtain (6.17).

From (6.17) and Theorem 4.1 it follows that there exists a unique solution
of the problem (6.10) such that &e HZ(d,), i = 1, 2, and

2
6.19) 3, [PV EP+E e + e D)X + |7 gl x| 2~ 2
i=1ldsg

2
+E: x|~ 4dx' < ¢ Z j IF12 x| 24 dx
i= B

Putting #; = &,[x'|>*~2 in (6.12) (which can be done because a weak solution
satisfies (6.19)) we obtain

2
(6200 Y [ (P&l x| 2+ £ 2 x 2~ F)dx

i=14dg
L 2
<c Y [ (AP 4182 1x|#~ *)dx.
i=1ldg
From (6.19), (6.20) and the Parseval identity we get

2 2
(6.21) i; el 2 g, < ci; il sy

which implies (6.9) for k=0, ue(0, 1].

(b) Let k>0, ue(0, 1]. Then we can only consider § < .

Lemma 4.4 implies the existence of functions v;e Lk*?(d), i =1, 2,
satisfying homogeneous boundary conditions in (6.10) and such that
fi—Av;e H%(dy), i = 1, 2. Therefore in this section we can restrict our con-
siderations to f;e H%(d,), i = 1, 2. From (6.19) and (6.20) we have

2 2
6.22) Y [(7elix P2+ &gl x X < ¢ 3 [ ISP Ix P dx

i=1ds i=1dg

and from (6.19) and (6.22) we get

2
(623) ¥ & [ (V& PIx P+ Ix P hdx < c Z & [ ISP dx,
i= ds

=1 dg

so £26,e H\(d,), i = 1,2. Knowing that fie £4(dy) and supp f; is compact,
i=1,2, we shall show that £*&eH}. (dy). To do this we consider the
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expression

2
Y E [V e+ 8212 2 dx
: ds

i=1
2
= T ([ + [ )P ER+EEAIN2x = 1, +1,,
i=1 ds d;\dq

where dy = {x’'ed,: |[&|-|x'| < 1}. Using (6.17) we obtain

(6.24) j |12 X2+ dx.

||MN

The previous estimates only guarantee that I, makes sence for functions &,
i =1, 2, with compact support. Therefore to estimate /, we introduce the
functions

(6.25) @, = é',((@), i=1,2r>1,

which are generalized solutions of the problem
—Awi+§z~ jic ZVIE V’C—"eA C_gh l= 15 21

@,l,, =0, (d;cos8+d,sind),, =0,
o,

N
onl, \ 2on)|,

6w1 0d,
< 6n in3— Tn cosS)

because {(x') is a function of [x/|. From (6.19) one has

(6.26)
=0,

=0

0
= (é,;sin8—¢é,cos9) —=
Y2 a

72

2 2
(6.27) lz "gi"Lz,Mu) <c Z (||fi||1.z,,.(ds)+ I Vléi"z,z,,,_,(as)"'"é.-||1.z,,._;(dg))
=1 i=1

2
<e Y Mfille, e
i1
where

€l _ ¢ Ié‘IIXI

and the dot in C denotes the derivative. Therefore @,, i = 1, 2, are solutions of
the integral inequality (6.12) where f is replaced by §,, i = 1, 2, and thus they
also satisfy (6.19) and (6.20).

Now we shall estimate I,. Since the functions 7, = &,|x'|**2{, (|€||x']),
i=1,2, where {;(ro) = 0forry < 4tand { (ry) = 1 forry > 1, belong to H'(dy)

Vi <ec ICI =l <
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for every bounded r, we can put them into (6.12), where &,, f; are replaced by @,,
g, 1 =1, 2, respectively. Hence

2
2) =& Y [V &+ &%) X1+ 2L, (€% dx

i‘lds

&Y. | 705 (2ue D PRI+ i
i=1dg

+E Y | godin P20, (El Ddx
ds

i=

—

Using the Young inequality one has

(628) ) é“df (P @+ E |, %) x4+ 2 (€] %) dx’
i=1 8

2
~ C ot~
Z J | eI IEI°IX 2L, 4+ = |7 6y 18]
i=1dg &
+el P @ HIE12 x| 72 el 2|28 1P 4L
C . ~
i ;|gi|2|¢|2|x'|2"+2+s|w,~|2|¢|6|x'|2"”cl]dx'.

We use F'{, = {,|£]V'|x'| and that {, # 0 for 3 < |&]|x] < 1. Since o, i = 1, 2,
satisfy 6.19, from (6 28) we obtain for sufficiently small ¢

629 Iy <c Z [ E2(7" &2 + 2163 |2) x| 24 dx’

i=1dg

2
-'I-sz Z j‘ Ig‘i|2|xf|2’l+zdxl

i=1dg
2
ZI [E21G 12 1142 + g x| ] dx”.
i=1ds
The first term on the right-hand side of (6.29) is estimated by

2
B [ (FPRP 27 G2 + [ 24 %) dx

i=1ds

Hence using (6.19), (6.20) with &, §;, i = 1, 2, instead of ¢, fi,i=1,2, and
(6.27) we obtain the following estimate

(6.30) Ih(r) < c(&*+1) _Z fl]:|2|x’|2“dx’,

where the compactness of supp f;, i = 1, 2, has been used. Letting r — co in the
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left-hand side gives
2

(6.31) L <c+1) Y [ I1f1P1x*dx.
i=1ds

From (6.24) and (6.31) we get

2
(6.32) Z [ (7 e)+ &2 (82| x4+ 2dx’

i
2
<c Y [& JIAPI P ax + [ 1P 112 2dx].
=1 ds da
From the first term of (6.32) and the Hardy inequality (2.20) we have

(6.33) Z 1&%el s Z FA

+n(ds ) £utds)

From (6.23), (6.33) and the compactness of suppf;, i = 1,2, we see that
fi—(*¢,e Hi(dy) n H} ., (dy). Therefore, for pe(0, 1) Theorem 4.1 implies the
existence of two different solutions é; and &, i = 1, 2, of the problem (6.10) with
the same right-hand sides f,f, i =1,2, such that éeH3.,(d;) N s#(dy) and
&l e H2(dg) n o (dy), i = 1, 2. Since 1 is an eigenvalue for the problem (6.10)
between 1+1—(1+p)=1—pu and 14+1—pu=2—yu, the second part of
Theorem 4.1 gives

(6.34) &l = &, +ax,, @& =& —ax,.

Moreover, imbedding theorems imply that

a= —él.lex’=0 = eZ.x,lx’=0'
Hence (6.23) gives
2
51112 2
(639) X 18, < z 172,

To show higher smoothness we use induction. Assuming that &) = ¢,
i=1,2, from (6.19), (6.23) and (6.35) we have

2
6.36 &|? 2
(6.36) DAL z VA
2
6.37 2 2
(637) T, < ,Zl 172, .

Using the considerations from [13], [14] we shall prove (6.9) for k > 1.
Therefore we shall find solutions of (6.10) in the form

(6.38) g=e+ Y Pix), i=1,2,
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where ¢ < k, P{(x) are homogeneous polynomials of degree j with respect to
x, &€ é"’” (d;) and

2
.39 87|12
(6.39) PAL{E z Tz,
Hence by the Parseval identity we get ef € H3*2(2,) and
6.40 +2 o
(640) 2 el os g, < z il 500

On the other hand, using the decomposition (6.38) and the form of the
homogeneous polynomials one gets

6.41 él . = ||e7 < lef .
( ) " i"-ft’u”(ds) " l".?:”(dg) = " l"t:”(ds)

Now we prove formulas (6.38)—(6.41) inductively, but in a constructive way.,
Let £7(x'), i = 1, 2, ¢ < k, be determined by the following system of problems

—AE = -8+ f, i=12,

(6.42) éil,, =0, (éfcosI+é&3sind),, =0,
0es 0] . 03
- %81 Ging— 22 =0
an, 0, ( . sind e cosd . ,

whereo > 2,8 =¢,,i=1,2,and &}, i = 1, 2, are defined by (6.34). Similarly
the homogeneous polynomials P{ are determined by

—4'Pl=-EP2 i=1,2,

(6.43) Pil,, =0, (P{icosd+Pisind),, =0,
j J
6ﬁ =0, 6P1 sin .9——6Lcos.9> =0,
on |, on on v

where j > 2, and
(6.44) Plx)=0,i=1,2, Pi(x)= —ax,, Pi(x)=ax,,

where a appears in (6.34). By (6.43) and (6.44), the homogeneous polynomials of
even degree are equal to zero.

Theorem 4.1 and Lemma 4.3 guarantee the existence of solutions of the
problems (6.42) and (6.43), respectively.

Since (6.38) is valid for ¢ = 1 (see (6.34)), assume that (6.38) and (6.39) are
satisfied for ¢ < s— 1. Then using Theorem 4.1 to (6.42) for o = s we have the
existence of solutions &e &572(dy), i = 1,2, and

2 2
(6.45) ) Il§?||§,+z(ds)<cz & e, +1 712,
=1 s i=1

&5(ds) J(d)

4 — Dissertationes Mathematical CCLXXIV
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<c Z Sl 7/ e VA

Su  (da) é’u(d

2
2
¢ %17,
where (6.39) for ¢ = s—2 and the definition of the space &} (d;) have been used.
Now we prove (6.38). To do this we prove that &§+P{ = &', i =1, 2, by ob-
serving that &+ (1 —{(x)) P§ = vje H5*2(dy) and &' —{(x')P{ = v} € H}" 1 (dy),
i = 1,2, are solutions of the same problem

—dv =k, i=12,

(6.46) o], =0, (v,c089+0,sin9), =0,
o, 6v1 v,
—3 —_— = 9 = 0,
In nl, 0, ( ol ind - 2 cos )
where

= —E2F 21 ={(x) P52+ 2V V' P5+ PiA'{
= —E2F73 L EL(X)PIT2 2V (V' Pi+ PiA'{ € H(dg) N HS™1(dy).

Therefore Theorem 4.1 implies that o =", so &+P{ =& '. Hence
(6.38)-(6.41) are shown. From (6.41) using Lemma 4.4 and the Parserval
identity we obtain (6.9).

Now we consider the case u = 1. By (6.23), we have £&, e Hi(dy), i = 1, 2,
Hence the right-hand side functions in (6.10) equal to f;—¢£2¢;, i = 1, 2, belong
to Hi(d,). However, in this case Theorem 4.1 cannot be used for the problem
(6.10) because 1 +k—u = 1+1—1 = 1 is its eigenvalue. Therefore Remark 1.1
on p. 220 of [7] implies that the weak solution of the problem (6.10) is such that
Dié eHi(dy), i = 1,2, and

2
2 ~
(647) 3 ID%2 2 701

Using (6.19) we have

2

(6.48) Z &l .

= .‘?(d)

2
Sc Z "f:”l.z,x(ds)
i=1

so (6.47) and (6.48) imply

(6.49) z e, Z 17l &

£1(ds)

To obtain the further estimates we use induction. Let &, & #9*2(d,), i = 1, 2, for
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c<s—1, s<k and
2

(6.50) > 120 e, Z A

i=1 1 Zy(ds )

Then using (6.50) for ¢ = s—2 we get ﬁzé.e.s,”?( o, i=1,2 and

(6.51) IIf“II Z I,

#\ds )

Hence by (6.51) and Theorem 4.3 the weak solution of the problem (6.10)
belongs to £ 2(dy) and (6.50) is satisfied for ¢ = s. Therefore, by induction,
(6.50) is valid for all o < k, and by the Parseval identity e;e LE*2(9y), i = 1, 2,
and (6.9) is valid too.

(c) Let k>0, u=0, 3 <m/2 Putting n,=¢, i=1,2, into (6.12) we
obtain

2
(6.52) Xl frelr+&ePax <c i fil2dx',

i=1 da i=1dp

therefore £26,€ L, ,(dy). Since 1 —p = 1 is an eigenevalue of the problem (6.10),
from (6.10) and Remark 1.1 on p. 220 of [7] it follows that D&, L, ,(dg) and

(6.53) z "Dz'éi"lvz olds) £ € Z ”f"Lz olds)*

i=1

Therefore we have proved (6.9) for k = 0. For k > 0 and f, e &% (d,) we shall
prove (6.9) inductively. Let k =1; then from (6.52) it follows that
— &2+ f; € £}(dy). Therefore from Theorem 4.3 it follows that & e £3(d,) and

Z (A

-'?o(d )

(6.54) Z 1&h? ,

.?(d

By induction, & e £§*%(d,), s < k, and

2 2
(6.59) z 2,0, < iz 172, . s<k
From (6.55) using the Parseval identity we obtain (6.9).

(d) Let k = 0, pe[0, 1], /2 < 3 < =. In this case the considerations are
similar, except that 1 is not an eigenvalue. Moreover, in this case we only have
k=0, because 1 > n/3—1>1—pu.

(e) k20, uel0,1], 7 < 9§ <2rnand 2n/9—1 < 1, 50 (6.7) holds for k = 0
only. This case can be considered in the same way as (d), because 1 —n/3 < 1.

(f) k>0, u > 0. This case can be proved using the local estimates. See the
proof of Theorem 4.2 on p. 30 of [13].
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Remark 6.1. In cases (a), (d), (e) where the eigenvalue 1 of the problem
(6.10) is greater than k+1—pu the above results follow from the general
methods of Maz’ya and Plamenevskii [10], [11].

7. Green function

In this section we construct and obtain estimates tor the Green function of
the problem (6.1), (6.2). In our considerations we use the results and methods
from [14], [16]. First we introduce half-spaces R,, R, with boundaries I';, I',,
respectively such that 9, = R, "R, for 3 < m and 9, = R, UR, for § > =.

The Green function for (6.1), (6.2) has a matrix form G(x, y), i, j = 1, 2,
and is a solution of the following system

—A4Gy(x, y) = 6;,0(x—y), Lj=12,
(7.1) Gylyer, =0, (Gy,c088+ Gy sind),r, = 0,

6_6‘22 =0, (BG” §sin 9 — 6sz cosS) = 0.
an xel'; a an‘ xel;
Following [14] let
(72) Gl‘j(xa .V) = ¢(x, y)g(xa }’)511+G§j(x, ,V), la] = 1, 29

where &(x—y) is the fundamental solution for the Laplace equation, y(x, y) is
a smooth function such that y(x, y) = 1 for x, y sufficiently close to each other
and ¥(x, y) = 0 for x, y sufficiently distant and for x close to M. Then for any
y € 9, the functions Gi,(x, y), i, j = 1, 2, are solutions of the following problem;

_AG:J = (2V¢V‘5’+€A'ﬁ)5.j» l).’ = 11 2’
, oG’
1j|r1 = —(lpéa)h-lé”, "b;z‘j -

(Gl jc0s3+Gysin ), = ~(Wé)Ir, (5, c089+5,sin ),

0Gy; . 0Gy,
(6;1 mnS——WcosS

The Green function has the following properties (see [14], [16]).
(1) Gy(x, y), i,j = 1,2, do not depend on the mollifier function ¥ (x, y).
(2) G,(Ax, y) = A"'G(x, ), V 1> 0.
(3) G(x, y) are infinitely differentiable with respect to x, y if x # y and
x is sufficiently far from M, Vyea..

@
(7.4) Gij(x, y) = Gu(y, x).
(5) The generalized solution e, € #(D,), i = 1, 2, of the problem (6.1), (6.2),

d
= - % (‘pé’)'n 52,‘;

(13)

d .
= — 5’;(lpg’)]h(éusmé)—621c0s8), j=12.

I
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where f;, i = 1,2, are integrable functions with compact supports, can be
expressed by

(7.5) Z § Gylx, ) f,dy, i=1,2.
J=1 2

The first three properties follow from the definition (7.2), (7.3). To show (4),
consider the expression [16]:

2
(7.6) 3, j [Gijx, »)AGy(x, 2)— Gy (x, 2)A4G;i(x, y)log(x)dx = 0,

i=1 Da\K:(y)UKe(2)

where y # 2z, K,(3), K,(2) « D5, K,()) nK,(2) = O, ¢gr(x) = {(x/R). Inte-
grating by parts we get

01 % [ [0y 9 Gals, 9-Gals, 92 Gyl M eadds

i=1 vl

2 0
; .‘. [Gij(S’ }’)% Gy (s, 2)

OK(¥)UIKe(2)

~Guls, 25 Gyl Wl px()ds

_Z j [Gij(xa y)VGik(x’ Z)

Da\Ke(y)wKo(z)
—Gyu(x, 2)VGi(x, y)IV og(x)dx = 0,

where the compactness of supp¢g(x) implies that the other boundary terms
disappear. From (7.1) it follows that the first term in (7.7) also vanishes.

We shall use

oG, (s, . 0G, (s,
(7.8) j SN g s, D)
Koy M 0K oly) h
Let us consider the behaviour as e—0 of the first part of the second
integral in (7.7). The second part can be examined analogously. Let

ds = 0.

d
G;i(5, ¥) = Gy (s, 2)ds.
DK{(y) ! on "
Since s¢ K,(z), from (7.2), (7.3) and Theorem 6.2 we have |0G, (s, 2z)/0n| € ¢
Moreover, Theorem 6.2 implies |G,(s, y)| < c/e+c, where & = |s—y|, s€ K (),
s¢l,, i=1,2 Hence

IIi
W M Y

I,

1
1, < ce2(1+g>—>0 as ¢—0.
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Let
2
I, = Z [ Gyls y) ,k(s, z)dz
i=1 8Ke(z)
2 0
= Z Gij(za y) j aGik(Si Z)dS
=1 9Ke(2)

2
+ 3 | [Gyls N=Gylz, y)] Guls, 2)ds.
i=1 0K(z)
Theorem 6.2 implies the continuity of G(s, y) with respect to s, s€ JK,(z), so
using (7.8) gives
I,—» —4nG,; as e—0.

Therefore after letting R — co and ¢ —+0 the second integral in (7.7) is equal to
—4n(Gyylz, y)— Gy, 2)).

Let y, z be given. Since supp¥V¢, = {x: R < |x| < R}, for R sufficiently
large W(x, y) = ¥(x, z) = 0 if x esuppV¢y. Therefore Theorems 6.1, 6.2 and
(7.2), (7.3) yield that the last term in (7.7) vanishes. Hence after letting ¢ —0,
R— o we see that property (4) holds.

To show property (5) we put n,(x) = [1—{((x—»)/e)]G;(x, ) into (6.5)
and then let ¢—0.

Together with the construction (7.2), (7.3) we shall use the following
constructions of the Green function. Assume

(7'9)Gij(x1 ,V) = ‘I’(X, y)G{"j(xs }’)+G{‘J‘(X, }’), yE@g‘), k = 0: 1; ",] = 11 21

where ¥/(x, y) = {2lx—yl/y]), 25 = -@s/a, 2P = 9.9\@23/:4 and G?j(x, y) are
solutions of
(T10)  —4GY(x, y) = 8,8(—3),  GlYlr, =0,

063,

o =0, ij=12 xeR;.

ry

Moreover, the Gjj(x, y) are solutions of
_AGllj(x: .V) = 5ij6(x—y)’

G}

(7.11) 1
(Gijcos 3+ G sin9)|p, = 0, ( an”sinS— %COSS)

=0,

r

where i,j=1,2, xeR,. Finally, for ye 2, 2% = 2,\(2{ v 2{), we
assume that the Green function has the form (7.2). Solving (7.10) we get

Gli(x, y) = E(x—y)— & (x—y¥),
(7.12) G2 (x, y) = E(x—y)+&(x—y*),
G?Z = Ggl = 0’
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where y* is the point symmetrical to y with respect to I', . Solving (7.11) we get
Gijcos9+Gy;sind = [é”(x—y)—é”(x—j)*)]aj, Jj=12, a; =cos$, a, = sinf,
Gi;sin9—Gijcos8 = [E(x—y)+E(x—¥)]b;, j=1,2, b, =sin9, b, = —cosd,

therefore
Giz = Gél = —é’(x—ﬁ*)sinZS,

(7.13) Gl = &(x—y)—&(x—y*)cos29,
Gl = E(x—y)+E(x—y*)cos29,

where y* is the point symmetrical to y with respect to I',.
Now we shall formulate the problems for Gf;(x, y), k = 0, 1, 2. From (7.9)
and (7.10) we have '

—AGY = 2VyVGe+Gldy, i =1,2, AGY, = AGY; =0,

Y = 0 G| 0G| o O
i, = on |p, on |, 22 9n o
(7.14) (GYjcos 9+ GYsin )|, = — (G cos9+GYsinI)\.,
aGY; . 0GY; 0 0
Ysing— —2cos8 || = — oGy sin3— oW G2) cosd
on on r on on 2o
and ye 2. From (7.9) and (7.13) we obtain
—AGY = 2VYVGL+GLay, i j=1,2,
. 0GY WGl
Gllr, = —¥Gilr, —H| =-—3725 .
n |r, on |,
(7.15) ) ,
(Gijcosd+G3jsin9)|, = 0,
oG} . oG}, . 0 ,
< an”smé)— anz’cosé)) . = (G{jsmS—GéjcosS)a—l':h, ji=1,2,

and ye2{". Finally, let G¥ = Gj;, i,j =1, 2.
Using the above considerations we obtain

THEOREM 7.1. For arbitrary x, ye D4 and multiindices o,

(7.16)  IDID{G;(x, y)l

< clx—y|~ ol VY “"”",
h x| +]x—y] |y + 1 — 1

where o = (ay, a,), f' = (By, B2) 4y = A;(|]) = min(|«], A—egy), 4, = 4,(8)
= min(|f]; A—e,), V ¢€(0,A4), i=1,2 and A is described by (6.8).
For 9 < 3n we have A, <%,i=1,2
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Proof We start with the estimates of G,,(x, y). Let HiP(x, y)
= DBG¥(x, y). We first consider the problem (7.14) for H) P(x, y), y€ D3; it has

the form
—-AHO"” D”[2V¢VG°+G ay] = Fo‘”’

OHYP oy
= -pi gy, &
o |p, b ”(G“ 6n>

(H}Pcos 9+ HYY'sin )|, = — DE[W(G3cos8+ G3sin ]|y, = B3P,

0(8) o)
(Hl/g sind— Hz'/] cos.9>

B — o0, = v,

on on

I

- 2 )'
T2

= —D”[ (¥GY)sin§— n(t,l/ng)cosS]

For |y]| =1, ye 2§ we have

1 Fo®|2 B2 poo)||2
(017 IFSPIE IO, 8

+1B3P P isn  + [ IFFPP X dx+ | [P3P)2]x'|ds
Liu’ (I'2) 29 Iy

+ [ 1PIP2|xds+ [ |PSP2|x'|ds < c.
I> r2

Therefore, using Sobolev’s imbedding theorems and inequalities (6.6), (6.9) for
nonhomogeneous problems, for [x—y| < %, k+2 > [¢|+3, from (7.17) we get

IDSHYP(x, y)l < Y, IDIHY®|E kspaon + IHEP 1 akeaom) >

Iyl=k+2
<c( Y IDIH{PIE @+ [ IHIPPX2dx)! 2 < e
[yl =k+2 23
Therefore, from the homogeneity of H® and G, we have
(7.18) IDLH{P (x, ) S cly|”1 710 ye 9, Ix—y < 3y,
hence
(7.19)  IDEDYG(x, ) S elx—y| ™ 7l ye 2P, x—y| < 31V

The same inequality holds for ye 2{ and ye 9{.
Now we estimate D3D4G for 1 = |x—y| > 4|y|. For 9 < 4n we use the
estimate [16]

(7.20) x| < cllull .

Hu(2s)

which is valid for ue H}(2,), « =4—p, p < 4. For an arbitrary $ we can use
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the estimate [14]

(7.21) IDzu(x)|IxT* < cllull .
Hyu(dg)

which is valid for ue Hi(dg), k > 0, 2 0, Ja| <k—1, %20, |u|-% < k—1—p.
In the following considerations we use (7.21).

Using the estimate (7.21) for {(4|x—z|)D}G,(z, y), z€ D,, and then
Sobolev’s imbedding theorems we get

(7.22) IDEDSG,(x, T <e( ¥ [ IDIDYG(z, y)I*|z|?dz)" 2,

71 €k+2 Ki/2(x)

where k+2 < |y|, |o&|+1 <y, || <k+1, 1+k—p2|o|—v; =0, v; >0
and a' corresponds to x', «” to x" = x,.

For functions e;e HX*2(9,) which satisfy (6.1), (6.2) in K,(y) " @, for
fi=0,i=1,2, the following local estimate is valid

2 2
(7.23) Y Y [ IDIDefixdx <c Y | leftdx.

la|=k+2i=1 Ki1/2(y) i=1 Ki(y)

For A > 1+k—y, from (7.22) and (7.23) we obtain

(7.24) IDLDEG,(x, IIXT < e | IDEG,(z y)2dz)"2.

Ki/a(x)

The solution of the problem
_szij(z, y) = Df G”(z, n2lz—x1),
(7.25) vylr, =0,  (v;;c083+v,;8n9)|p, =0,

d
=0, (—v” sin9 — P2 o 9)
r on, on,

from L“”(_@s) N H#(D,) in the form (7.5) satisfies (7.23). Therefore

v,

=0,

ra

on,

(726) Z IDI’ l] Z y z= y”ylvz (Z ,‘. U Z y|2dZ)1/2 ZE@\?’

i=1 Kis2(y)

where A > |f'|—v, >0, v, 2 0. From (7.26) we have

2

2 2
(7.27) Y IDfvy(z, Pl < Y X ID2vyz Y-l Iy

i=1 j=1i=1

2 2
(X T | loyGy)Pd)'2,

j=11=1Kjipal)

The right-hand side of (7.27) is estimated by

2
(128) (3 [ oye W) < oS [ IDEGa 9PL @I~ D).

i=12;5 =12
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From (7.25) and (7.5) we have

Divy(z, y) = Z | DiGy(z, s)DIGyyls, y){(2ls—x|)ds,

k=1 9g

so using (7.4) gives

2
(129)  DEoy@ Wempimy = X [ IDSGiyls: M 2Is—yds
k=123
Therefore from (7.27), (7.28) and (7.29) we get
2
(7.30) (X [ IDSGy(a y)IPL2lx—z])dz)* < cly| ™.

Lj=1 9

Using (7.30) in (7.24) we obtain
(7.31) IDEDSGyy(x, ) < elx'| " 1y17™,

Since |o| 2 A and A4 > |o'|—v; = 0, it follows that |a'}| —v; can be arbitrarily
close to A. Therefore we can assume that v, = |a'|—4,(|a]), where A,(o'])
= min(|a'|, A—¢,), for all ¢ €(0, A). Similarly for v,.

For 3 < %n, instead of (7.31) we have

(7.32) IDEDYGy(x, y)| < clx'[™ Y™,
where o; < 1/2, i = 1, 2. This concludes the proof. m
Similarly to [14] we have
THEOREM 7.2.
Gi(x, y) = Gl(x, W+ HY(x, ), ye?P, xeD,nR,,
(7.33) Gy(x, y) = Gijx, )+ Hij(x, y), yeD{, xe Dy nR,,
Gyj(x, y) = &(x, y)6y;+ Hii(x, ), ye D, xe Dy,
where the HY; satisfy
(7.34)  IDID{HY(x, y)
< c|xl|h(l¢'l)-la’||y'|iz(|ﬂ‘l)—lﬂ'|(|x_y|+|x/| 4 [y[) " Ll =18 = A = A0
=12
Proof For ye 2y, we put
Hij(x, y) = G (x, )+ [¥(x, ) —11GH(x, y).
Therefore from (7.18) it follows (7.34) for GY(x, y). Moreover
IDIDEW —1GH < elbe—yl+|x/|+]y)~ " TlIm 1,

and similarly in the other cases. This concludes the proof. m
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Remark. Let /3 = me Z. Then we can look for the Green function in
the form

2m-1

Gij(x, y) = (x—y)é;+ )y ChE(x—y),
k=1

where y, is the point symmetrical to y,_,, y, = y, with respect to the half-plane
L, obtained by rotating the half-plane L, = {x: x; = 0} around M, by the
angle kn/m. The constants C}; are calculated from the boundary conditions
(6.2).

In this case we get

(7.35) IDEDEH, (x, Y)| < cylx—y|+ x|+ ]y~ Ll =11,

8. The problem (3.13) in L% .(2,) spaces

To estimate the solutions of the problem (3.13) in L¥ ,(2,) we shall use the
following theorem [14], [2]:

THEOREM 8.1. Let K(z) be a singular kernel and

IK(x SOy =lim [ K(x—y)f(@)dy

e~0 |x—y|>e

Then

(8.1) [ ufwdx <c | |fPwdx, p>1,
Rn R

Jor all f such that {gn |f\Pwdx < co with a nonnegative weight function w(x) if
and only if w(x) satisfies the condition
-1

P
(8.2) |0|~* jwdx( w"”‘"‘“dx) <c¢, ¢>0, VQcR",

1015

where Q is a cube.
It is easy to see that w(x) = |x'|™ satisfies (8.2) if —2/p < u < 2/p, where

l/p+1/p = 1.

First we prove the estimate formulated in the proof of Theorem 3.2 in
[14].

LemMA 8.1, Let ay, a, be real such that a; > —2,a,—a,—n> 0,2, cR"
Then

X c
8.3 e XS e
& S R E S R
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Proof. We decompose the integral on the left-hand side of (8.3) into the
sum
+ [ =I+1,
K2y () De\Kzjy (¥}

Since [x—y| < 2|y'| implies |x"”—)"] < 2|y| and a,+2 > 0, we have

<y [ xmdx
Kljy’|(y)

Selyl™ | wim ey

K2iyy(»)
’ 2'}‘" —
ey |72 § o=y PR -y
0

< cly’l“"""“"’.
To estimate I, we use
2% < 2|1+ 2% —y| < X' =y < 3x—yl.

Therefore
x|

Da\Kaig ) 1X — V7

12\

o 3|x—y|| /|a1+l

<c | dix—y | —dlx

2y o [x—yl

@ Z3z
- J. d J'Qa1+1dg <CJ‘ z az+a1+2dz

2127 0 20y

Cc

T

since @,+2 > 0 and a,—~a,—3 > 0. This finishes the proof. m
Similarly to Theorem 3.2 in [14] we can prove the following result

THEOREM 8.2. Let fie L, ,(Dy), i = 1, 2, have compact supports, and let p, u
satisfy

(8.4) z% > > pE —min{A(9), 2}, min{A($),2} >0,

where A(9) is determined by (6.8). The second condition of (8.4) means that 3 must
be different from . Then for the functions (7.5) the following estimate is valid

2
<c 1fille, 20-
i=1

2

8.5) 2 el

(=1 Lp.u(@Ps )
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Moreover, if

2 2
(8.6) ?—1>p>;—min{/1, 2}, A>1,
which means that 9 < n/2, we have
2 2
(8.7 Z _[|Vei(x)—Vei(x)|x=0|p|x’lp#—pdx <c Z ||fi||£,,,,‘(zas)-
1=1 2g i=1

For n/3€Z instead of (8.4) and (8.6) we have 2/p' > p > —2/p+1 and
2/p'—1 > u> —2/p+1, respectively.

Proof. The proof is almost the same as the proof of Theorem 3.2 in
[14]. m

THEOREM 8.3. Let pkeZ p > 1,k = 0, and u satisfy

2 2
(8.8) 0<k+2—<u+ 5><A(9), u> —;,
where A(9) is determined in Theorem 8.2. Then for functions f € L% (2D,),
@, e Lkr2-Yr(r), Y e LKW1 -YP(I), i = 1,2, with compact supports, satisfying
the compatibility conditions described by Lemma 5.2, the problem (3.13) has
a unique solution e,e LY%%(2,), i = 1,2, and

»(Da) P ) Lp,u (T'y)

2
®9) X N vz Z (1Al R L A g L PR
i=1 P

For nt/3 € Z the theorem is also valid for A(3) < k+2—(u+2/p), but in this case
some compatibility conditions on the right-hand side functions of (3.13) at xe M

are needed which guarantee the existence of solutions of the problems (8.16) and
(8.17) below (see also Theorem 4.3, Lemma 5.2).

Proof Using Lemmas 5.1, 52 we replace the problem (3.13) by the
homogeneous problem (3.11) with w,e V% ,(2,), i = 1, 2, with compact sup-
port” We consider several cases.

2
(a) 3 >up>——1.
p p

In this case we need only consider 3 < n. For k = O the solutions which
we are looking for are functions (7.5) for which the inequality (8.5) is valid. We
consider the problem

—Ae=¢,,+o,i=12 for ae zeR,
(8.10) e,l,, =0, (ecosd+e,sind),, =0,

ae2 _ de, 6_e_
=0, (ans nd ancosé}

6n

= 0.

72
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From Theorem 4.1 we have ¢,e V2,(dg), i = 1,2, and

2 2
(8.11) > S¢ 2 o, o0
i=1 8 i=1
which gives (8.9) for k = 0. For k =1 from (7.5) and (8.5) we have
2
(8.12) ZIwmyuww<cZIkaM”w
i= i=12s

Just as in Lemma 6.1, for functions satisfying (6.3) we obtain

2 2
(8.13) Y [lefilerdx <c 3 [ IPepixrdx, u20,
=10

i=10
where Q = dg or Q = 9,. From (8.12), (8.13) it follows that e, ,,€ V} ,(d). The
eigenvalue 1 satisfies

2 2 2 2
—Hl-p>—+l-——==1>-=—y
4 p p

’

e;—Q;1 € V3,(ds) and

2 2
8.1t e.—
(8.44) Lhe=Quil; < Elad, .

where the Q, ,, i = 1, 2, are homogeneous polynomials of degree one such that

(8.15) Qi1 = —el.lex’=0x2’ Q;,1 = eZ,xllx'=0x1'

Let n/9—1 > k+2—(z+2/p), k> 1. Then show the higher regularity of
solutions by induction. For k > 1 we introduce homogeneous polynomials 0, .,
i =1, 2, of degree j with respect to x,, x, and functions ¢, ;, i = 1, 2, which are

defined in a recurrent way as the solutions of the following problems
—AQ;=ViQij 0 i=12,

(8.16) Ql.jlrl = 0, (Q1'10059+Q2 jsinS)ln = 0’
9 904, . Q
= 1, V%2, —
3, Q2 =0, ( o, sind— cos9> i} 0,
and

—de;=Vie, ,+w, i=12,
(8.17) ey, =0, (e ;0088+e, sind),, =0,
0 dey; . de,
Fm ey iy, =0, (W sing — = cos§

where Q;o =0, ¢, = ¢;, Q;; are determined by (8.15) and ¢, = ¢,— Q. 1,

=0,

Y2
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i=1,2. It follows that Q;;=0,i=1, 2, for j even and
Q j:' Z Alax,avi—lel.lex’=0’ Q2.j= Z AZaxmvi_leZ,n x'=0»

lel=j lal=j
for j odd.
Moreover, for ae. zeR', e, ;e Vi*(d,) and
2 2
18 P < Ve, .
(8.18) :; ”e"j”Vi_u o S € Z (I e""zuvj o ”vp ..(da)
2
pik
c lzl kzo " @i “Vl; P(d\‘l)

Finally, using induction with respect to j, we show that ¢, ;+Q,, =¢,,_;.
Assuming that this formula is valid for j < g, we have

elq (I—C(X))qu = leVq+2(d8)’ el,q—l—C(x)Qiq = vl EVq+1(d.9)
are solutions of the same problem
'—A‘Ui=hi, i= 1, 2,

8.19) v}, =0, (vyc083+0,sind),, =
0 0
Pa) 0, ( vls 9——6100&9) =0,
on|, on on ’
where

hi=Vie o+ o +(1=LX)VIQ;, »
2V V' Qi+ Q;,4'¢
=+ Ve 3= L(XW2Q 0y +2V LV Qi 40,4
e Ve ,(dg) N VI, 1(dy).
Therefore from Theorem 4.4 it follows that v’ = v”,s0¢; ,+Q; = ¢;,_,. Hence
(8.20) e =Qi+...+Q e, i=12j<k
Using (8.5) and (8.18) we obtain

2
8.21 e, = pk=ie || dz+ | Vke,|?
( ) |=21 ' ” 1;+Fz(g) j=1j§1 o ” z '”Li”( ” i” pp(ﬂs)
2 k
= vk-le || dz+||VEe,|
‘;1 ;;1 ,{. vz i,j”L{,+2( Vzel”, 23 @
2
s 4 Z ”wl”pk ’

so we have proved (8.9).
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2 2 . [ T

In this case we need only consider 3 < m. The eigenvalue 1 is less than
2/p'—p, so considering the solvability of (8.10) in V3 ,(dy) we see that
e—Qiy = € 0€V;,(dy) and

2
(8.22) z "ei—'Ql,lllvz ¢ E leoyll .
=1 p.u(Ds)

Lp,ul 93)

The following considerations are the same as in (a) with the only difference that
instead of (8.20) we have

(8.23) e =Qi1+...+Q 1 te, =12 )<k
2
In this case we need only consider § < n/2, because u+2/p =1 and
k+2—(u+2/p) = k+1. Let k = 0. Then A(3) > 1 so Theorem 8.2 implies that
e, €L} ,(dy), l"L:Lp'u(ds), i =1, 2. Moreover,
2

(8.29) _;1 (llei,z”L;.u(ds)+ lewzzllL, uaa) < € 1; lwillz, s

for ae. zeR.
Therefore Theorem A.1, see Appendix, implies the existence of solutions of

(8.10) such that DZeeL,.(ds), i = 1,2, and
2
| D¢, ||L,, wdp) S € Z “w:”L, ulda)

MN

(8.25)

i=1

for a.e. ze R'. From (8.24), (8.25) after integration with respect to z one gets
e,€L2,(2,), i=1,2, and
2

(8.26) Z fledl - ~ <S¢ 2 il a0

P M( ) i=1
Let k = 1 and let the z-derivative of (8.10) and (3.11) be denoted by (8.10)! and
(3.11)%, respectively. Applying Theorem 8.2 to (3.11)! one has e;,, e L} ,(dy),
el,zzz ELp.u(d&) and

2 2
(8.27) 2 (el ey 222l 1, e S € Z i zlle, 0

i=1 Lp,u(dg)

for a.e. ze R'. Now using Theorem A.1 to (8.10)" one obtains ¢, , € L2 ,(d,),
i=1,2 and

2

<c Z "wi,z"L,,_,,.(ds)
i=1

2
8.28) ¥ el

(dg)



8. The problem (3.13) in L} (2,) spaces 65

for ae. zeR'. Finally, applying Theorem 4.3 to (8.10) gives e;e L3 ,(d,),
i=1,2, and

2

2
8.29 ill 2 < 1
(8.29) Tledyy ,, <¢ T o

Lp.ulds)

for a.e. ze R*. From (8.27)—(8.29) after integrating with respect to z we get that
e;eLly (D), i=1,2, and

2

(8.30) El ”Li, o S ,=Z1 e i"L; (D
Let k> 1. In this case we denote by (8.10)7, (3.11)°, o < k, the
D?Z-derivatives of (8.10) and (3.11), respectively. Then applying Theorem 8.2 to
(3.11)* gives D;*2e;e L, (dg), Di*'e;e L} ,(dyg), i=1,2, and
2 2
(8.31) Z (ID%* e, ” D de) +||Dk+2‘? ”L,, “(ds) ¢ Z | Dk, “L,, w(ds)

Lp.u i=1

for ae. zeR'. Hence from (8.10) using Theorem A.l. we deduce that
Dte;e L% ,(dy), i =1,2, and

2 2
k k
(8.32) T btel,y <S¢ 3 1D,
i= . i=

for a.e. ze R'. Now using (8.31) and Theorem 4.3 to (8.10)*"' we see that
Dt~ leel,,(dy), i =12, and

2

(8.33) Z ID¥ e, <X (Dol D5l -

p,ul(ds) 1=1 Lp.ulds)

Hence in this case we have to use induction. Assume we have shown that
Dk~ "eieL"”(ds) i=1,2, and that

2 e
8.34 Dk el ., D ow
( ) IZI ” €; “ 4‘;’ “z(ds) C '-=zl Ugo “ ”L; u(ds)
for 0 < ¢ <s <k Putting g =s5—1 we get D767 Ve elitldy), i=1,2.

Therefore using DX~ ¢+ Vg, e Li*1(dy), i = 1, 2, from (8.10)*~¢* ! and Theorem
4.3 we obtain DX~ 6*Ve e I5*3(dy), i= 1,2, and

2 s+l

(8.35) Z IDE™4 Vel L. 3 S © Y XD ;

i=1 ds) i=1a=0 wulds)

so we get (8.34) for ¢ = s+ 1. Proceeding in this way we show that

D %e;e Li*2(dy), i = 1, 2, for each s < k and then, finally, we get the estimate
(8.34) for ¢ = k. Now after integration with respect to z we obtain ¢;e

5 — Dissertationes Mathematical CCLXXIV
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LEY2(9,), i = 1, 2, and
2
8.36 Al s < 0 .
(8.36) i=z1 ledh o1, < © X Nl
2
@) u= =
In this case combining Theorems 4.3, A.l and the method of local

estimates from Theorem 4.2 of [13] we prove the assertion. Theorem A.1 is
used onmly for p = 2/p'+s, where s > 0, is an integer.

2 2 2
©) %= meN, 8<m kit o —p # JAW) kt 5 —u> A, w> =
In this case the considerations are similar to those in (a) and (b). For
2/p’ > p > 2/p'—1 the functions
v‘“eim 1+(1 C )le IEVZIII(d)
vli, = ei,m—Z—c(xl)Qi.m~1 € Vg.u(ds)’ = 1; 2,
are solutions of the same problem (8.19) with right-hand sides h;e V7 1!(d,)
N Veudg), i=1,2.
Now Theorem 4.1 implies that v;—v) = — W} _,(x), i = 1, 2, where
W, _1(x) = A, (2)r™ tsin(m—1) o,
Wi_1(0) = A,_, ()" cos(m—1)o

because
2 2
m—1l+—-—u>m—1= A<£> >m—2+ — —u,
p m p

)
Cm—1T Qum—1+Wia | = Cm—2, 1=12.
Moreover, we introduce the functions
Wim~1 = Agm—1(2)r*" " sin(am—1) o,
Wim—1 = Agm—1(2)r"™ Lcos(am—1)op,

where a is a natural number, which are eigenfunctions of the homogeneous
problem (3.15) (with right-hand sides equal to zero). Finally, we introduce the
functions

W n—14q = Agm—1+4@) " sin(am— 1),

W im—1+a = Aum—11+,(2)7" "1+ 9cos(am—1) g,
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determined by
AW$am 1+q_D WSam 14g-2> i=1’2:

awe,.
W(la_)m_quh =0, Lanﬂ =0,
(8.37) v
w T a) .
Lam_l_ﬂlcos; + Wg.am—l.'.qSln; = O’
Y2

on m on

Hence (8.37) implies that W{%),,_, ., = 0 for ¢ odd. Therefore instead of (8.20)
and (8.23) we have

a)
(an am— 1+qSln T aWs.,am—1+q COSE) — 0

Y2

k
2
(838) é; = ei,k+ Z Qi.j+ Z Wﬁf.!,,._l.u, i= 1 2 = > U > pz' —'1
Jj=1

. am—1+g<k
k+1

(839) e =¢,+ Z 0t Z Wﬂm-uq,
=1

am—1+g<k+1

2 2
=12 —=1>u>——
» u

!

and the inequality (8.9) is valid. This concludes the proof. m

9. The problem (3.13) in weighted Holder spaces

In this section we apply the results of [14]. First we shall consider the
functions (7.5) assuming that the f;, i = 1, 2, sufficiently rapidly decrease at
infinity.

THeOREM 9.1. For functions satisfying (3.11) the following estimate is valid

2

9.1) Y [e)f, <c Z sup X' 7*| filx) = ¢ Z | fils
i=1 i=1 xeldg
for se(0,1) and se(l, 2), and s < A(9). For n/3€ Z the last inequality is not
necessary.
Moreover,
(9.2) |45+ (h)e;(x)| < ch?® sup E 149£,(x)],
xePgi=1

where j > 2,q > s,k > 2, and A§(h)f is the difference of order q with respect to x,
with step h.
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Proof. For se(0,1) and x, ye2, we have

2 2
2 lei—e@l < T 1fl; | 1Gutx 9)=Gulz, DIyF™*dy.
=1 Da

i=1

Writing r = 2|x—z|, from (7.17) we get

| 1Gk(x, Y)—Gylz, MY~ 2dy

Kr(x)
< (=Y +lz—y" Yy 2 dy
Ku(x)

< | =yImtyP T idy+ [ lz—yTHYP Ty
Kr(x) Kan(z)

<c | =y tyF2dy

Kar(x)

=c ) Ix—y| =ty 2dy
Kar(x)n{y: Iy'1 < 12— y|/2)

+c { Ix—yl"Hy'F2dy
Kar(x)n{y: |y'| 2 |x—yl/2}

=222 1y 2 yldly|

2r
<cfdx—y | +c | [x—yl7dy <cr.
0 0

lx—yl K2r(x)
Now we consider

(94) j |ij(x: .V)—‘ij(z: Wy~ 2dy,
g&\xr(x)
where |x—z| = 4r. First we consider the difference of Green functions
ij,(x) Y)_ij(zs y) = ij(x, ,V)_ij(éa )’)+ij(‘£, }’)_ij(z: ¥),

where £ is such that & = x", ¢ =2, |z—¢&| <r. Using (7.16) we have

1d
9.5) |ij(z, _V)“ij(fs Y = I:i—s ij(é'*'s(z"'f), .V)ds

0

109G,

= || ", —§&)ds|,

g o, (n, y)(z,—¢)ds
v;here n = &E+s(z—¢&), so (9.5) is less than c|z—¢| i |C+s(zisé)—ylz' We know
that

[€=y+s(" =) = Ix—p+L—x+5(z"=&") 2 [x—yl—|§ —x+s(z"~&").
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Since
&=+ 52"~ &) = | =% +5(" = x") < [z~
and

lz—x| < $lx—y| for ye D \K, (x)
=1

we have [E—y+5s(z'—&") |x—y| and

|z—¢] lz—glx—y*? r*
, — < = <
(96) IGJk(Za Y) ij(é: y)l ¢ lx_y|2 ¢ |x_y|1 +A clx_yll +i
because [z—¢&| <1, |x—y| =1, A-1<0.
Now we consider

1 laG , , ,

9.7 |ij(x, Y) =G, j G(f‘*’-s(x 4} ) .— I_-??_y)(xi—fi)ds
0 o] i

(by (7.16), this is less than)

|n1| A-1 .
x' =& ( ) ds, for A< A(9),
jm TACTEE (

where n = £45s(x—¢&). By using
=y 2 Ix—=yl—In—x| > [x—yl~lz—x| = tx—|
and
X' =& =x'—z| <,

the above integral is estimated by

/ A—1
(9.8) c|—|——|i,—l_[|r) -y 1(#—) ds

17| +1n— ¥l
Ix'—¢&| 1 rt Ix'—& L,
Cmf(l'l —y* l)dS\C| —y|1”+ " yl”‘“ n'|* 1 ds.
Now wce estimate the last integral in (9.8).
Let [&'] < [x'=¢'). Then
1
Ix' =& §in'* ' ds
0
[&"Wlx =&} 1 ) ) ) ) -
< | =88 -l =P s+ [ X =E(she = &T—1E) " ds
0 [§1/1x" = &'

1 na 1 ’ ' ma vl
= — — — — s
ilfl 'f';t(bc &= < er
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since

€'+ 56— &N 2 1] —s|x" ¢ f0rS<|x,|§|€,l,

s 3 sle—el-gl for s>

< =gl<r

Let |&| = |x'—¢&|. Then
1€ +s(x' =& = &' —slx'— ¢,

1

1
X' =&\ [P tds < [ X' =108 —slx &) Hds
0

(=]

—_

=[P ==& < s =& < ot

>..

From the above inequalities we obtain for (9.7) the same estimate as in (9.6).
Therefore (9.4) is estimated by

fa— P2
(99) [ o1Gux ) —Gu My 2dy <ert | ———pmdy.
D\ Kr(x) Do\ Kn(x) 1X b
Now,
lyl~2 ’
Bo\Kn(x) |-"—.V|1 4
P2 |2

= j |x__ |1+).+ j | _ |1+,1dy
Do\KHDNy: |y |x = y|/2) y Da\Kr(x)n(y: Iy’ 2z —yli2) X Y

o lx—yl/2 Iylls—ZIylldIyl ©
sc I dlx_yl g |x_y|1+l j I,l s+1d|x yl

=]
Scfer Y for 1> s.

Therefore we have proved (9.1) for se(0, 1). For se(l, 2) we have

2
2. Ve =Pea) < . If, LGy =7 Gya, Il ~dy
i=1

o’ Y Al
(=1
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because

(9.10) J 7Gx, )=V Gz, Yl dy

< [ (x=y72+lz—y" I 2dy+rt [ Ix—=y72 ¥y 2dy
Ke(x) D9\Kr(%)

< ol

where the considerations are almost the same as in the case se(0, 1) and
M < AP—1, A e(s—1, 1). The inequality (9.2) can be proved in the same way
as in Theorem 4.1 of [14]. m

From (7.1) and (7.12) we have
lkl Z [j Gl] kl(x$ .V)fj(}’)dy J.-5:j5klf_li(x)]

where the integral is singular and ¢;;,, = ¢;, ..

THEOREM 9.2. Suppose § < w/2 or n/3e€N. Then for the functions

ei.kl(x) = Z j. Gij,xkx,(xi J’)f,()’)dy, k = 3a

j=12s

the following estimates are valid:

(911) [el kl]@s c Z [f]g;a
2

(9.12) le; ls < ¢ Z |fles @
i=1

where o€ (0, min{l, ©/9—2}) and for n/3e N, o€(0, 1).
Proof. Let x, ze @, r = 2|x—z|. By considerations similar to those in
Chapter 3, § 2 of [9] and in the proof of Theorem 4.2 in [14] we have

2

€ (X)—e;(2) = z j Gij.kl(xa Y)[fj(}’)_f}(x)]dy

i=1Ke(x)

=Y | Gyuu WL - fiz)]dy

Jj=1 Ku(x)

2
+ Y i) —f@Tlim [ Gyulx, y)dy
j=1

e~ 0 Kr(x)\Ke(x)

+ Z .[ LGijalx, ) — G,“,(z .V)][f fj(z)]dy,

J=1 25\Kr(x)
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where, by (7.16), the integral

lim I G, j,kz(X, y)dy
e=0 K (x)\Kg(x)

[ Guulx, ym(ds+lim [ G, (x, y)n(y)ds

aKr(x) e—0 dKg(x)

is estimated by a constant. Now, we use
IGij.kl(x’ y- Gu.m @ )l
< lGij.kl(x’ y)_GiJ,kl(éa )|+|Gu kt(‘f, y) - ijkt(z IWE =2, =X

ij,kl(é +5(z—¢), y)ds|+ ‘.E s Gij,kt(‘f+3(x —&), y)ds

1

0
= IE,‘Gu.u(ﬂ: Yz, —¢)ds|+

(] r

1

(I) 5(;— Gy(S, )t —E)ds

= Iu+1h

and n = E+s(z—¢&), 9 = E+5(x—¢&), where from (7.16) for [ =1,2, k =3 we
have

|7 M=t pA
I < |Z él ( ) dS £¢c——,
) I aln— Y|4 [l +1n—yl PR

1 |91| A2)-2 ,./.(1) 1
I3 < e
= y|4(|9|+|9 5) e e

and for | =k =3 we have

|Z~*§| rAh
In— yI4 R

I 1 I‘gl A1) -1 A(1)

Hence we obtain the followmg estimate

1
Iy<c

eisa(X) =€)l < cZ[fj]“” f (x—ylm2*o+1z—y">*)dy

Kn(x)

+ o 4 P MY ." Ix—yl_3_‘(1’+"dy+r“2) J' lx—y|_3'“2)+"dy]
Do\Kr(x) Da\Kn(x)

<’ Y [f18), for o < A1) and o < A(2).

This implies (9.11).
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The proof of (9.12) is similar to that of Theorem 4.2 in [14]. =

THEOREM 9.3. Let fie Ci_5(D,), ®,€ CL*2(I'), Y, e CLXY(r), i = 1,2, have
compact supports and

(9.13) s < A(9).

Then the problem (3.13) has a unique solution e, e Ct*%(Dg) N H (D) such that

2 2
(5.14) Y. Lepbad < ¢ Y (20, + CPDEED + DT,
i=1 i=1
For n/3 =meN we can omit the restriction (9.13), but some compatibility
conditions between f;, &,, V;, i = 1, 2, described by Lemma 5.4 must be satisfied.

Proof. Using Lemmas 5.3, 5.4 we can assume that f,e C\_,(2,), &, = 0,
P,=0,i=1,2

For s < 2 the inequality (9.1) is valid. Moreover, from local estimates of
solutions of the following problems in the half-space

0
(9.15) de,=f,i=12 ep=0 =2 =0,
on |r
and
(9.16) de,=f, i=1,2,
. Oe, Oe
(e,cos3 +e,sind)j,. = 0, <Ellsm9— a—nzcos.9> . =0, ,
we obtain
2 2
(9'17) Z [el]k:(-zz)) c Z [f]S()Jr/z(Z)+r_’ 2+3[e ]5(3,-/2(2)
i=1 i=1
where r = 1|z’|. Therefore
2 2
(9.18) sup 2127 ¥ (e < ¢ X (fle o0+ [e]5))
F{3ZX i=1 i=1

and using (9.1) we get

2
(9.19) <€ Wad ey | filel )
i=1

IIMN‘

Let s > 2. Now we estimate [e]%),. From (9.2) we have
2 2

(9.20) Y Lo, )8 <c Y %7?, V¥ xeds
i=1 i=|

Let ¢ = s—[s), 5; = j+0. j < [s]. To estimate [¢,(-.2)]i} we use Q;; and ¢, ),
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i = 1, 2, described by (8.16) and (8.17). From the boundary conditions (3.11) we
have ¢|.., =0, i =1, 2. Therefore (9.19) implies that

M

9.21) ledeszag < © Z files_ @)

i=1

Let f,e C5_ 1 (Ps), then since ¢ < 1 < s,, from Theorem 4.2 and V'¢; | oo = 0

it follows that
2

(9.22) Y leislesay < Z [files_ @e)-

The following considerations are the same as in the proof of Theorem 4.3 in
[14]. We repeat them in our notation.
Since

{p? etlé’(ds) 2[726](0) c Z [fi]g)s,

the problem (8.17) has a solution e, , e C52(dy), i = 1, 2, and

|312|C”(d3) 4 Z |Vz e;+f|¢:(da) 4 Z |f|c‘,(%)

The functions e; , +(1—{(x))Q; , € C2(d,) and e, , —{(x)Q; , € C2(dy), i = 1, 2,
are solutions of the same problem (8.19) with h, e C(d dg) N Co_.(d o), so from
Theorem 4.2 it follows that e, ,+Q,, = ¢,,, i = 1, 2. Repeating the considera-
tions of Theorem 8.3 we obtain (8.20) and the estimate

|ei,j|d':j(d.g) <c '21 |fi|ijZ§(93): j=2.
i=
Therefore for arbitrary ze R!
[é’-( ).] - [ex [s]](S) 4 Z l./lcs 2%g)?
and using (9.20) we obtain
2
(e, < c Z | fle= 2 )
i=1

Now from (9.17) we obtain (9.19) for s > 2. In the case n/9 = me N the
construction of a solution can be made in the way described in part (e) of the
proof of Theorem 83. This concludes the proof m
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10. The problem (1.1)-(1.3) in a bounded domain Q

The aim of this section is to show the existence and regularity properties of
solutions to the problem (1.1)-(1.3) in a bounded domain Q. Using the
decomposition (3.1) we need only consider the problem (3.3)—(3.5) because the
results for the Neumann problem are obtained in [13], [14]. Moreover, by
using the transformation (3.6) the problem (1.1)-(1.3) is replaced by the
problem (3.9). Therefore in this section the definition, of a weak solution of (3.9)
is given, and its existence and regularity in neighbourhoods of edges are shown.
To prove the last property the results of Sections 8 and 9 (see Theorems 8.3 and
9.3) are used.

A weak (or generalized) solution of the problem (3.9) is defined to be
a function ee H*(Q), e, = 0, such that

Me

(10.1) )3:

i=1

[Vern+ [ endivi=Y [wmn,
Q 50 12

i

for all ne H(2), 1,/0 = 0, where divw = 0.

LemMa 10.1.*% Any weak solution e of (3.9) satisfies dive = 0.

Proof. Put n = Vg, where ¢|,, =0, into (10.1). Then [,wn =0 and
instead of (10.1) we have

3
Y (Ve vV, o+ | diviei-Vo =0.
ij=1Q an

Integrating by parts in the first term of the above equality and using e[, = 0
one has

3
(10.2) fe[ Y mnV.V,0—dp+divan-Ve]- fdivedop = 0.
an iJj=1 2
Using the curvilinear coordinates (see Section 2) and the assumption ¢, = 0
one gets 5
o100 0%
40|, = div(H, ln)a—n +H, 2—6n—2,

L0 0p
mn V.V, = H, 2‘—,7,?(,D+n-l7(H,, 1)5.

The above expressions imply that the boundary term in (10.2) vanishes so that
{divedp =0
2

for all ¢ € H*(Q), @l.p = 0. Hence dive = 0. This concludes the proof. =

* This lemma was shown to the author by V. A. Solonnikov (private communication)
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LEMMA 10.2. Let ee C'(Q), dive = 0, ¢, = 0. Then

rot e

1
(10.3) =— j d + 7y,
dn 5 |x—
where / is a solution of the problem (3.8) such that
1 rote(y) , -
(10.4) Erot‘j; ] dy-Tleq = TV,

where 7 is an arbitrary tangent vector to 08.

Proof. The proof is almost the same as in the case of smooth boundary
(see the proof of Lemma 1 from [1]). Let e' be the first term on the right-hand
side of (10.3). Then rote! = rote because

div jrotey)d —0,
o lx—yl
which follows from
(10.5) tenl,, = 1 0 (e.,H,) i(e H)) =0
‘ ot Mo =T H, | Br, n YT g, MY T

(see the definition of curvilinear coordinates in Section 2 and [S5, §18]).
Let ! be a closed curve on dQ2 which encloses a surface S. From (10.5) it
follows that

[eidl = [rote':n =0,
] s

hence e,‘lSnsv, v=1,..,r(@Q = | )= S,, see Section 2), is the gradient of some
function. Therefore (10.4) can be satisfied and the decomposition (10.3) is
possible. =

LEMMA 10.3. Let e be a weak solution of (3.9) and rotee L,(Q2). Then
ecL,(Q) and

(10.6) ”3“1.2(9) ¢ “rOte“h(n)

Proof. From the form of ¢! we have

(10.7) le*ll ) < clrote],q)-
Let
Vo = |as2| I o,

where 00| = measdQ. Then instead of (3.8) we consider the problem

(10.8) A7 =0, Jo= =0
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where 7 =y +l,. 7o = ¥,—V,. Hence jn.QXO =0, so

(10.9) Xo(s) = j V.xoldo,

where s€ 09, xo€ {x€Q: xo(x) =0}, V. xo = (0x0/07,, 0x0/01,) and the inte-

gral is taken along an arbitrary curve | on 92 with tangent vector [ from x, to s.
Let xo € H'?(0Q) and let §, be an extension of y, such that 7,|,, = 1, and

(10.10) IZo “H‘(.Q) < c¢llxo ”H'“(n)-
Let ¢ = x+j,. Then the problem (10.8) is replaced by
(10.11) Ap = Afy,  @loa = 0.
From (10.11) one gets
(10.12) Vel e < € IVEoll Ly

Using the form of ¢ one has
(10.13)  IPxll Ly < ¢ IV Ho ”Lz(.Q) < ¢l Follmrey < clXollarizen < | VexollLyony:
Finally, from (10.4) we get
(10.14) IPxll L. < clle’ Tl Ly0a < cllrotell,q)-
Therefore (10.4), (10.7) and (10.14) imply (10.6). n

Lemma 104. Let ce HY(Q) he such that dive =0, ¢]., = 0. Then
(10.15) [Ivel*+ [ eldivi = [ (rote)*.

Q

on Lo}

Proof Let ee C%(2) n C*(Q). Then
div(exrote—Ve-e) = |rote|> —e-rotrote— de-e —|Ve.

Using rotrote = —Ade+ Fdive, dive = 0 and integrating the above identity
over 2 one has

(10.16) [ (exrotei—n-Ve-e) = | (jrote]*—|Vel?).
a0 ]

If now

(10.17) elg =0, (7i-Ve,+e,divii)s =0,

then (10.16) implies (10.15). Now, for any ee H!(Q) we choose a sequence
e™e C?(Q) n C'(Q) converging to ec H'(Q) in H'(Q) such that dive™ = 0 and
(10.17), (10.15) are satisfied. Passing to the limit we see that the first condition
of (10.17) and (10.15) are satisfied for an arbitrary e e H' () such that dive = 0.
This concludes the proof. =
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LEMMA 10.5. Let e be a weak solution of (3.9) and w € L, (). Then e€ H'(Q)
and

(10.18) lely @ < clolp,q-

Proof Putting n = e into (10.1) and using (10.15) one gets
”1‘01:6”12_2(9) = Iw’e.
Q

Hence Lemma 10.3 implies
(10.19) rotell, o < cll@l L,
Now from (10.15) and (10.19) we have
IVel|?,@ < cllrotellf,m+el Vel m+cElleliq-
Then for sufficiently small ¢, by (10.6),
(10.20) Vel < clirotell;,q)-

Hence from (10.6), (10.19), and (10.20) we obtain (10.18). m

THEOREM 10.1. There exists a unique solution of the problem (10.1) such that
ec H (Q), e, = 0 and the estimate (10.18) is satisfied.

Proof. By well-known methods [8], [9] we write (10.1) in the operator
form

(10.21) (e, W)H‘(9)+(A(e)a ’1)3'(9) =@, Nty V neH ' (Q), #)ag = 0,

where (,)q'(q is the scalar product in H'(Q),

(10.22) (A(e), W)H‘(Q) = f divre,n,— Ie'r’a (@, Ny = (@, MLy
an o

From (10.22) it follows that 4 is a compact operator. Moreover (10.18) implies
the uniqueness of generalized solutions (10.1). Then by the Fredholm theorem
there exists a unique solution ee H(Q), e |, = 0 of (10.21) such that (10.18) is
satisfied. m

Let us assume that w;, i = 1, 2, belongs to either W', ,(Q) or C(Q). Our
aim is to show that the generalized solution of (3.9) belongs to W4%2(€) or
CL*2(9Q), respectively. We only consider neighbourhoods of edges because the
regularity problem for elliptic equations in the interior and near the smooth
parts of the boundary is well known.

By using a partition of unity it is sufficient to consider a neighbourhood of
a fixed point £e M, where M is an edge of Q. Let S,, S, be two boundary
surfaces intersecting along M and let 3, = 3(¢) be the angle they make at &.
Then we denote by 2, the dihedral angle with edge M, tangent to M at £ and
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with sides I'; = T.S; which are the tangent spaces to §;, i =1, 2, at {. We
assume that 2y N Q # Q.

Let #(x) be a smooth function of compact support which belongs to
a partition of unity and let there exist neighbourhoods w;, Q, of £ such that
wg € 2, and w, N IQ # . Moreover, we assume that suppn = Q, and
n(x) =1 for xew,, so in particular #(x)|,cp.no0 = 1-

Introducing the notation &(x) = e(x)n(x) we replace the problem (3.9) by
—4& = —-2VeVn—edn+d in €,
(1023) e:lang 0’

(divé—e-V)lsq, = 0.

Let R® be the Euclidean space endowed with the usual metric. By a dot we shall
denote the scalar product in R3. Now we introduce the transformation
®: Q> 9D, < R, Q, c R® such that &: Q,n M- M, and

v©=20-=1,

where R*> Q,3x—-®(x) =yeDy,, c R* (0= D) and I is the identity
transformation. Moreover, we write
SO = Ole=otps JO) =L OO),
oy, 0 -
p=n0 Wy i_pp. 4=,

here and in the sequal the summation convention over repeated indices is used.
We assume that

S, T(S;NnQY)-T,i=12 and &, TMnQ)->M,.
Let 7e T(S;n Q). Hence

oy,

o 1=1tel, t*(y) = ri(x)|x=¢“(y)5;,
T

because 9/dx; and 9/dy,, i = 1, 2, 3, are connected with the canonical bases in
R® and &, R® = R®, respectively, and
0 dy; 0

*a—x—r‘ o oy
Therefore instead of (10.23) we have‘ ) i
—dé=—(4—-4)é=-2VevVny—ean +ad,
(10.24) Tyl =@ Ty—&1t)lr, i=12s=12,
div'é, = (divé—divé+ePn)l,, =12,
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where Ty, s = 1,2, are tangent vectors to I, i=1,2, i;=®, 17, and
T4 T(S;n Qp),i=1,2,5 =1, 2. In the above considerations we have used the
fact that the transformation @ transforms a vector ¢ as a set scalars.

To express the problem (10.24) in such a form that the previous results of
this paper could be used we have to define the transformation y = @(x)
explicitly. Let S; n Q, be described by equations x, = fi(x,, x3), i = 1, 2. Then
M = {xeR?: x, = f,(x;, x;) = f,(x;, x3)}. Now we define the transformation
@ by

Yy = X3 —f1(x1, X3)— 3,
Y18in8,—y,c088, = x, —f,(x;, x3)—ylcos 35— yIsin§,,
Ya = @(x4, X3, X3),
where the constants y? = p?(), i = 1, 2, and the functions ¢ are such that
0 = &(&). This definition ensures that I';, = &(S; N Q,), i = 1, 2, are described
by y, = 0 and y;sin3,—y,cos3, = 0, respectively. Moreover, the edge M, is
defined by y, =y, =0.

Let ;, i = 1, 2, 3, be the orthonormal system of vectors connected with
the axes y;, i =1, 2, 3, and let é;, = é77;, i = 1, 2, 3. Then the problem (10.24)
can be replaced by the following system of two problems which are connected
with each other by their right-hand sides:

—A'é,= —(A'—D)é,—2VesPn —es An' + s,

(10.25) 3_ ST e ?

(’Jlrl, = (()J_U.T”)lr." 1 = ]| 2~
and
—d' = —(A'—A)é;~2Ve;Vn —eidn' +d, i=1,2,
|r, (é,— é'f21)|r,’

(1026)  (é,c0885+8,8in )|, = [(6;c088,+&,5in80)— &%y, 1Ir,,
0é, <6e )
| =22 —-divé+eV
s r, 9y, 1

V'), = (A-V'é,—divé+e- P,

Iy

where we have used the fact that 7,, ;e TT'y, /i, LTI, iy, T = cos$,7,
+sin8y77,€ T T, and i = sin941], —cos Y, 7, L TT,, together with the equalities
3
) 0é
dive,, = Y a—‘"

i=1 IV

, div'él, = (n Vé,+1V'é + gf&)

3

I,
and

Ty Tolmnae # 0, T2i'folmna # 0,

where T,e T(M N Qy), A, LT(M N Qy), i=1,2.
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Now we extend the functions é,, i = 1,2, 3, by zero on %, \®Q,. We
denote the extensions by the same letters. Therefore we can regard the problem
(10.25) as the Dirichlet problem in 2, , which is investigated in [11], [12], and
consider only the problem (10.26), which is in fact the problem (3.13).-

To prove the existence of solutions of (10.26) we have to know that the
condition (5.4) is satisfied, which in this case has the following form

cooL . 0 0
(10.27) L‘r (v,—e'rz,)—<cos.9 6y +sin§, 07y )(e cosd,+é,sin8,—é:1,,)
R Ya

-
]

0é, . 0 0 ,
+ —= —{sin8y — —cos 3, —(é,sin 3, —é,cos )] =0,
ayz ( anl anz( 1 0 2 0) -

where y' = (y,, ¥,). From (10.27) after some calculations one has

0 . . 0 0 .
(10.28) [a—yle-r21 ~ (cos@ o3y +cos ) 122:|
Now we show that (10.28) is satisfied. First, taking inverse images in the
transformation @ gives, in place of (10.28),
=0.

3, %, 0
(10.29) |:¢_1<—>e-f —¢‘1<c059 +sin 9, ) X3 }
* a.V] 2! * a 5}’2 22 YEM Qs

By the properties of the transformation @, (d>*: T(S,nQy)—T,,i=1,2)and
(10.23), we see that (10.29) is satisfied.

Finally, we turn to the discussion of domains with edges which are
intersection of two surfaces making angle n/m, me N, m > 2. We keep all the
previous notation with the additional assumption that 3, = 3(&) = n/m for
every ¢ € M. In this case we can define ® more explicitly. Let §;(x) & T(S; n Q),
x€8§;NQ,i=12 J,eT(MnQ) xeMn Q, be such that J,(x)-7,(x) =0
for xe MnQ,, i=1,2 Then we determine ¢ by the condition that y,()
=@ Fi(x)el;, xe§;nQ:, i=12 y,(0) = B, Fo(x)e TM,y, xeMnLQ,,
y = @(x) and y,, i = 1, 2, are the same as at the beginning of Section 2. The
vectors y,(y), o, i = 1, 2, are constants and y;y, =0, i = 1, 2. Let Jso(x) be
generated by the vectors 7, (x), 7,(x), xe M n 2, and dg, = dso( ) by the vectors
Y1» Y2, as in Section 2. Therefore the transformatlon P, (x): Jso(x)—+d3°( ),
xeM N Q,, y= &(x) is a superposition of a translation and a rotation only
(ie. a rigid motion as a transformation of R®). Considering the problems
(10.25), (10.26) in 9, for § = m/m requires solving them first in the angle dy,
needs in general some compatibility conditions at ye M. The fact that & is
a rigid motion implies that the necessary compatibility conditions in dg (y)
follow from those in d,, (x), x € M ~ Q, the latter appear in the problem (10.23)
or (3.9). In general it is difficult to show this equivalence so we shall prove it in
a particular case.

= 0.

y'=0

6 — Dissertationes Mothematicn! CCLXXIV
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Let §, = n/2. First we find the compatibility conditions for the problem
(3.9). For simplicity we assume that M n € is a straight line, §; N 2} are
planes, i=1,2, and Q; c Q, is a small neighbourhood of £ € can be
arbitrarily small because we are interested in the behaviour of solutions of (3.9)
at ¢ only. We also assume that §,(£) is the x,-axis, i = 1, 2, and §,(¢) is the
x;-axis. Then locally in these coordinates the problem (3.9) has the form

—Ae = w,
(10.30) ellsl = 0, ezlsz = 0’ e3l.§\us: = 0’
Oe| _ , L2
axz $1 axl §2

in Q;. Considering solutions of (10.30) with third derivatives continuous one
has the following compatibility conditions. From (10.30), , one has

0% o 0? 0> 0
Tt DI~ VIR B o
0 0
and similarly
(10.31) ico1 =0, icoz =0, oly-0=0i=12.
Oxy lx=o 0%y “|y=o

Consider the compatibility conditions for the problem (10.25), (10.26) where in
the latter we assume that 8, = n/2 and n-V'é, = 0¢é,/dy,. From (10.25), and
(10.26) one has

o le* . _ . 0, . . o . . .
a_yl a_y%(el"":zl'e)'i‘ a_y%(ez—fzz'e)'*‘ a_y%(ea"'cue)

y'=0

a - -~ ~ -
= E[(A’—A)é1 +2VeyVn'+eidn —d,]
1

y'=0

0 _, -
[(de} + )]

y =0 ayl

Going back to the x-coordinates by means of the transformation & we obtain

d [62, AP ]
—| st f+ 518+ =51,
By, Loyt 2T 0y PP gyt =0

i a_ze + 62 e + 62

Ox, | ox} ' ax2 2 oxd és
which is satisfied under the conditions (10.31). Similarly, the other compatibil-
ity conditions for the problem (10.25), (10.26) are also satisfied.

x'=0
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Now we are in a position.to show that the weak solution of the problem
(3.9) belongs either to W},52(Q) or to C:*2(R2) in a neighbourhood of any edge
for o sufficiently regular. Assume that #(x) = {,((x—¢&)/A) and Q,(¢)
=0 n K,(&), where 1 < d/2 and d is described in Theorem 2.7.

We only consider the case of weighted Sobolev spaces; the case of
weighted Holder spaces is similar,

From ee H'(Q) it follows that ¢ € H'(2,), and instead of the problem
(10.26) we consider the following problem

—Aléi = _(Al—j)éi+gi’ i = 1’ 2’
é1ln = (é1—é'fz1)|r.a

(10.32) (é,cos9y+8,sin8¢)l, = [(é,c0o88;+é,sin9)—é:7,,]ir,,

aéz - )
=|(—= —divé
Iy <ay2

AV, = (AV' é,~divé), +o,,

0y,

Iy

where 7 is the normal vector to I', and

g, = —2WeiVn—edn'+ad,, i=1,2,
(1033) ' s
o, =evVy|, i=12.
We have g,e L, (2;,), i€ Hi/*(Dy,), 120, i=1,2

To prove the existence of solutions of the problem (10.32) we use the
following method of successive approximations:

A = —(4=Der g, i=1,2,

éT|r1 = (éT—l—ém—l‘fll)'rn

(10.34)  (é7cos 9+ €7sin ), = [(€7 'cos8y 487~ 'sing)—é" 17,0l p,,
oey < et . >
— = —divéem ! +¢,,
9Yair, 9y, r '

A-vemy, = @-vert~dive™ Y, + o,

and 82 = 0,i = 1, 2. In view of the properties of the transformation &, (10.33)
and Theorem 8.3, from (10.34) we have

2
(1035) ) feri

i=1

2 3
< . ; cl ért
S ¢ L Ugilesimng 10l )2 T 1AM

Hiu(@s, HiL(Dag)

Since the norm of é7~! occurs here, we have to consider the problems
(10.25) and (10.26) together. For the convenience of the reader we recall the
theorem about the existence and regularity of solutions to the Dirichlet
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problem in &, < R",
du= f in 9,
ulp, =¥, i=1,2.
which follows directly from the results of [11], [12].

THEOREM 10.2. Let fe W' (D), Y, e W,h2 V() i=1,2,l€Z, p, ueR,
=21, u> —2/p and /3 > I+1— ~(u+2/p) > 0. Then there exists a unique
solutlon of the problem (10.36) such that ue W} 2(D;) and

)+ i=zl ”wt”W?“:-l/p )

ry)

(10.36)

(10.37) el vz, < QLI

wle
Since e H'(Q) we can replace (10.25) by the problem

(10.38)

where h = —2Vey V' —eydn' + dy€ L, ,(D,,) which will be solved by the
following method of successive approximations:

—A'8y = — (4 —A)en?

& = =", i=1.2

(10.39)

where & = 0. Applying Theorem 10.2 to (10.39) we have éj € H2(2,) and

~m sm—1
(10.40) hesh s, <clal o +ch lér=r e

u(@sq L2,u(Dag) n)

Therefore for sufficiently small A we have the existence of solutions of the
problem (10.32), (10.38) and the estimate

(10.41) Z el . <c (gl tled e Jtelbl

Hu@sg) =4 L2.u(@s0) 2u(Dsg)

Since a neighbourhood of an arbitrary edge M of Q is covered by a finite
number of 2,,, (%), & e M, k = 1,..., N(M), we go back in (10.41) to Q,(¢¥) and
then sum the results over all sets Q,,(£*) (and also over neighbourhoods of
interior points and points of the smooth part of the boundary). We get

3 3 3 3
1042) Y. led g, < Y Mol +el@) 3 leluta <c ¥ o

s
L2,u(S0)

where (10.18) has been used to obtain the last inequality. Hence e;e H2(£),
i=1,2, and our result is proved for p =2 and k = 0.
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To show higher regularity we use the embedding theorem [20]

1 1
0.43 DY < j—v—=3—-—-]2=0.
(1043) WD <elfl L - 3(p q)>o
Hence using (10.42) for j=2, p=2, v=1, gives ¢ < 6 and implies h,
g:€ Ly ,(Zs,), o€ Wiot4(r,), i = 1,2. Then repeating the above consider-
ations glves e; qu ,,(Q) i=1,2, and

3

10.44 . .

(10.44) 3 ez < ¢y lod,

Now using (10.43) for j =2, p < 6, v =1 we obtain (10.44) for arbitrary q.
For w,e W}, ,(Q), i = 1, 2, the above results give h, g, e W} ,(D,,) and

0, e Wi, 1“’(Fi) i=1,2,so from (10.32), (10.38) after applying the method of

successive approximations we get &, W, (2, ) hence e;e W3 ,(Q), i = 1, 2, 3,

and

3
(10.45) Z ledl s <c ) lol

Woul® o W@

In the case w;€e WL'M(Q), i=1,2,3, the above considerations must be
done step by step so we get ;e Wih2(Q), i =1, 2, 3, and
(1046) el ez < cll, .

Suppose that

(a) 2 < R? is a bounded domain.

(b) 82 = ();=,S,, where S, are 2-dimensional manifolds of class C°*2.

(c) The edges do not intersect each other.

(d) IfS, NS, #@ then L=38, NS, is a 1-dimensional closed curve of
class C°*? which is an edge of Q.

(f) Q has gedges L,, 0=1,...,g

(g) € has only edges which are intersection of two boundary surfaces S,,
S, , at an angle § either everywhere equal to n/m or everywhere different from
n/m, meN, m = 2,

By using the results of [13], [14] about the existence of solutions of the
Neumann problem (3.2) the above considerations and Theorems 8.3, 9.3 imply

THEOREM 10.3. Let the assumptions (a)—(g) (¢ = k) be satisfied. Let
we WX (Q), be Wi~ 1P(9Q) where b satisfies the compatibility condition (1.4)
with keZ, p, peR, p= 1, u > —2/p. Assume that

2
(10.47) A(9( )>k+2( p>>0’ for every zeL,, 0 =1,..., ¢,

where A(9) is described by (6.8). For domains with edges with two-surface angle
equal to m/m, me N, m = 2, the condition (10.47) can be omitted but some
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compatibility conditions on the right-hand side functions of (1.1)-(1.3) at points of
edges have to be imposed (for an example of the compatibility conditions,
see (10.31)). The compatibility conditions contain derivatives up to order
[k+2—(z+2/p)). Then there exists a unique solution of the problem (1.1)—(1.3)
such that ve Wi3'(Q), and

(10.48) 190 s < U@l o B i)

Wp.n( Wo.n (09)

THEOREM 10.4. Let the assumptions (a)—(g) (o =) and the compatibility
condition (1.4) be satisfied and let S,e C}1%2, v <r, e C'_,(Q), be C:*1(8Q),
where |, se R and

(10.49) 0 <s < A(9(2)

for every zeL,, o =1,..,q, here A(9(z)) is the same as in Theorem 10.3.

For angles equal to n/m,me N, m = 2, see the remark in Theorem 10.3 with
the difference that instead of (10.47) the condition (10.49) can be omitted.
Moreover, the compatibility conditions contain derivatives up to order [I1+1].
Then there exists a unique solution of the problem (1 1)-(1.3) such that
ve CEY(Q), and

(10.50) |UICL:1 < cflw |C'— A2 Hcl'i‘(an))

Appendix. The distinguished case: u-+ l%e Z

In this section we shall extend Theorem 4.3 to the case k+2—(u+2/p) = 1,
where 1 is one of the eigenvalues obtained in Lemma 4.1. Moreover, Lemma
4.1 implies that the eigenfunctions corresponding to the eigenvalue 1 have the
form

(A1) e = 0aX,, e, = —ux,,

where « is an arbitrary parameter. In addition, the functions (A.1) belong to
kerD2.

To obtain the estimate (4.43) for y+2/p € Z such that 1 = k+2—(u+2/p)
we use interpolation. Assume that u, p;,J = 1, 2, are such that (4.40) is satisfied
and

2
(A2) 2>k+2—<u1+ p—)> 1 >k+2—<u2+ 3)>0_
1 1)

Therefore Theorem 4.3 implies that there exists a unique solution of the
problem (3.15) such that
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2
(A.3) 2 el wss \CZMf;uk , j=12
i=1

L.PJ u!(ds pj “J(ds)

Moreover, the operator corresponding to the problem (3.15) generate an
isomorphism

(A4) P: Lyl (dg) x Lir2(dg)— Lk, (dg) LY, ., (dy),

Phity
where j =1, 2, and P(e,, e,) = (d'e,, 4'e;), with

de,

on =0.

Y2

Oe
sind — Ecos&)

el,, = ==| = (e,co88+e,sind)|,, = (

Y1

Let 8¢[0, 1] and
1 1 1-0 0
(A.5) po= ) = (=0 +0y, —=— =
Tt TSI O T h  m

Then (A.2) implies that there exists 6, € (0, 1) such that u,+2/p, is an integer
and k+2—(uy+2/py) =1, where u, = u(6,), po = p(6,). Introducing the
function v = ), D*u we have

(A6) Cululy <ol <Calul

Lp,u(ds) Lp.uds)’

where C,, C, are constants.
Let us recall some notation and results from [18]. Let 4, = L, ,.(dy),
i=1,2 From 1.3.1 in [18] we have the K-functional

K(ts U) = illf (”U1||A,+t“vz||41)s UEA1+A2’
v=p;tuo

and we introduce the norm (sée 1.3.2 in [18])
A7 vlge, = (j [t°K(t, v)]* > , O0<f<l,1<p<oo.
From 1.4.2 in [18] we have the L-functional

Lit,v) = inf (o, 1% +tllv, %),

v=v1+uv2

1<p <00, p=1=np,+1p; 0= Bl—f—,
2
and
° dr\'7?
(A8) ”v”L.n,p = <,“ t ”L(t’ U) T) -
0

Theorem 1.4.2 of [18] shows that the norms (A.7) and (A.8) are equivalent.
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Therefore we introduce the following space
(A.9) (Ay, Ay, = {veA;+ A, 0]k, < 0}
Now we rewrite Theorem 1.18.5 from [18] in the form useful for us.

LemMma A.l. Let 1<p,, p, <0, 0<0<1 and

1 1-6 @
- = + —.
p Dy 23
Then
(A].O) (Lm,p;(d.‘i): Lp:,y;(ds))ﬂ,p = Lp.u(db\)a

where p = (1—0)u, +0y,.
Proof. The proof is the same as the proof of Theorem 1.18.5 from [18].
We repeat it in a simpler form

flo]l f'L,,l \21d@8),Lp,uz(d8)e,p

il

T dt
I t™" inf [|vllp‘r’“‘“+t|vzl"1r"""]rdrd(p7
0

vy +uva=vdg

it

N dt
rdrderPt | ¢77 inf  [|o |7 +erPrrm Ry [P —,
@ 1 2 ;

dy 0 nptra=e
where n = 0p/p,.
By introducing the new variable t = ¢r"** P and using the equality
(I—=n)pypy+np,py = (1—0)ppy +0pu, = p
which follows from
t-n=(1-0L, n=62
Py p,
the above integral is equal to
< . dt
[rdrder™ [ t™" inf [jo,|?* +1v,|P] —,
ds 0 vi+ua=v T
which, by Theorem 1.4.2 of [18], is equivalent to

aD
{ rdrdpre _[ e
0

. dt
inf  [lo|+1lv,|]? —
dy T

rydry=p

- , d
= [ rdrdole™ | o min(1, o = ~ [0lE. e
da 0 T ’

This concludes the proof. m
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Using (A.6), (A.9), (A.10) and Theorem 4 in 1.18.7 of [18] from (A.3) and
(A.4) we have

(A.11) P Lir2(dg) x L2 (dg) — LY (dg) x LY, (dy)
that the operator £ is isomorphism and

2
(A12) T M gz, <€ z P

Therefore we have proved

THEOREM A.l. Let 1 < p < o0, u = 0, let k be natural such that

2
(A.13) k+2—(u+ ;) =1,

and let fie LY ,(dg), i = 1, 2. Then there exist a unique solution of the problem
(3.15) such that e,e LY 2(dg) and (A.12) is valid.
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