Czasopismo
Tytuł artykułu
Treść / Zawartość
Warianty tytułu
Języki publikacji
Abstrakty
Climate change due to enhanced greenhouse effect arising as a result of human activities is considered a major global environmental threat to mankind. This study experimentally investigates and determines the heat flow in and out of the earth surface, and the impact of greenhouse effect on the heat transfer. A high voltage electric bulb was placed between two bottles; an empty bottle containing only air and the other bottle containing a mixture of baking soda and vinegar, evolving CO2. We observed that the vinegar and baking soda in the filled bottle reacted and produced carbon dioxide (CO2). This CO2 absorbs and retains more heat from the high voltage bulb than the empty bottle of normal air. We also observed that visible light passes through the glass and is absorbed by darker surfaces inside. The demonstration of this study proves that greenhouse gases like CO2 is one of major greenhouse gases that are responsible for global warming by trapping heat thereby giving a rapid rise in temperature over time because of the concomitant lower heat loss to its environment.
Czasopismo
Rocznik
Tom
Strony
32-48
Opis fizyczny
Twórcy
autor
- Department of Physics, University of Calabar, P.M.B. 1115, Calabar, Nigeria
autor
- Department of Physics, University of Calabar, P.M.B. 1115, Calabar, Nigeria
autor
- Department of Physics, Taraba State University Jalingo, P.M.B 1167, Jalingo, Nigeria
autor
- Department of Science Education, Ebonyi State University Abakaliki, P.M.B 053, Abakaliki, Nigeria
autor
- Department of Physics, University of Lagos. Nigeria
Bibliografia
- [1] Schmidt, G. A.; Ruedy, R. A.; Miller, R. L.; Lacis, A. A. (2010). Attribution of the present day total greenhouse effect. Journal of Geophysical Research. 115. doi:10.1029/2010JD014287
- [2] Le Treut H, Somerville R, Cubasch U, Ding Y, Mauritzen C, Mokssit A, Peterson T, Prather M (2007). Historical Overview of Climate Change Science. The Physical Science Basis. Cambridge University Press. p. 97.
- [3] Goldblatt, Colin, Robinson, Tyler D.; Zahnle, Kevin J.; Crisp, David (2013). Low simulated radiation limit for runaway greenhouse climates. Nature Geoscience. 6 (8): 661–667.
- [4] Ekholm N (2009). On The Variations of the Climate of the Geological and Historical Past and their Causes. Quarterly Journal of the Royal Meteorological Society 27 (117): 162. doi:10.1002/qj.49702711702.
- [5] Raval, A, (2007). Observational determination of the greenhouse effect. Nature 342: 758–761. doi:10.1038/342758a0
- [6] Jacob, Daniel J. (2019). The Greenhouse Effect. Introduction to Atmospheric Chemistry. Princeton University Press. ISBN 978-1400841547.
- [7] Van Wijngaarden, W. A.; Happer, W. (2020). Dependence of Earth's Thermal Radiation on Five Most Abundant Greenhouse Gases. Journal of Atmospheric and Oceanic Physics. arXiv:2006.03098
- [8] Benestad, R. E. (2017). A mental picture of the greenhouse effect. Theoretical and Applied Climatology. 128: 679–688. doi:10.1007/s00704-016-1732-y.
- [9] Stojanovic G. Thomas Farmer and John Cook (2013). Climate Change Science: A Modern Synthesis, vol. 1, The Physical Climate (Dordrecht: Springer).
- [10] Ahmad L. El Zein, Nour A. Chehaye, (2015). The Effect of Greenhouse on Gases on Earth’s Temperature. International Journal of Environmental Monitoring and Analysis, 3(2), 74-79
- [11] Shrivastava A. and Shrivastava S (2008). The Artificial Production of Carbon Dioxide and its Influence on Temperature. Quarterly Journal of the Royal Meteorological Society 64: 223–40
- [12] Lacis .D (2016). Temperature Fluctuations and Trends over the Earth. Quarterly Journal of the Royal Meteorological Society 87: 1–11. Artificial Production (ref. 29).
- [13] Pearson .A., Guy Stewart, Callendar (2008). On the Amount of Carbon Dioxide in the Atmosphere. Tellus 10: 243–48
- [14] Luo, G. J. Kiese, R. Wolf, B. and Butterbach-Bahl, (2013). Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences, 10, 3205-3219. doi:10.5194/bg-10-3205-2013
- [15] Fekete C. MacFarling Meure, D. Etheridge, C. Trudinger, D. Steele, R. Langenfelds, T. van Ommen, A. Smith, and J. Elkins (2006). Law Dome CO2, CH4 and N2O Ice Core Records Extended to 2000 Years BP. Geophysical Research Letters 33: L14810, doi: 10.1029/2006GL026152
- [16] Byrne, B., and Goldblatt, C (2014), Radioactive forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41,152-160, doi:10.1002/2013gl058456
- [17] Ed Hawkins, and Philip D. Jones (2014). On Increasing Global Temperatures: 75 Years after Callendar. Quarterly Journal of the Royal Meteorological Society 139, Volume139, Issue677 October 2013 Part B, Pages 1961-1963
- [18] Robinson, H. Rubens and E. Aschkinass (2009). Observations on the Absorption and Emission of Aqueous Vapor and Carbon Dioxide in the Infra-Red Spectrum. Journal of Astrophysics. 194: 1121–32
- [19] Smith, R. J. Charlson, S. E. Schwartz, J. M. Hales, R. D. Cess, J. A. Coakley Jr., Hansen, J. E. and Hofmann D. J. (2012). Climate Forcing by Anthropogenic Aerosols. Science 255: 423–30
- [20] Aggarwal R. K, Markanda Sangeet. (2013). Effect of Greenhouse Gases and Human Population in Global Warming. Journal of Environmental Engineering and Technology, 2013, 2(1), 13-16.
- [21] Plass, G. N. (2015). The Effect of Pressure Broadening of Spectral Lines on Atmospheric Temperature. Journal of Astrophysics 112: 365. doi:10.1086/145352
- [22] Pierrehumbert, R. T. (2011). Infrared radiation and planetary temperature. Physics Today. American Institute of Physics. pp. 33–38.
- [23] Mitchell, John F. B. (2009). The Greenhouse effect and Climate Change. Reviews of Geophysics 27(1): 115. doi:10.1029/RG027i001p00115
- [24] Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.; Gilmore, M. S.; Kamp, L. W.; Carlson, R. W.; Baines, K. H. (2008). Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data. Journal of Geophysical Research: Planets. 113 (E9): E00B24. doi:10.1029/2008JE003134
- [25] Omaka, Arua Oko (2014). The Forgotten Victims: Ethnic Minorities in the Nigeria-Biafra War, 1967-1970. Journal of Retracing Africa. 1 (1): 25–40.
- [26] Andrew A. Lacis, Gavin A. Schmidt, David Rind, and Reto A. Ruedy (2010). Atmospheric CO2: Principal Control Knob Governing Earth’s Temperature. Science 330: 356–59
- [27] StainforthD. A., AllenM. R., TredgeE. R., and SmithL. A (2007). Confidence, Uncertainty and Decision-Support Relevance in Climate Predictions. Philosophical Transactions of the Royal Society A 365: 2145–61
- [28] Liisa Antilla (2005). Climate of Scepticism: US Newspaper Coverage of the Science of Climate Change. Global Environmental Change 15: 338–52
- [29] Gregor Betz (2015). Are Climate Models Credible Worlds? Prospects and Limitations of Possibilistic Climate Prediction. European Journal for Philosophy of Science 5: 191–215
- [30] Annan J. D, and Hargreaves J. C (2013). A New Global Reconstruction of Temperature Changes at the Last Glacial Maximum. Climate of the Past 9: 367–76
- [31] Hays J. D., John Imbrie, and ShackletonN. J (2016). Variations in the Earth’s Orbit: Pacemaker of the Ice Ages. Science 194: 1121–32
- [32] James Roger Fleming. Joseph Fourier, the Greenhouse Effect and the Quest for a Universal Theory of Terrestrial Temperatures. Endeavour Volume 23, Issue 2, 1999, Pages 72-75
- [33] Raymond T. Pierrehumbert (2014). Warming the World. Greenhouse Effect: Fourier’s Concept of Planetary Energy Balance Is Still Relevant Today. Nature 432: 677
- [34] John Tyndall (2009). On the absorption and radiation of heat by gases and vapours, and on the physical connexion of radiation, absorption, and conduction. Philosophical Magazine 22: 169–194, 273–285
- [35] Robert A. Berner (2015). Development of the Concept of the Geochemical Carbon Cycle. American Journal of Science 295: 491–95
- [36] Ramanathan V. and Vogelmann A.M (1997). Greenhouse Effect, Atmospheric Solar Absorption and the Earth’s Radiation Budget: From the Arrhenius-Langley Era to the 1990s. Ambio 26: 38–46
Typ dokumentu
article
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.psjd-9ed0a656-a9a5-4189-b9c3-b3511ce77d69