Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 51 | 83-97
Tytuł artykułu

Risk assessment of human exposure to heterocyclic aromatic compounds in sediment dwelling biota from Ibeno River Catchment, Southeast, Nigeria

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Biota and associated sediment samples were collected from the Ibeno river catchment and analyzed using the standard methods for investigation of the sources and the distribution of heterocyclic compounds in the area. The lipid content values of the biota varied from 10-29% dry weight (dw; mean = 15.8 + 7.79) in Large crab (LC) and ranged from 5-10% dw (mean = 7.6 + 1.82) in small crab (SC). Also, it ranged from 6-10% dw (mean= 7.6 + 1.52) in small shrimp (SS) and varied from 7-40% dw (mean = 23.6 + 1.47) in large shrimp (LS). High TOC (4.5%) and TIC (2.53%) were found for the associated sediment, and this was because of the silty nature of the sediment, having high adsorption capacity for organic matter. The high extractible organic matter (EOM) value recorded for the associated sediment may be linked to petroleum hydrocarbon discharge into the environment by Exxon Mobil. The biota-sediment accumulation factor (BSAF) values ranged from 0.0029-0.0059 (mean = 0.0047 + 0.00128) for LC and 0.0059-0.0085 (mean = 0.00724+0.001276) for SC. On the other hand, the values ranged from 0.0060-0.0160 (mean = 0.0037 + 0.002787) and 0.0018-0.0084 (mean = 0.0096 + 0.004079) for LS and SS respectively. This low result reviews that the contaminant uptake from the associated sediment by the biota was negligible, hence, the consumers exposed to this biota might not have experienced any serious health risk associated with the consumption of heterocyclic aromatic hydrocarbons. The aromatic fractions from column chromatography would subsequently be subjected to gas chromatography mass spectrometry analysis to identify and quantify the individual heterocyclic aromatic hydrocarbons.
Rocznik
Tom
51
Strony
83-97
Opis fizyczny
Twórcy
autor
,
  • Department of Pure and Applied Chemistry, University of Calabar, Cross River State, Nigeria
  • Department of Pure and Applied Chemistry, University of Calabar, Cross River State, Nigeria
Bibliografia
  • [1] Adeola, F. O. (2004). Boon or Bane? The Environmental and Health Impacts of Persistent Organic Pollutants (POPs). Human Ecology Review 11 (1), 27-35
  • [2] Alharbi M.L. O., Basheer A. A., Khattab R. A., & Imran A. (2018). Health and Environmental Effects of Persistent Organic Pollutants. Journal of Molecular Liquids. 263, 442-453
  • [3] Barron M. G, Heintz R & Rice S. D. (2004). Relative Potency of PAHs and Heterocycles as Aryl Hydrocarbon Receptor Agonists in Fish. Marine Environmental Resources. 58: 95–100
  • [4] Bleeker EAJ, Leslie H.A, Groenendijk D, Plans M. & Admiraal W. (1999). Effects of Exposure to Azaarenes on Emergence and Mouthpart Development in the Midge Chironomus riparius (Diptera: Chironomidae). Environmental Toxicology Chemistry. 18: 1829–34
  • [5] Blum P., Sagner A., Tiehm A., Martus P., Wendel T. & Grathwohl P. (2011). Importance of Heterocyclic Aromatic Compounds in Monitored Natural Attenuation for Coal Tar Contaminated Aquifers: a review. J Contam Hydrol. 126: 181-94
  • [6] Brack W., Klamer H. J., Lopez de Alda, M. & Barcelo D. (2007). Effect-directed Analysis of key Toxicants in European River Basins. Environmental Science Pollution Resources 14: 30-38
  • [7] Brack W. & Schirmer K. (2003). Effect-directed Identification of Oxygen and Sulfur Heterocycles as Major Polycyclic Aromatic Cytochrome P4501A-inducers in a Contaminated sediment. Environmental Science Technology 37: 3062-3070
  • [8] Blotevogel J, Reineke AK, Hollender J. & Held T. (2008). Identification NSO heterocyclischer Prioritarsubstanzen zur Erkundung and Uberwachung Teerol-kontaminierter Standorte. Grundwasser 13: 147–57
  • [9] Colborn, T., Dumanoski D. & Myers J. P. (1996). Our Stolen Future: Are We Threatening Our Fertility, Intelligence, and Survival? A Scientific Detective Story. New York: Penguin.
  • [10] Cripps C, Bumpus J. A. & Aust SD. (1990). Biodegradation of azo and heterocyclic dyes by Phanerochaete chrysosporium. Applied Environmental Microbiology 56: 1114–1118
  • [11] Dosunmu, M. I., Oyo-Ita, I. O. & Oyo-Ita, O. E. (2016). Risk assessment of human exposure to polycyclic aromatic hydrocarbons via shrimps (Macrobrachium felicinum) consumption along the Imo River catchment, SE Nigeria. Environmental Geochemistry & Health. 38(6) 1333-1345
  • [12] Dyreborg S, Arvin E & Broholm K. (1997). Biodegradation of NSO-compounds under different redox-conditions. J Contamination Hydrolysis 25: 177–197
  • [13] Eckley, N. (2001). Traveling toxics: The Science, Policy, and Management of Persistent Organic Pollutants. Environment 43, 7, 23-36
  • [14] Edet, E. J. A (1993). Groundwater Quality Assessment in Parts of Eastern Niger Delta. Environmental Geology, Vol. 22, No.1, 41-46
  • [15] Eichner T & Hauptmann S. (2003). The Chemistry of Heterocycles, Second Edition, Wiley-VCH, Weinheim, Germany.
  • [16] Fernandez-Alba AR, Guil MDH, Lopez GD & Chisti Y. (2002). Comparative evaluation of the effects of pesticides in acute toxicity luminescence bioassays. Analytica Chimica Acta 451: 195–202
  • [17] Jin H. A., Hye-Min K., Seung K.K., Jae D.H., Eul K. Y., Duk K. A., Joong-Kwon C. & Sung S. K. (2005). Synthesis of 2-Pyrazoline-5-Carboxylic Acid Derivatives Using Trimethylsilyldiazomethane Bull. Korean Chemical Society. Vol. 26, No. 3-467
  • [18] Jung DKJ, Klaus T. & Fent K. (2001). Cytochrome P450 induction by nitrated polycyclic aromatic hydrocarbons, azaarenes, and binary mixtures in fish hepatoma cell line PLHC-1. Environmental Toxicology Chemistry 20: 149–59
  • [19] Kamilia, K., Jana, P., Lucie, D., Tomas, C., Vladimir, K., & Jana, H. (2011). Simplified and rapid determination of polychlorinated biphenyls, polybrominated diphenyl ethers and polycyclic aromatic hydrocarbons in fish and shrimps integrated into a single method. Analytica Chimica Acta 707, 84–91
  • [20] Koziol, A. & Pudykiewicz J. (2001). Global-scale environmental transport of persistent organic pollutants. Chemosphere 45, 1181-1200
  • [21] Licht D, Johansen SS, Arvin E. & Ahring BK. (1997). Transformation of indole and quinoline by Desulfobacterium indolicum (DSM 3383). Applied Microbiology Biotechnology 47: 167–72
  • [22] Meyer S. Mikrobieller Abbau typischer Teerol PAK and Hetero PAK (N, S, O) in einem Modellbodenhorizont, (1999) Ph.D Thesis, Hamburg, Germany: Hamburg University.
  • [23] Meyer S. & Steinhart H. (2000). Effects of Heterocyclic PAHs (N, S, O) on the Biodegradation of Typical Tar Oil PAHs in a soil/compost Mixture. Chemosphere. 40: 359–67
  • [24] Moser, G. A. & McKachlan M. (2001). The Influence of Dietary Concentration on the Absorption and Excretion of Persistent Lipophilic Organic Pollutants in the Human Intestinal Tract. Chemosphere 45, 201-211
  • [25] Oyo-Ita, O. E., Ekpo O. B., Adie A. P. & Offem O. J. (2014). Organochlorine Pesticides in Sediment Dwelling Animals from Mangrove Areas of the Calabar River, S. E. Nigeria. Environmental & Petroleum Geochemistry 3 (3) 56
  • [26] Oyo-ita O. E., Oyo-ita I. O. & Ugim, S. U. (2011). Sources and distribution of Polycyclic Aromatic Hydrocarbons in Post-flooded Soil near Afam Power Station, S. E. Niger Delta, Nigeria. Journal of Soil Science Environmental Management 2. 329-340
  • [27] Oyo-ita, O. E., Oyo-ita, I. O. & Ugim, S. U. (2012). Distribution and Sources of Polycyclic Aromatic Hydrocarbons and Sterols in Termite Nest, Soil and Sediment from Great Kwa River, S. E., Niger Delta, Nigeria. Environmental Monitoring Assessment 185 (2) 1413-1426
  • [28] Oyo-ita, O. E., Expo, B. O., Oros, D. H. & Simoneit, B. R. T. (2010). Distribution and Sources of Aliphatic Hydrocarbons and Ketones in Surface Sediments from the Cross River Estuary, S. E., Niger Delta, Nigeria. Journal of Applied Sciences in Environmental Sanitation 5(1), 1-3
  • [29] Robbiano L, Baroni D, Carrozzino R, Mereto E. & Brambilla G. (2004). DNA Damage and Micronuclei Induced in Rat and Human Kidney Cells by Six Chemicals Carcinogenic to the Rat Kidney. Toxicology 204: 187–195
  • [30] Sabrina P., Markus B., Kerstin B., Anne S., Gunnar H., Thomas B., Adolf E., Andreas T., Henner H. & Steffen H. K. (2012). Quantitative Assessment of the Embryotoxic Potential of NSO-heterocyclic Compounds using zebrafish (Danio rerio). Reproductive Toxicology. 33, 224– 232
  • [31] Wang, X. J., Chen, J., Zhang, Z. H., Piao, X. Y., Hu, J. D., & Tao, S. (2004). Distribution and sources of polycyclic aromatic hydrocarbons in soil profiles of Tiajin Area, People’s Republic of China. Bulletin of Environmental Toxicology, 73, 739–748
  • [32] Weber R., Gaus C., Tysklind M., Johnston P., Forter M., Hollert H., et al. (2008). Dioxin and POP Contaminated sites-contemporary and Future Relevance and Challenges Overview on Background, Aims and Scope of the Series. Environmental Science Pollution Resources 15; 363-369
Typ dokumentu
article
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.psjd-0bcd0222-c81a-4c2a-99fa-395222fa0427
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.