Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 45 | 117-142
Tytuł artykułu

Thermocatalytic Conversion of Sugarcane Bagasse (SCB) for Bioethanol Production: A Review

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An estimated 1.6 billion metric tons of sugarcane are produced worldwide each year, producing 279 million tons in metric of sugarcane bagasse (SCB) [1]. In terms of sugarcane production, Brazil leads the world with an annual output of about 739,300 metric tons, followed by India, China, Thailand, Pakistan, Mexico, Colombia, Indonesia, the Philippines, and the United States [2]. Sugarcane production produces waste and, if neglected, will have a serious negative impact on the environment. Alcohols, furfurals, organic acids, butanol, hydrogen, methane, ethanol, and other value-added products have all seen a major increase in output during the past few years [3], [4], [5]. The sustainable bio economy should be expanded via bio-based methods. An economic transformation from linear to circular will occur if the bio economy is more circular and sustainable. In view of the requirement for energy and environmental sustainability, a great deal of research has been done on the various SCB applications. Due to its successful application in the production of bioethanol, SCB is an acceptable source of sustainable feedstock for biofuel production. The SCB's bio products and enzymes demonstrate their economic value. Due to the higher reserve price than the current market price, the feasibility and industrial scale economics of biodiesel with sugar cane bagasse have revealed adverse net present values.
Rocznik
Tom
45
Strony
117-142
Opis fizyczny
Twórcy
autor
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
  • Department of Chemical Engineering, Faculty of Engineering and Technology, Ladoke Akintola University of Technology, Ogbomosho, Nigeria
Bibliografia
  • [1] A. K. Chandel, S. S. da Silva, W. Carvalho, and O. V. Singh, Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products, J. Chem. Technol. Biotechnol., vol. 87, no. 1, pp. 11–20, Jan. 2012, doi: 10.1002/jctb.2742
  • [2] R. Z. Khoo, W. S. Chow, and H. Ismail, Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review, Cellulose, vol. 25, no. 8, pp. 4303–4330, Aug. 2018, doi: 10.1007/s10570-018-1879-z
  • [3] S. Takkellapati, T. Li, and M. A. Gonzalez, An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery, Clean Technol. Environ. Policy, vol. 20, no. 7, pp. 1615–1630, Sep. 2018, doi: 10.1007/s10098-018-1568-5
  • [4] S. Nagappan and E. Nakkeeran, Biorefinery: A Concept for Co-producing Biofuel with Value-Added Products, 2020, pp. 23–52. doi: 10.1007/978-3-030-38196-7_2
  • [5] V. Vedovato, K. Vanbroekhoven, D. Pant, and J. Helsen, Electrosynthesis of Biobased Chemicals Using Carbohydrates as a Feedstock, Molecules, vol. 25, no. 16, p. 3712, Aug. 2020, doi: 10.3390/molecules25163712
  • [6] R. Liguori, C. Soccol, L. Porto de Souza Vandenberghe, A. Woiciechowski, and V. Faraco, Second Generation Ethanol Production from Brewers’ Spent Grain, Energies, vol. 8, no. 4, pp. 2575–2586, Mar. 2015, doi: 10.3390/en8042575
  • [7] M. L. G. Renó, O. A. del Olmo, J. C. E. Palacio E. E. S. Lora, and O. J. Venturini, Sugarcane biorefineries: Case studies applied to the Brazilian sugar–alcohol industry, Energy Convers. Manag. vol. 86, pp. 981–991, Oct. 2014, doi: 10.1016/j.enconman.2014.06.031
  • [8] J. D. Pejin et al., Bioethanol production from triticale by simultaneous saccharification and fermentation with magnesium or calcium ions addition, Fuel, vol. 142, pp. 58–64, Feb. 2015, doi: 10.1016/j.fuel.2014.10.077
  • [9] I. P. Olasesan, A. O. Ajani, A. I. Atoyebi, A. O. Adekunmi(jnr), A. A. Odesanmi, and G. K. Latinwo, Anaerobic digestion of organic waste using the Bokashi method to produce organic fertilizer, World Sci. News, vol. 172, pp. 70–87, 2022
  • [10] A. M. A. and S. S. Kavindra Singh, Ravi Kumar, Vipul Chaudhary, Vaishali, Sunil, Sugarcane bagasse: Foreseeable biomass of bioproducts and biofuel: An overview, J. Pharmacogn. Phytochem. vol. 8, no. 2, pp. 2356–2360, 2019
  • [11] B. Jenkins, L. Baxter, T. Miles, and T. Miles, Combustion properties of biomass, Fuel Process. Technol. vol. 54, no. 1–3, pp. 17–46, Mar. 1998, doi: 10.1016/S0378-3820(97)00059-3
  • [12] A. Demirbas, Combustion characteristics of different biomass fuels, Prog. Energy Combust. Sci., vol. 30, no. 2, pp. 219–230, 2004, doi: 10.1016/j.pecs.2003.10.004
  • [13] O. Ali, R. Mamat, G. Najafi, T. Yusaf, and S. Safieddin Ardebili, Optimization of Biodiesel-Diesel Blended Fuel Properties and Engine Performance with Ether Additive Using Statistical Analysis and Response Surface Methods, Energies, vol. 8, no. 12, pp. 14136–14150, Dec. 2015, doi: 10.3390/en81212420
  • [14] S. Dharma et al., Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology, Energy Convers. Manag. vol. 115, pp. 178–190, May 2016, doi: 10.1016/j.enconman.2016.02.034
  • [15] A. Demirbas, Biofuels sources, biofuel policy, biofuel economy and global biofuel projections, Energy Convers. Manag. vol. 49, no. 8, pp. 2106–2116, Aug. 2008, doi: 10.1016/j.enconman.2008.02.020
  • [16] A. O. Adewale, O. A. Grace, A. O. Omotoso, B. K. Ayoola, O. A. Abraham, and O. I. Paul. Kinetics of the Process of Oil Extraction from Gmelina Arborea Seeds. World Sci. News, vol. 173, pp. 27–42, 2022
  • [17] D. Hansdah, S. Murugan, and L. M. Das, Experimental studies on a DI diesel engine fueled with bioethanol-diesel emulsions, Alexandria Eng. J., vol. 52, no. 3, pp. 267–276, Sep. 2013, doi: 10.1016/j.aej.2013.06.001
  • [18] J. Wang, Y. M. Kim, H. S. Rhee, M. W. Lee, and J. M. Park, “Bioethanol production from mannitol by a newly isolated bacterium, Enterobacter sp. JMP3,” Bioresour. Technol., vol. 135, pp. 199–206, May 2013, doi: 10.1016/j.biortech.2012.10.012
  • [19] S. Niju and M. Swathika, Delignification of sugarcane bagasse using pretreatment strategies for bioethanol production, Biocatal. Agric. Biotechnol., vol. 20, p. 101263, Jul. 2019, doi: 10.1016/j.bcab.2019.101263
  • [20] S. M. Costa, P. G. Mazzola, J. C. A. R. Silva, R. Pahl, A. Pessoa, and S. A. Costa, Use of sugar cane straw as a source of cellulose for textile fiber production, Ind. Crops Prod. vol. 42, pp. 189–194, Mar. 2013, doi: 10.1016/j.indcrop.2012.05.028
  • [21] Junjun Zhu, Q. Yong, Yong Xu, Shiyuan Yu. Comparative detoxification of vacuum evaporation/steam stripping combined with overliming on corn stover prehydrolyzate, in Proceedings of the International Conference on Energy and Environment Technology (ICEET ’09), 2009, pp. 240–243
  • [22] A.K. Chandel, G. Chandrasekhar, K. Radhika, R. Ravinder, Bioconversion of pentose sugars into ethanol: a review and future directions, Biotechnol. Mol. Biol. Rev., vol. 6, pp. 8–20, 2011
  • [23] B. Yang and C. E. Wyman, Pretreatment: the key to unlocking low-cost cellulosic ethanol, Biofuels, Bioprod. Biorefining, vol. 2, no. 1, pp. 26–40, Jan. 2008, doi: 10.1002/bbb.49
  • [24] H. Yangcheng, H. Jiang, M. Blanco, and J. Jane, Characterization of Normal and Waxy Corn Starch for Bioethanol Production, J. Agric. Food Chem., vol. 61, no. 2, pp. 379–386, Jan. 2013, doi: 10.1021/jf305100n
  • [25] A. Bhatnagar, K. K. Kesari, and N. Shurpali, Multidisciplinary Approaches to Handling Wastes in Sugar Industries, Water, Air, Soil Pollut. vol. 227, no. 1, p. 11, Jan. 2016, doi: 10.1007/s11270-015-2705-y
  • [26] O. Sahu, Assessment of sugarcane industry: Suitability for production, consumption, and utilization, Ann. Agrar. Sci., vol. 16, no. 4, pp. 389–395, Dec. 2018, doi: 10.1016/j.aasci.2018.08.001
  • [27] I. Barrera, M. A. Amezcua-Allieri, L. Estupiñan, T. Martínez, and J. Aburto, Technical and economical evaluation of bioethanol production from lignocellulosic residues in Mexico: Case of sugarcane and blue agave bagasses, Chem. Eng. Res. Des., vol. 107, pp. 91–101, Mar. 2016, doi: 10.1016/j.cherd.2015.10.015
  • [28] S. C. Rabelo, N. A. Amezquita Fonseca, R. R. Andrade, R. Maciel Filho, and A. C. Costa, Ethanol production from enzymatic hydrolysis of sugarcane bagasse pretreated with lime and alkaline hydrogen peroxide, Biomass and Bioenergy, vol. 35, no. 7, pp. 2600–2607, Jul. 2011, doi: 10.1016/j.biombioe.2011.02.042
  • [29] M. Badshah, D. M. Lam, J. Liu, and B. Mattiasson, Use of an Automatic Methane Potential Test System for evaluating the biomethane potential of sugarcane bagasse after different treatments, Bioresour. Technol., vol. 114, pp. 262–269, Jun. 2012, doi: 10.1016/j.biortech.2012.02.022
  • [30] S. Mathew and T. E. Abraham, Studies on the production of feruloyl esterase from cereal brans and sugar cane bagasse by microbial fermentation, Enzyme Microb. Technol., vol. 36, no. 4, pp. 565–570, Mar. 2005, doi: 10.1016/j.enzmictec.2004.12.003
  • [31] J. C. Santos, W. Carvalho, S. S. Silva, and A. Converti, Xylitol Production from Sugarcane Bagasse Hydrolyzate in Fluidized Bed Reactor. Effect of Air Flowrate,” Biotechnol. Prog., vol. 19, no. 4, pp. 1210–1215, Sep. 2008, doi: 10.1021/bp034042d
  • [32] W. Carvalho, J. C. Santos, L. Canilha, S. S. Silva, P. Perego, and A. Converti, Xylitol production from sugarcane bagasse hydrolysate, Biochem. Eng. J., vol. 25, no. 1, pp. 25–31, Aug. 2005, doi: 10.1016/j.bej.2005.03.006
  • [33] L. Mesa et al., Restructuring the processes for furfural and xylose production from sugarcane bagasse in a biorefinery concept for ethanol production, Chem. Eng. Process. Process Intensif., vol. 85, pp. 196–202, Nov. 2014, doi: 10.1016/j.cep.2014.07.012
  • [34] Rainey, Thomas James. A study into the permeability and compressibility of Australian bagasse pulp. 2009, Queensland University of Technology
  • [35] S. Poopak and A. Roodan, Environmental Benefit of Using Bagasse in Paper Production - A Case Study of LCA in Iran, in Global Warming - Impacts and Future Perspectives, InTech, 2012. doi: 10.5772/51553
  • [36] V. D. Kumaraguru K, Rengasamy M, Kumar E.T.P., Factors affecting printing quality of paper from bagasse pulp, Int. J. Chem. Technol. Res., vol. 6, pp. 2783–2787, 2014
  • [37] M. L. Dotaniya et al., Use of sugarcane industrial by-products for improving sugarcane productivity and soil health, Int. J. Recycl. Org. Waste Agric., vol. 5, no. 3, pp. 185–194, Sep. 2016, doi: 10.1007/s40093-016-0132-8
  • [38] R. Alavéz-Ramírez, P. Montes-García, J. Martínez-Reyes, D. C. Altamirano-Juárez, and Y. Gochi-Ponce, The use of sugarcane bagasse ash and lime to improve the durability and mechanical properties of compacted soil blocks, Constr. Build. Mater., vol. 34, pp. 296–305, Sep. 2012, doi: 10.1016/j.conbuildmat.2012.02.072
  • [39] D. Michel, B. Bachelier, J.-Y. Drean, and O. Harzallah, Preparation of Cellulosic Fibers from Sugarcane for Textile Use, Conf. Pap. Mater. Sci., vol. 2013, pp. 1–6, Oct. 2013, doi: 10.1155/2013/651787
  • [40] H. Tahir, M. Sultan, N. Akhtar, U. Hameed, and T. Abid, Application of natural and modified sugar cane bagasse for the removal of dye from aqueous solution, J. Saudi Chem. Soc., vol. 20, pp. S115–S121, Sep. 2016, doi: 10.1016/j.jscs.2012.09.007
  • [41] D. Sud, G. Mahajan, and M. Kaur, Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions – A review, Bioresour. Technol., vol. 99, no. 14, pp. 6017–6027, Sep. 2008, doi: 10.1016/j.biortech.2007.11.064
  • [42] T. S. and R. S. D., Green synthesis of highly fluorescent carbon quantum dots from sugarcane bagasse pulp, Appl. Surf. Sci., vol. 390, pp. 435–443, Dec. 2016, doi: 10.1016/j.apsusc.2016.08.106
  • [43] C. A. Cardona, J. A. Quintero, and I. C. Paz, Production of bioethanol from sugarcane bagasse: Status and perspectives, Bioresour. Technol., vol. 101, no. 13, pp. 4754–4766, Jul. 2010, doi: 10.1016/j.biortech.2009.10.097
  • [44] T. L. Bezerra and A. J. Ragauskas, A review of sugarcane bagasse for second-generation bioethanol and biopower production, Biofuels, Bioprod. Biorefining, vol. 10, no. 5, pp. 634–647, Sep. 2016, doi: 10.1002/bbb.1662
  • [45] A. R. Gopal and D. M. Kammen, Molasses for ethanol: the economic and environmental impacts of a new pathway for the lifecycle greenhouse gas analysis of sugarcane ethanol, Environ. Res. Lett., vol. 4, no. 4, p. 044005, Oct. 2009, doi: 10.1088/1748-9326/4/4/044005
  • [46] C.-H. Kuo and C.-K. Lee, Enhanced enzymatic hydrolysis of sugarcane bagasse by N-methylmorpholine-N-oxide pretreatment, Bioresour. Technol., vol. 100, no. 2, pp. 866–871, Jan. 2009, doi: 10.1016/j.biortech.2008.07.001
  • [47] E. M. H. Jhuma Sadhukhan, Kok Siew Ng, Biorefineries and Chemical Processes: Design, Integration and Sustainability Analysis. 2014. John Wiley & Sons, Ltd. Online ISBN: 9781118698129 |DOI:10.1002/9781118698129
  • [48] G. Umenweke, J. Ighalo, M. Anusi, B. Itabana, and L. Ekeh, Selected Thermo-Chemical Biorefining: Evaluation of the Current Trends and Progressions, Eur. J. Sustain. Dev. Res., vol. 5, no. 2, p. em0154, Apr. 2021, doi: 10.21601/ejosdr/10812
  • [49] Chirom Aarti, Ameer Khusro, Paul Agastian, Lignocellulosic biomass as potent feedstock resource for bioethanol production: Recent updates. World News of Natural Sciences 37 (2021) 164-181
  • [50] A. A. Adelodun, A. G. Adeniyi, J. O. Ighalo, D. V. Onifade, and L. T. Arowoyele, Thermochemical conversion of oil palm <scp>Fiber‐LDPE</scp> hybrid waste into biochar, Biofuels, Bioprod. Biorefining, vol. 14, no. 6, pp. 1313–1323, Nov. 2020, doi: 10.1002/bbb.2130
  • [51] C. A. Igwegbe, A. G. Adeniyi, and J. O. Ighalo, ANN modelling of the steam reforming of naphthalene based on non-stoichiometric thermodynamic analysis, Chem. Pap., vol. 75, no. 7, pp. 3363–3372, Jul. 2021, doi: 10.1007/s11696-021-01566-2
  • [52] A. Ramos, E. Monteiro, V. Silva, and A. Rouboa, Co-gasification and recent developments on waste-to-energy conversion: A review, Renew. Sustain. Energy Rev., vol. 81, pp. 380–398, Jan. 2018, doi: 10.1016/j.rser.2017.07.025
  • [53] R. Jorapur and A. K. Rajvanshi, Sugarcane leaf-bagasse gasifiers for industrial heating applications, Biomass and Bioenergy, vol. 13, no. 3, pp. 141–146, Jan. 1997, doi: 10.1016/S0961-9534(97)00014-7
  • [54] S. Czernik and A. V. Bridgwater, Overview of Applications of Biomass Fast Pyrolysis Oil, Energy & Fuels, vol. 18, no. 2, pp. 590–598, Mar. 2004, doi: 10.1021/ef034067u
  • [55] J. Watson, Y. Zhang, B. Si, W.-T. Chen, and R. de Souza, Gasification of biowaste: A critical review and outlooks, Renew. Sustain. Energy Rev., vol. 83, pp. 1–17, Mar. 2018, doi: 10.1016/j.rser.2017.10.003
  • [56] S. K. Sansaniwal, K. Pal, M. A. Rosen, and S. K. Tyagi, Recent advances in the development of biomass gasification technology: A comprehensive review, Renew. Sustain. Energy Rev., vol. 72, pp. 363–384, May 2017, doi: 10.1016/j.rser.2017.01.038
  • [57] S. Y. Lee et al., Waste to bioenergy: a review on the recent conversion technologies, BMC Energy, vol. 1, no. 1, p. 4, Dec. 2019, doi: 10.1186/s42500-019-0004-7
  • [58] J. I. Mazzoni L, Plasma gasification of municipal solid waste with variable content of plastic solid waste for enhanced energy recovery, Int Renew. Sustain. Energy Conf, vol. 42, pp. 907–912, 2016
  • [59] A. A. Ahmad, N. A. Zawawi, F. H. Kasim, A. Inayat, and A. Khasri, Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation, Renew. Sustain. Energy Rev., vol. 53, pp. 1333–1347, Jan. 2016, doi: 10.1016/j.rser.2015.09.030
  • [60] R. S. Ashok Pandey, Thallada Bhaskar, M. Stöcker, Rajeev Sukumaran. Recent Advances in Thermochemical Conversion of Biomass. 2015. ELSEVIER, eBook ISBN: 9780444632906
  • [61] J. A. Libra et al., Hydrothermal carbonization of biomass residuals: a comparative review of the chemistry, processes and applications of wet and dry pyrolysis, Biofuels, vol. 2, no. 1, pp. 71–106, Jan. 2011, doi: 10.4155/bfs.10.81
  • [62] V. Dhyani and T. Bhaskar, A comprehensive review on the pyrolysis of lignocellulosic biomass, Renew. Energy, vol. 129, pp. 695–716, Dec. 2018, doi: 10.1016/j.renene.2017.04.035
  • [63] D. K. Ratnasari, W. Yang, and P. G. Jönsson, Catalytic Pyrolysis of Lignocellulosic Biomass: The Influence of the Catalyst Regeneration Sequence on the Composition of Upgraded Pyrolysis Oils over a H-ZSM-5/Al-MCM-41 Catalyst Mixture, ACS Omega, vol. 5, no. 45, pp. 28992–29001, Nov. 2020, doi: 10.1021/acsomega.0c03272
  • [64] L. A. Soares et al., Bioconversion of Sugarcane Bagasse into Value-Added Products by Bioaugmentation of Endogenous Cellulolytic and Fermentative Communities, Waste and Biomass Valorization, vol. 10, no. 7, pp. 1899–1912, Jul. 2019, doi: 10.1007/s12649-018-0201-5
  • [65] H. M. Baudel, C. Zaror, and C. A. M. de Abreu, Improving the value of sugarcane bagasse wastes via integrated chemical production systems: an environmentally friendly approach, Ind. Crops Prod., vol. 21, no. 3, pp. 309–315, May 2005, doi: 10.1016/j.indcrop.2004.04.013
  • [66] R. Sindhu, E. Gnansounou, P. Binod, and A. Pandey, Bioconversion of sugarcane crop residue for value added products – An overview, Renew. Energy, vol. 98, pp. 203–215, Dec. 2016, doi: 10.1016/j.renene.2016.02.057
  • [67] N. Ungureanu, V. Vlăduț, and S.-Ștefan Biriș, Sustainable Valorization of Waste and By-Products from Sugarcane Processing, Sustainability, vol. 14, no. 17, p. 11089, Sep. 2022, doi: 10.3390/su141711089
  • [68] R. Wright, M., Lima, I., & Bigner, Microbial and physicochemical properties of sugarcane bagasse for potential conversion to value-added products, Int. Sugar J., vol. 118, pp. 10–18, 2016
  • [69] C. A. Rezende, M. A. de Lima, P. Maziero, E. R. DeAzevedo, W. Garcia, and I. Polikarpov, Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility, Biotechnol. Biofuels, vol. 4, no. 1, p. 54, Dec. 2011, doi: 10.1186/1754-6834-4-54
  • [70] J. Cheng and M. Zhu, A novel anaerobic co-culture system for bio-hydrogen production from sugarcane bagasse, Bioresour. Technol., vol. 144, pp. 623–631, Sep. 2013, doi: 10.1016/j.biortech.2013.07.018
  • [71] K. Gabov, J. Hemming, and P. Fardim, Sugarcane bagasse valorization by fractionation using a water-based hydrotropic process, Ind. Crops Prod., vol. 108, pp. 495–504, Dec. 2017, doi: 10.1016/j.indcrop.2017.06.038
  • [72] A. M. Shabbirahmed et al., Sugarcane bagasse into value-added products: a review, Environ. Sci. Pollut. Res., vol. 29, no. 42, pp. 62785–62806, Sep. 2022, doi: 10.1007/s11356-022-21889-1
  • [73] Alokika, Anu, A. Kumar, V. Kumar, and B. Singh, Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective, Int. J. Biol. Macromol., vol. 169, pp. 564–582, Feb. 2021, doi: 10.1016/j.ijbiomac.2020.12.175
  • [74] M. G. S. Nasution, M. H., Lelinasari, S., & Kelana, A review of sugarcane bagasse pretreatment for bioethanol production. 2022 IOP Conf. Ser.: Earth Environ. Sci. 963 012014. DOI 10.1088/1755-1315/963/1/012014
  • [75] P. Alvira, E. Tomás-Pejó, M. Ballesteros, and M. J. Negro, Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review, Bioresour. Technol., vol. 101, no. 13, pp. 4851–4861, Jul. 2010, doi: 10.1016/j.biortech.2009.11.093
  • [76] S. Sun et al., Improving the enzymatic hydrolysis of thermo-mechanical fiber from Eucalyptus urophylla by a combination of hydrothermal pretreatment and alkali fractionation, Biotechnol. Biofuels, vol. 7, no. 1, p. 116, Dec. 2014, doi: 10.1186/s13068-014-0116-8
  • [77] S. Sabiha-Hanim and N. Asyikin Abd Halim, Sugarcane Bagasse Pretreatment Methods for Ethanol Production, in Fuel Ethanol Production from Sugarcane, IntechOpen, 2019. doi: 10.5772/intechopen.81656
  • [78] S. G. Karp, A. L. Woiciechowski, V. T. Soccol, and C. R. Soccol, Pretreatment strategies for delignification of sugarcane bagasse: a review, Brazilian Arch. Biol. Technol., vol. 56, no. 4, pp. 679–689, Aug. 2013, doi: 10.1590/S1516-89132013000400019
  • [79] C. E. Wyman, B. E. Dale, R. T. Elander, M. Holtzapple, M. R. Ladisch, and Y. Y. Lee, Coordinated development of leading biomass pretreatment technologies, Bioresour. Technol., vol. 96, no. 18, pp. 1959–1966, Dec. 2005, doi: 10.1016/j.biortech.2005.01.010
  • [80] X. Zhao, K. Cheng, and D. Liu, Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis, Appl. Microbiol. Biotechnol., vol. 82, no. 5, pp. 815–827, Apr. 2009, doi: 10.1007/s00253-009-1883-1
  • [81] Ó. J. Sánchez and C. A. Cardona, Trends in biotechnological production of fuel ethanol from different feedstocks, Bioresour. Technol., vol. 99, no. 13, pp. 5270–5295, Sep. 2008, doi: 10.1016/j.biortech.2007.11.013
  • [82] R. Kumar and C. E. Wyman, Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies, Biotechnol. Prog., vol. 25, no. 2, pp. 302–314, Mar. 2009, doi: 10.1002/btpr.102
  • [83] Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, Bioresour. Technol., vol. 83, no. 1, pp. 1–11, May 2002, doi: 10.1016/S0960-8524(01)00212-7
  • [84] O. Cavalett et al., Environmental and economic assessment of sugarcane first generation biorefineries in Brazil, Clean Technol. Environ. Policy, vol. 14, no. 3, pp. 399–410, Jun. 2012, doi: 10.1007/s10098-011-0424-7
  • [85] Marina O.S. Dias, Marcelo P. Cunha, Charles D.F. Jesus, Mirna I.G. Scandiffio, Carlos E.V. Rossell, Rubens Maciel Filho, Antonio Bonomi. Simulation of ethanol production from sugarcane in Brazil: economic study of an autonomous distillery, Editor(s): S. Pierucci, G. Buzzi Ferraris, Computer Aided Chemical Engineering, Volume 28, 2010, Pages 733-738, https://doi.org/10.1016/S1570-7946(10)28123-3
  • [86] G. A. Dantas, L. F. L. Legey, and A. Mazzone, Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes, Renew. Sustain. Energy Rev., vol. 21, pp. 356–364, May 2013, doi: 10.1016/j.rser.2012.11.080
  • [87] N. H. Leibbrandt, Techno-economic study for sugarcane bagasse to liquid biofuels in South Africa : a comparison between biological and thermochemical process routes, Univ. Stellenbosch, 2010
  • [88] S. Macrelli, J. Mogensen, and G. Zacchi, Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process, Biotechnol. Biofuels, vol. 5, no. 1, p. 22, 2012, doi: 10.1186/1754-6834-5-22
  • [89] J. E. A. Seabra, L. Tao, H. L. Chum, and I. C. Macedo, A techno-economic evaluation of the effects of centralized cellulosic ethanol and co-products refinery options with sugarcane mill clustering, Biomass and Bioenergy, vol. 34, no. 8, pp. 1065–1078, Aug. 2010, doi: 10.1016/j.biombioe.2010.01.042
  • [90] A. B. van der Merwe, H. Cheng, J. F. Görgens, and J. H. Knoetze, Comparison of energy efficiency and economics of process designs for biobutanol production from sugarcane molasses, Fuel, vol. 105, pp. 451–458, Mar. 2013, doi: 10.1016/j.fuel.2012.06.058
  • [91] J. A. Ramirez and T. J. Rainey, Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse, J. Clean. Prod., vol. 229, pp. 513–527, Aug. 2019, doi: 10.1016/j.jclepro.2019.05.017
  • [92] A. Adeniji, A. Alade, M. Dauda, K. Akinkuade, and S. Ganiyu, Potential of Novel Tri-composite clay in Emerging Contaminant Remediation: A Diclofenac-Na Study, in Purdue Engineering Virtual Graduate Showcase, 2021, p. 1.
  • [93] R. M. Swanson, A. Platon, J. A. Satrio, R. C. Brown, and D. D. Hsu, Techno-Economic Analysis of Biofuels Production Based on Gasification” Golden, CO (United States), Nov. 2010. doi: 10.2172/994017
  • [94] R. P. Anex et al., Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways, Fuel, vol. 89, pp. S29–S35, Nov. 2010, doi: 10.1016/j.fuel.2010.07.015
  • [95] T. R. Brown, R. Thilakaratne, R. C. Brown, and G. Hu, Techno-economic analysis of biomass to transportation fuels and electricity via fast pyrolysis and hydroprocessing, Fuel, vol. 106, pp. 463–469, Apr. 2013, doi: 10.1016/j.fuel.2012.11.029
  • [96] S. P. Jeevan Kumar, N. S. Sampath Kumar, and A. D. Chintagunta, Bioethanol production from cereal crops and lignocelluloses rich agro-residues: prospects and challenges, SN Appl. Sci., vol. 2, no. 10, p. 1673, Oct. 2020, doi: 10.1007/s42452-020-03471-x
  • [97] A. J. Ragauskas et al., The Path Forward for Biofuels and Biomaterials, Science vol. 311, no. 5760, pp. 484–489, Jan. 2006, doi: 10.1126/science.1114736
  • [98] D. Pant et al., Towards the development of a biobased economy in Europe and India, Crit. Rev. Biotechnol., vol. 39, no. 6, pp. 779–799, Aug. 2019, doi: 10.1080/07388551.2019.1618787
  • [99] Y. Liao et al., A sustainable wood biorefinery for low–carbon footprint chemicals production, Science vol. 367, no. 6484, pp. 1385–1390, Mar. 2020, doi: 10.1126/science.aau1567
  • [100] A. Kondo, J. Ishii, K. Y. Hara, T. Hasunuma, and F. Matsuda, Development of microbial cell factories for bio-refinery through synthetic bioengineering, J. Biotechnol., vol. 163, no. 2, pp. 204–216, Jan. 2013, doi: 10.1016/j.jbiotec.2012.05.021
  • [101] A. Zabaniotou and P. Kamaterou, Food waste valorization advocating Circular Bioeconomy - A critical review of potentialities and perspectives of spent coffee grounds biorefinery, J. Clean. Prod., vol. 211, pp. 1553–1566, Feb. 2019, doi: 10.1016/j.jclepro.2018.11.230
  • [102] S. Dahiya, A. N. Kumar, J. Shanthi Sravan, S. Chatterjee, O. Sarkar, and S. V. Mohan, Food waste biorefinery: Sustainable strategy for circular bioeconomy, Bioresour. Technol., vol. 248, pp. 2–12, Jan. 2018, doi: 10.1016/j.biortech.2017.07.176
  • [103] B. Diwan, D. Mukhopadhyay, and P. Gupta, Recent trends in biorefinery-based valorisation of lignocellulosic biomass, in Biovalorisation of Wastes to Renewable Chemicals and Biofuels, Elsevier, 2020, pp. 219–242. doi: 10.1016/B978-0-12-817951-2.00011-0
Typ dokumentu
article
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.psjd-9bdf0488-e2b1-4fc3-825d-90006c4f9d91
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.