Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 28 | 151-159
Tytuł artykułu

MITIGATION EFFECTS OF WATER-SOLUBLE CHITOSAN ON BORON TOXICITY IN PEPPER PLANTS

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Excess boron in soil is often found in dry agricultural areas and is one of the factors limiting crop yields. Polysaccharide-based biostimulants can mitigate the harmful effects of environmental stresses on plants. I performed this study under controlled greenhouse conditions to understand the response of pepper plants under boron stress to treatment with water-soluble chitosan (WSC). I watered plants with 50 or 100 mg/l WSC and 1.5 mM boric acid solution. As a result of WSC application at both concentrations, plants were taller and had more leaves and greater leaf length, width, relative chlorophyll content, and fresh aboveground weight compared with the control. Plants exposed to boron stress had fewer leaves, a lower relative chlorophyll content, and leaf blade damage indicative of boron toxicity. At the same time, boron-exposed plants showed a marked increase in the leaf nitrogen, phosphorus, potassium, and boron contents. Applying WSC at both concentrations modulated boron stress in plants by improving plant growth; reducing boron accumulation in leaves; and increasing the available nitrate nitrogen, phosphorus, and potassium contents in the substrate.
Wydawca

Rocznik
Tom
28
Strony
151-159
Opis fizyczny
Twórcy
  • Department of Horticulture, West Pomeranian University of Technology Szczecin, Słowackiego 17 Str., 71–434 Szczecin, Poland, piotr.salachna@zut.edu.pl
Bibliografia
  • [1] Yakhin OI, Lubyanov AA, Yakhin IA, Brown PH; (2017) Biostimulants in plant science: a global perspective. Front Plant Sci 7, 2049. DOI:10.3389/fpls.2016.02049
  • [2] Nephali L, Piater LA, Dubery IA, Patterson V, Huyser J, Burgess K, Tugizimana F; (2020) Biostimulants for plant growth and mitigation of abiotic stresses: a metabolomics perspective. Metabolites 10(12), 505. DOI:10.3390/metabo10120505
  • [3] Caradonia F, Battaglia V, Righi L, Pascali G, La Torre A; (2019) Plant biostimulant regulatory framework: prospects in Europe and current situation at international level. J Plant Growth Regul 38, 438–448. DOI:10.1007/s00344–018–9853–4
  • [4] Struszczyk H, Pospieszny H; (2020) New applications of chitin and its derivatives in plant protection. In: Goosen MFA (ed), Applications of Chitin and Chitosan, 1st ed. CRC Press, Boca Raton, 171–184. DOI:10.1201/9781003072812
  • [5] Malerba M, Cerana R; (2016) Chitosan effects on plant systems. Int J Mol Sci 17, 996. DOI:10.3390/ijms17070996
  • [6] Malerba M, Cerana R; (2020) Chitin-and chitosan-based derivatives in plant protection against biotic and abiotic stresses and in recovery of contaminated soil and water. Polysaccharides 1(1), 21–30. DOI:10.3390/polysaccharides1010003
  • [7] Hidangmayum A, Dwivedi P; (2022) Chitosan based nanoformulation for sustainable agriculture with special reference to abiotic stress: a review. J Polym Environ 30, 1264–1283. DOI:10.1007/s10924–021–02296-y
  • [8] AL Kahtani MD, Attia KA, Hafez YM, Khan N, Eid AM, Ali MA, Abdelaal KA; (2020) Chlorophyll fluorescence parameters and antioxidant defense system can display salt tolerance of salt acclimated sweet pepper plants treated with chitosan and plant growth promoting rhizobacteria. Agronomy 10(8), 1180. DOI:10.3390/agronomy10081180
  • [9] Giglou MT, Giglou RH, Esmaeilpour B, Azarmi R, Padash A, Falakian M, Lajayer HM; (2022) A new method in mitigation of drought stress by chitosan-coated iron oxide nanoparticles and growth stimulant in peppermint. Ind Crops Prod 187, 115286. DOI:10.1016/j.indcrop.2022.115286
  • [10] Balusamy SR, Rahimi S, Sukweenadhi J, Sunderraj S, Shanmugam R, Thangavelu L, Perumalsamy H; (2022) Chitosan, chitosan nanoparticles and modified chitosan biomaterials, a potential tool to combat salinity stress in plants. Carbohyd Polym 284, 119189. DOI:10.1016/j.carbpol.2022.119189
  • [11] Tham LX, Nagasawa N, Matsuhashi S, Ishioka NS, Ito T, Kume T; (2001) Effect of radiation-degraded chitosan on plants stressed with vanadium. Radiat Phys Chem 61(2), 171–175. DOI:10.1016/S0969–806X(00)00388–1
  • [12] Li, K, Xing R, Liu S, Li P; (2020) Chitin and chitosan fragments responsible for plant elicitor and growth stimulator. J Agric Food Chem 68(44), 12203–12211. DOI:10.1021/acs.jafc.0c05316
  • [13] Salachna P, Łopusiewicz Ł; (2022) Chitosan oligosaccharide lactate increases productivity and quality of baby leaf red perilla. Agronomy 12(5), 1182. DOI:10.3390/agronomy12051182
  • [14] Salachna P, Pietrak A; (2021) Evaluation of carrageenan, xanthan gum and depolymerized chitosan based coatings for pineapple lily plant production. Horticulturae 7(2), 19. DOI:10.3390/horticulturae7020019
  • [15] Ahmed KBM, Khan MMA, Siddiqui H, Jahan A; (2020) Chitosan and its oligosaccharides, a promising option for sustainable crop production-a review. Carbohydr Polym 227, 115331. DOI:10.1016/j.carbpol.2019.115331
  • [16] Rasheed MK; (2009) Role of boron in plant growth: a review. J Agric Res 47(3), 329–338.
  • [17] Brdar-Jokanović M; (2020) Boron toxicity and deficiency in agricultural plants. Int J Mol Sci 21(4), 1424. DOI:10.3390/ijms21041424
  • [18] Hua T, Zhang R, Sun H, Liu C; (2021) Alleviation of boron toxicity in plants: mechanisms and approaches. Crit Rev Environ Sci 51(24), 2975–3015. DOI:10.1080/10643389.2020.1807451
  • [19] García-Sánchez F, Simón-Grao S, Martínez-Nicolás JJ, Alfosea-Simón M, Liu C, Chatzissavvidis C, Cámara-Zapata JM; (2020) Multiple stresses occurring with boron toxicity and deficiency in plants. J Hazar Mater 397, 122713. DOI:10.1016/j.jhazmat.2020.122713
  • [20] Pandey A, Khan MK, Hakki EE, Gezgin S, Hamurcu M; (2019) Combined boron toxicity and salinity stress—An insight into its interaction in plants. Plants 8(10), 364. DOI:10.3390/plants8100364
  • [21] Moustafa-Farag M, Mohamed H, Mahmoud A, Elkelish A, Misra AN, Guy KM, Zhang M; (2020) Salicylic acid stimulates antioxidant defense and osmolyte metabolism to alleviate oxidative stress in watermelons under excess boron. Plants 9(6), 724. DOI:10.3390/plants9060724
  • [22] Kaya C, Sarıoğlu A, Ashraf M, Alyemeni MN, Ahmad P; (2020) Gibberellic acid-induced generation of hydrogen sulfide alleviates boron toxicity in tomato (Solanum lycopersicum L.) plants. Plant Physiol Biochem 153, 53–63. DOI:10.1016/j.plaphy.2020.04.038
  • [23] Balal RM, Shahid MA, Javaid MM, Iqbal Z, Liu GD, Zotarelli L, Khan N; (2017) Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiol Plant 39, 1–15. DOI:10.1007/s11738–016–2335-z
  • [24] Souri MK, Sooraki FY; (2019) Benefits of organic fertilizers spray on growth quality of chili pepper seedlings under cool temperature. J Plant Nutr 42(6), 650–656. DOI:10.1080/01904167.2019.1568461
  • [25] Rajendran R, Jagmohan S, Jayaraj P, Ali O, Ramsubhag A, Jayaraman J; (2022) Effects of Ascophyllum nodosum extract on sweet pepper plants as an organic biostimulant in grow box home garden conditions. J Appl Phycol 34, 647–657. DOI:10.1007/s10811–021–02611-z
  • [26] Saldaña-Sánchez WD, León-Morales JM, López-Bibiano Y, Hernández-Hernández M, Langarica-Velázquez EC, García-Morales S; (2019) Effect of V, Se, and Ce on growth, photosynthetic pigments, and total phenol content of tomato and pepper seedlings. J Soil Sci Plant Nutr 19, 678–688. DOI:10.1007/s42729–019–00068–1
  • [27] Bartkowiak A; (2001) Binary Polyelectrolyte Microcapsules Based on Natural Polysaccharides. Szczecin University of Technology, Szczecin.
  • [28] Ostrowska A, Gawliński S, Szczubiałka Z; (1991) Methods for Analyzing and Assessing the Properties of Soil and Plants. Instytut Ochrony Środowiska, Warsaw.
  • [29] Esyanti RR, Dwivany FM, Mahani S, Nugrahapraja H, Meitha K; (2019) Foliar application of chitosan enhances growth and modulates expression of defense genes in chilli pepper (‘Capsicum annuum’ L.). Aust J Crop Sci 13(1), 55–60. DOI:10.21475/ajcs.19.13.01.p1169
  • [30] Dung PD, Hung LT, Le Truc Ha T, Luan LQ, Van Le B, Thang NT; (2018) Study on the biological effects of oligochitosan fractions, prepared by synergistic degradation method, on capsicum. Int J Polym Sci 2018, 8156739. DOI:10.1155/2018/8156739
  • [31] Dzung PD, Phu DV, Du BD, Ngoc LS, Duy NN, Hiet HD, Hien NQ; (2017) Effect of foliar application of oligochitosan with different molecular weight on growth promotion and fruit yield enhancement of chili plant. Plant Prod Sci 20(4), 389–395. DOI:10.1080/1343943X.2017.1399803
  • [32] Agbodjato NA, Noumavo PA, Adjanohoun A, Agbessi L, Baba-Moussa L; (2016) Synergistic effects of plant growth promoting rhizobacteria and chitosan on in vitro seeds germination, greenhouse growth, and nutrient uptake of maize (Zea mays L.). Biotechnol Res Int 2016, 7830182. DOI:10.1155/2016/7830182
  • [33] Salachna P, Grzeszczuk M, Soból M; (2017) Effects of chitooligosaccharide coating combined with selected ionic polymers on the stimulation of Ornithogalum saundersiae growth. Molecules 22(11), 1903. DOI:10.3390/molecules22111903
  • [34] Kahromi S, Khara J; (2021) Chitosan stimulates secondary metabolite production and nutrient uptake in medicinal plant Dracocephalum kotschyi. J Sci Food Agric19 101(9), 3898–3907. DOI:10.1002/jsfa.11030
  • [35] Cambui CA, Svennerstam H, Gruffman L, Nordin A, Ganeteg U, Näsholm T; (2011) Patterns of plant biomass partitioning depend on nitrogen source. PLoS One 6(4), e19211. DOI:10.1371/journal.pone.0019211
  • [36] Long Y, Peng J; (2023) Interaction between boron and other elements in plants. Genes 14(1), 130. DOI:10.3390/genes14010130
  • [37] Sarafi E, Tsouvaltzis P, Chatzissavvidis C, Siomos A, Therios I; (2017) Melatonin and resveratrol reverse the toxic effect of high boron (B) and modulate biochemical parameters in pepper plants (Capsicum annuum L.). Plant Physiol Biochem 112, 173–182. DOI:10.1016/j.plaphy.2016.12.018
  • [38] Reid R, Fitzpatrick KL; (2009) Redistribution of boron in leaves reduces boron toxicity. Plant Signal Behav 4(11), 1091–1093. DOI:10.4161/psb.4.11.9798
  • [39] Balal RM, Shahid MA, Javaid MM, Iqbal Z, Liu GD, Zotarelli L, Khan N; (2017) Chitosan alleviates phytotoxicity caused by boron through augmented polyamine metabolism and antioxidant activities and reduced boron concentration in Cucumis sativus L. Acta Physiol Plant 39, 1–15. DOI:10.1007/s11738–016–2335-z
  • [40] Liang X, Li Y, Tang S, Shi X, Zhou N, Liu K, Li Y; (2022) Mechanism underlying how a chitosan-based phosphorus adsorbent alleviates cadmium-induced oxidative stress in Bidens pilosa L. and its impact on soil microbial communities: a field study. Chemosphere 295, 133943. DOI:10.1016/j.chemosphere.2022.133943
  • [41] Xu C, Mou B; (2018) Chitosan as soil amendment affects lettuce growth, photochemical efficiency, and gas exchange. HortTech 28(4), 476–480. DOI:10.21273/HORTTECH04032–18
Typ dokumentu
article
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.psjd-19a5b7ed-19e5-4d7f-8c28-6cca680c4320
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.