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Two-stage cluster sampling with unequal probability sampling 
in the first stage and ranked set sampling in the second stage 

Michael C. Ugwu1, Mbanefo S. Madukaife2 

ABSTRACT 

In this research work we introduce a new sampling design, namely a two-stage cluster 
sampling, where probability proportional to size with replacement is used in the first stage 
unit and ranked set sampling in the second in order to address the issue of marked variability 
in the sizes of population units concerned with first stage sampling. We obtained an 
unbiased estimator of the population mean and total, as well as the variance of the mean 
estimator. We calculated the relative efficiency of the new sampling design to the two-stage 
cluster sampling with simple random sampling in the first stage and ranked set sampling in 
the second stage. The results demonstrated that the new sampling design is more efficient 
than the competing design when a significant variation is observed in the first stage units. 

Key words: cluster sampling, population mean estimator, probability proportional to size 
sampling, ranked set sampling, relative efficiency. 

1. Introduction

In scientific research, sample survey to a great extent plays a vital role, most
especially in the presence of limited cost. This is because we need not possibly embark 
on complete enumeration which entails studying the entire population, in order to 
learn efficiently about the population characteristics of interest. Also in real life 
situations, there are occasions unlike in element sampling when a list of elements of the 
population is not available but it is easy (or possible) to obtain a list of segmented 
groups, known as clusters. Even when such list exists, it is sometimes uneconomical to 
obtain information from a sample of elements in the population due to the nature of 
the distribution of the population. In such cases, it becomes ideal to use cluster 
sampling technique to draw random sample from the population and when this 
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technique is carried out in two phases, it becomes two-stage cluster sampling  
(Okafor, 2002). 

In two-stage cluster sampling, the entire units of the population are at first grouped 
into say N clusters, each having iM , 1, 2, . . .,i N  elements. Then a random sample 
of n clusters, say, is drawn from the N clusters, also known as the first stage units (FSU), 
as the first stage sample. From each of the n selected clusters, each of size iM ,

1,2,...,i n  elements, a random sample of cluster elements of size im  is also selected 

from iM  second stage units (SSU) as second stage sample. The common motivation 
of cluster sampling is to reduce cost by increasing sampling efficiency. 

A good number of authors have applied two-stage cluster sampling in real life 
situations in order to enhance sampling efficiency. Some of them include Fears and Gail 
(2000), Stehman et al. (2009), Phillips et al. (2008), Horney et al. (2010) as well as 
Galway et al. (2012) and Dilip (2015). The efficiency of the design when applied to real 
life situations, however depends to great extent on the sampling techniques used in both 
stages of the design. 

It could be recalled that in equal probability sampling, all the population units have 
equal chances of being selected in the sample regardless of the size of each unit. When 
units of clusters are of different sizes, it is appropriate to use probability proportional 
to size (PPS) sampling (Damon, 2018 & Ozturk, 2019). In this sampling plan, the 
probability of selection of a cluster element is in proportion to its size or measure of 
size of the element, so that larger clusters have greater chances of being selected than 
the smaller clusters, provided the sizes of units of clusters in the population are known 
and also have positive correlation with the variable under study. The choice of PPS 
scheme in the first-stage of two-stage sampling under variant cluster sizes has also been 
supported by Innocenti et al. (2019). Such a procedure of sample selection is also known 
as unequal probability sampling (Okafor, 2002). For a more detailed discussion on 
selection procedures and estimation in unequal probability sampling, see Shahbaz and 
Hanif (2010). 

Optimum sampling methods that are cost friendly have been of great concern in 
the field of statistics, especially when the cost of measuring the population attribute 
under study is high. In situations where it is less costly to identify sampling units to be 
included in the sample and at the same time ranking them accordingly with respect to 
the attribute of interest than to directly measure the values, a ranked set sample (RSS) 
yields better efficiency than its simple random sample (SRS) counterpart under the 
same sample size (McIntyre, 1952 and Chen et al., 2003). Ranked set sampling was 
introduced by McIntyre (1952) and Halls and Dell (1966) while its theoretical basis was 
laid by Takahasi and Wakimoto (1968) and Dell and Clutter (1972). Also, it has been 
applied in real-life situations by a number of researchers including Chen et al. (2003). 
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In order to improve the efficiency of two-stage sampling, Nematollahi et al. (2008) 
introduced RSS in the second stage, with the first stage remaining as SRS scheme. They 
showed that the estimators obtained from the design have significant improvement in 
efficiency over the dominant case of SRS scheme on both stages. Regardless of the 
improvement observed in Nematollahi et al. (2008), the problem of sampling from 
variant cluster sizes in the first stage is not addressed. Innocenti et al. (2021) presented 
three options, namely: sampling clusters with probability proportional to cluster size, 
and then sampling the same number of individuals from each selected cluster in the 
second stage; sampling clusters with equal probability, and then sampling the same 
percentage of individuals from each sampled cluster in the second stage and sampling 
clusters with equal probability, and then sampling the same number of individuals per 
cluster in the second stage. These options, no doubt, addressed the underlying problem 
only in the first option. In what appears to be an overall improvement so far, in this 
direction, Ozturk (2019) obtained a frame work for a two-stage cluster sampling where 
probability proportional to size (PPS) sampling is applied in the first stage as well as 
RSS applied in the second stage of sampling. 

It is well known that PPS can be carried out with or without replacement. However, 
PPS without replacement (PPSWOR) is more complex in application than PPS with 
replacement (PPSWR) and that is one of the major advantages of the later over the 
former. Additionally, when the study population is very large, sampling with 
replacement is always best suited. In this work therefore, we shall propose a cluster 
sampling design in two stages where PPSWR is applied in the first stage and RSS in the 
second stage. Section 2 gives the framework for PPSWR as well as RSS. In section 3, the 
estimators of population mean and total of the new sampling design as well as the 
variance of the estimators are derived. Section 4 gives the relative efficiency of the 
design over the earlier design proposed by Nematollahi et al. (2008) under significantly 
variant clusters in the first stage of sampling and the paper is concluded in section 5. 

2. The new sampling design 

In this paper, a two-stage cluster sampling where sampling is done among the first 
stage units by probability proportional to size sampling with replacement (PPSWR) and 
ranked set sampling (RSS) among the second stage units is proposed. 

2.1. Probability proportional to size sampling with replacement 

Suppose 1 2 3, , , . . ., NU U U U  have measure of sizes 1 2 3, , , . . ., NX X X X  
respectively, where ; 1, 2, 3, . . .,iX i N is an integer value and ; 1, 2, 3, . . .,iU i N  is 
the ith first stage unit. In a situation where the 'iX s  are not integers, they are all 
multiplied by an appropriate power of 10 to make them integers. Now, suppose a 
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sample of size n units { , 1,2,3..., }iU i n  is to be selected from a population of N units, 

we first form a cumulative aggregate of sizes for each of the first stage units, iU  in the 
population. Then, the ranges to all the population units are obtained using the 
cumulative totals. Using a table of random numbers, one is required to select a number

d between 1 and 
1

N

i
i

X X


  inclusive. If the number d falls in the range of 2U , say, 

then it is selected in the sample. Another random number is drawn between 1 and X 
inclusive, and if the number drawn falls this time in the range of iU , the unit iU  is 
selected. In other words, the unit chosen to be included in the sample is the unit whose 
range contains the drawn random number.  The process of drawing a random number 
is repeated independently until n number of units is drawn into the sample. With this 
selection procedure, the n number of units are drawn with PPSWR, and the probability 

of drawing the ith unit from the population is i iP X X  where 
1

1
N

i
i

P


 . 

From the foregoing technique according to Hansen and Hurwitz (1943), the 
unbiased estimator of the population mean is given by:  

1

ˆ1 n
i PPS

PPS
i i

y Y
y

nN p N
                      (1) 

where , 1, 2, . . .,iy i n  is the value of the variable of interest in the sample, i
i

x
p

X
  is 

the probability of drawing the ith unit in the sample; ix  is the measure of size of the ith 

sample unit and 
1

1ˆ n
i

i i

y
Ypps n p

   is the unbiased estimator of the population total, Y. 

Also, the variance of the sample mean is given by: 
2

2
2

1

1
( ) i

pps
i i

N Y
V y Y

nN P

 
  

 
                 (2)  

where iY  is the ith cluster total. 
 

2.2. Ranked set sampling (RSS) procedure 

The basic premise for RSS is that sampling units are drawn from infinite population 
or with replacement from a finite population under study and that the sampling units 
drawn from the population can be ranked by certain means, rather cheaply, devoid of 
actual measurement of the variable of interest which is either costly or time consuming, 
or both. It may be considered as a controlled random sampling design. Stokes (1980), 
Chen et al. (2003) and Al-Omari and Bouza (2014) describe ranked set sampling 
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procedure as follows: (i) Randomly select from the study population sampling units of 
size m2 (ii) Randomly allot the m2 units selected into m independent sets where every 
set is of size m. (iii) The units in every set are ranked in line with the information about 
study variable by visual inspection, concomitant variable or through other methods that 
cost little or nothing. (iv) The samples are chosen for quantification by selecting from 
the first, second down to the mth set the lowest ranked unit, the second lowest ranked 
unit, up to the highest ranked unit from the mth set. The entire process from (i) to (iv) 
is called a cycle. (v) Repeat the cycle, say r times to get a ranked set sample of size rm  

out of the total of 2rm units initially selected, see Table 1. 
Each cycle of the selection process (i.e. from step i to iv) will result in measured 

observations 11 22, , . . ., mmy y y  into the sample assuming our variable of interest is Y 

and each of these observations is called judgment order statistic. If 1 2 . . . mm m m  
, that is the set sizes of the independent random samples are equal, the RSS is said to be 
balanced, else, it is unbalanced. The ranks which the units in the set receive may not 
necessarily correspond with the numerical layouts of the real values of Y. If they 
correspond with the numerical layouts, the ranking is said to be perfect, else, it is 
imperfect. The square brackets [.] are used to denote imperfect ranking in the subscripts 
of ranked observations while the round brackets (.) are used if the judgment order 
statistics are perfect. 

The efficiency of RSS relies on the sampling allocation, either balanced or 
unbalanced. In balanced RSS, the rank order statistics has an equal allocation. Takahasi 
and Wakimoto (1968), Patil (2002) and Al-Omari and Bouza (2014) state that balanced 
RSS estimator has a variance not greater than its SRS estimator counterpart even in the 
presence of errors in ranking. This implies that no matter how bad RSS method is, it 
cannot be worse than SRS method if properly conducted. This no doubt, lies the 
goodness of the former over the later. Thus, from the measured ranked set sample, we 
can obtain unbiased estimators of population parameters, such as the population mean 
and variance. 

Suppose iy  is the value of the variable of interest, iY  for 1, 2, . . .,i M , where M 

is the population size. The set 1 2{ , , . . ., }mY Y Y  is a random sample from Y with pdf 

( )f y , finite mean   and variance 2  and with a set of observed values 

1 2{ , , . . ., }my y y . Let 1 2, , . . .,j j jmY Y Y ; 1, 2, . . .,j m  be a simple random sample 
drawn from the population with replacement. In some occasions, it is not an easy task 
ranking m units for large sample set of m, so we select a ranked set sample with small 
sample set of m and then replicate this sampling scheme up to r times. If that is well 
executed, it will turn out to produce r cycles, yielding the judgment order statistics value 
as it is displayed in Table 1. Let jlY  represent the jth judgment ordered statistic value 
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from the jth sample of size m coming from the lth cycle of size r, 
1, 2, . . ., ; 1, 2, . . .,j m l r   and with jly being the value of the observed variable. 
According to Takahasi and Wakimoto (1968), based on RSS technique, the 

unbiased estimator of the mean and its variance are respectively obtained by: 

1 1

1
ˆ

m r

rss jl
j l

Y
mr


 
 =                                    (3) 

and  

1 1 1

1 1 1 12 2 2 2ˆ( ) ( ) ( )
m r m

rss jl j
j l j

Var u
mr mr mr m

     
  

              
=          

(4) 

Table 1.  Display of judgment order statistics (JOS) values from RSS when the cycle is replicated r 
times 

Cycle First JOS Second JOS … mth JOS 

Cycle 1 Y[1]1 Y[2]1 … Y[m]1 

Cycle 2 Y[1]2 Y[2]2 … Y[m]2 

⁝ ⁝ ⁝ ⁝ ⁝ 
Cycle r Y[1]r Y[2]r … Y[m]rfy 

 

2.3. The proposed two-stage cluster sampling design 

Suppose there are N first stage units (FSU’s) in the population where every ith FSU 
has iM  second stage units (SSU’s) with expected value i  and variance 2

i . Let the 

sample size from FSU’s be represented by n  while im  represents the sample size from 
SSU’s in the ith selected FSU. First, a sample of n  FSU’s is selected from the population 
using probability proportional to size with replacement (PPSWR) in the first stage. 
Then from every ith selected FSU’s, im  second stage sampling units will be selected by 
ranked set sampling (RSS) scheme. Assuming RSS procedure where r = 1 is the case in 
the second stage, then out of every ith chosen FSU’s, we draw im  units using RSS 
procedure. The final sample can be displayed in the array of values given by: 

1

2

1[1] 1[ 2 ] 1[ ]

2[1] 2[ 2 ] 2[ ]

[1] [ 2 ] [ ]

. . .

. . .

. . .

. . .
n

m

m

n n n m

Y Y Y

Y Y Y

Y Y Y

  
                         (5)   



STATISTICS IN TRANSITION new series, September 2022 

 

205

This is as illustrated by Nematollahi et al. (2008), where [ ]i jY  denotes the variable 
of interest pertaining to the jth order of the jth random sample in ith selected FSU 
which are independent but not identically distributed. To maintain the attribute of 
independence of samples in RSS, the units selected from every ith FSU drawn for rank 
ordering in the jth sample set is carried by simple random sampling with replacement 
scheme. 

If we consider RSS scheme with replication in the second stage sampling, then from 
every ith FSU selected, i i im rm  units will be drawn by RSS method in cycles ir  with 

fix sample size m . Going by this, let [ ]il jY  represent the variable pertaining to the jth 
order of jth random sample in lth cycle from ith drawn FSU. Thus, the observations in 
(5) will form a random sample in every ith  selected FSU while im  and [ ]i jY  are replaced 

by im  and [ ]il jY  respectively. 

3. Estimators of the population mean and total in the new sampling design 

The mean estimator for two-stage cluster sampling with probability proportional 
to size sampling with replacement in the first stage units and RSS design in the second 
stage units is given by: 

1

1

1 n
i i

ppsrss N
i i

i
i

M y
y

Pn M 



 
 1

1 1

ˆˆ1 n ppsrssi
N N

i i
i i

i i

YY

Pn M M

 

 
 

           (6)    

where [ ]
1 1

1 i ir m

i il j
l ji i

y Y
rm



 
   is the sample mean of the variable pertaining to the jth 

ordered value from the jth random sample in lth cycle of sampling in ith selected FSU 
and   

[ ]
1 1 1

1ˆ i ir mn
i

ppsrss il j
i l j i i i

M
Y Y

n rm p



  
  


                 (7) 

is the unbiased estimator of the population total Y. i
i

x
p

X
 is the probability of 

selecting the ith unit in the first stage sample; ix  is the measure of size of the ith sample 

unit. In the case of the measure of size used in this work, 

1

i
i n

i
i

m
p

M





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It is straight forward to show that the estimator in (6) is an unbiased estimator of 
the population mean. This is because we have: 

   1 2 1 2
1 1

1 1

1 1i i i
ppsrss iN N

i ii i
i i

i i

n nM y M
E y E E E E y

P nPn M M 

 

   
   

     
    

   

 

1

1 1

ˆˆ1 ppsrssi
N N

i i
i i

i i

n YY

Pn M M

 

 
 

 

  1
1

1 1

ˆ1 n ppsrssi
ppsrss N N

i i
i i

i i

YY
E y E Y

nPM M

 

 
    
  

 

                       (8) 

The variance of the unbiased estimator of the population mean is given by: 

 
2 2 2 2

2

1 [ ]2 2 2 2 2 2
1 1 1 1 10 0 0

1 1 1
( )

i ir mN N n
i i i i

ppsrss i i j i
i i i l ji i i i i

Y M M
V y P Y E

nM P nM P m n M P m

  


    

  
       

   
  

    
(9) 

The result in (9) is derived as follows:  

Without loss of generality, let the number of cycles in each FSU be one such that 

1 2 . . . 1nr r r     . Hence, i im m . Then, 

1 2 1 2( ) ( ) ( )ppsrss ppsrss ppsrssV y V E y EV y           (10) 

Considering 1 2 ( )ppsrssV E y  gives the result: 

1 2 1 2
10

1
( )

n
i i

ppsrss
i i

M y
V E y V E

nM P

 
  

 
 , 

where
 

[ ] [ ]
1

1
ˆ

im

i i j i j
ji

y Y
m




 
 

1 2 1 2 1
1 10 0

1 1
( ) ( )

n n
i i

ppsrss i i
i ii i

M M
V E y V E y V

nM P nM P


 

   
    

   
   

                                           
12

10

1 1 n
i

i i

Y
V

M n P

 
  

 
  

2

2
10

1 1 N
i

i
i i

Y
P Y

M n P

  
   
   
                                    (11)   
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Also considering 1 2 ( )ppsrssEV y  in (10) gives the result: 

1 2 1 2
10

1
( )

n
i i

ppsrss
i i

M y
EV y EV

nM P

 
  

 
  

2

1 2 1 22 2 2
1 10 0

1 1
( )

n n
i i i

i
i ii i

M y M
E V E V y

nM P n M P 

    
     

    
   

But Takahasi and Wakimoto (1968) have obtained that  

 22
2 [ ]

1

1 1
( )

im

i i i j i
ji i

V y
m m

  


 
   

 
  

where 2
i  is the variance of the variable of interest Y  in the ith FSU and [ ]i j  is the 

expected value of [ ]i jY . Hence,  

 
2

22
1 2 1 [ ]2 2 2

1 10

1 1 1
( )

imn
i

ppsrss i i j i
i ji i i

M
EV y E
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  

 

  
    
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   

       
2 2

22
1 1 [ ]2 2 2 2 2 2 2

1 1 10 0

1 1 1 imn n
i i

i i j i
i i ji i i i
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E E

n M P m n M P m
  
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  
    

   
    

   
2 2

22
1 [ ]2 2 2 2 2

1 1 10 0

1 1 imN n
i i

i i j i
i i ji i i i

M M
E

nM Pm n M P m
  
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 
   

 
            (12) 

Adding (11) and (12) gives the variance of ppsrssy  as: 

 
2 2 2 2

2

1 [ ]2 2 2 2 2 2
1 1 1 10 0 0

1 1 1 imN N n
i i i i

i i j i
i i i ji i i i i

Y M M
P Y E

nM P nM P m n M P m

  
   

  
      

   
         

(13) 
Now, if the number of cycles is ir  instead of one, (13) would have turned out to 

be (9). 

4. Relative Efficiency 

Relative efficiency of a sampling design 1  over another 2  based on an estimator 

̂  of a population parameter   is a measure of relative overall quality of the designs 
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evidenced in their estimators. Algebraically, the relative efficiency of 1  over 2 , based 

on ̂  is obtained by: 

 
 

2

1

1 2

ˆvar
( )

ˆvar
RE






 


                   (14) 

where var(.) is a measure of variability of the estimators obtained from the two designs. 
Using (14), 1  will be adjudged a more efficient design if 1 2( )RE    is greater than 1 
and less efficient if otherwise. 

The proposed sampling design and its associated estimators are applied to the 
greenhouses data obtained in the 2003 agricultural survey conducted in Iran as adopted 
from Nematollahi et al. (2008). The provinces or a set of provinces are considered as 
first stage units (FSU’s) and greenhouses as second stage units (SSU’s). For us to 
estimate the mean value of the greenhouses products and subsequently compare our 
proposed sample mean in (6) with the mean estimator ( ˆ rTSCRSS ) proposed by 
Nematollahi et al. (2008) for relative efficiency, a simulation study is carried out on this 
data. The sampling units are ranked based on the values of the greenhouses in the 
frame, and the ranking is assumed to be flawless. The study variable is also the same as 
the greenhouses values in our simulation survey, consequently, the sizes of the second 
stage units iM  are used as our measure of sizes. 

4.1. Layout of the data selection 

In this study, there are N = 25 first stage units (FSU’s) or provinces in the frame. 
And every ith province contains a total of ; 1, ,iM i N   greenhouses that are 
regarded as second stage units as they appeared in Table 2. For the sake of 
demonstration of the methodology for the proposed estimator of the mean, a random 
sample of size n = 5 first stage units are selected from the population of N = 25 clusters, 
using unequal probability sampling (PPSWR). The FSU’s selected in the first stage of 
sampling via PPSWR are marked asterisks (*) in Table 3. Out of every ith selected 
province, m rm greenhouses (SSU’s) were selected by RSS. This paper considers 
where 4r   and 3m   to get a ranked set sample of size 12 units each in the second 
stage sampling. 

Similarly, for the estimator according to Nematollahi et al. (2008), a random sample 
of size n = 5 is also selected from the population by simple random sampling without 
replacement. Out of every ith chosen FSU, a sample of SSU’s, m rm  is selected by 
RSS. Also, 4r   and 3m   are considered to get a ranked set sample of size 12 units 
each in the second stage sampling. 
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Table 2.  The number of secondary sampling units in the first stage units 

FSU’s Mi FSU’s Mi FSU’s Mi FSU’s Mi FSU’s Mi 

1 
2 
3 
4 
5 

42 
169 
538 
38 
33 

6 
7 
8 
9 

10 

61 
680 
936 
167 
20 

11 
12 
13 
14 
15 

27 
26 
14 
40 
93 

16 
17 
18 
19 
20 

750 
32 

275 
14 
20 

21 
22 
23 
24 
25 

30 
26 
18 
14 
84 

 

Table 3.  Cumulative table for selection of 5 provinces by PPSWR 

FSU’s Mi 
Cum. of 

Mi’s 
Prob (Mi) FSU’s Mi 

Cum. of 
Mi’s 

Prob (Mi) 

1 42 42 0.010127803 14 40 2791 0.009645527 
2 169 211 0.040752351 15 93 2884 0.022425850 
3 538 749 0.129732337 16* 750 3634 0.180853629 
4 38 787 0.009163251 17* 32 3666 0.007716422 
5 33 820 0.007957560 18* 275 3941 0.066312997 
6 61 881 0.014709429 19 14 3955 0.003375934 
7* 680 1561 0.163973957 20 20 3975 0.004822763 
8* 936 2497 0.225705329 21 30 4005 0.007234145 
9 167 2664 0.040270075 22 26 4031 0.006269592 

10 20 2684 0.004822763 23 18 4049 0.004340487 
11 27 2711 0.006510731 24 14 4063 0.003375934 
12 26 2737 0.006269592 25 84 4147 0.020255606 
13 14 2751 0.003375934     

 

4.2. Computation of estimated means for the two competing designs 

In order to obtain the estimated means and totals using the Nematollahi et al. 
(2008) estimators and the new proposed estimators, their mean estimators and 
computations are presented as follows: 

( )
[ ]

1 1 1 1

1 1
ˆ ˆ

i ir mn n
r ji
TSCRSS il j i i

i l j ii i

M
Y M

nM nMrm
 



   

 
             (15) 
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where 
1

N
i

i

M
M

N

  and ( )
[ ]

1 1

1
ˆ

i ir m
j

i il j
l ji i

Y
rm




 


  . The terms of the mean estimator in 

(15) are computed and presented in Table 4. Using the computed terms, the mean is 

estimated as ˆ rTSCRSS  = 28.25125. 

Table 4.  Calculation of the estimated population mean in Nematollahi et al. (2008) 

FSU’s iM  i i im rm  ˆi  ˆi iM   

13 38 12 14.0000 532.0000 
8 938 12 12.0000 11256.0000 

10 20 12 13.8333 276.6667 
16 750 12 12.5833 9437.5000 
2 169 12 11.4167 1929.4167 

 

Also, the terms contained in the new proposed estimator of the mean in (6) are 
computed for the sample in Table 5 and the mean is estimated as ppsrssy  = 20.2204. 

   

Table 5.  Calculation of the estimated population mean using the new mean estimator 

FSU’s iM  ip  m rm  iy  
i

i

y

p
 

iy  i i

i

M y

p
 

7 680 0.162213740 12 160 986.3529 13.33 55893.33 
16 750 0.178912214 12 140 782.5067 11.67 48906.67 
8 936 0.223282443 12 170 761.3675 14.17 59386.67 

17 32 0.007633588 12 158 200698.0000 13.17 55194.67 
18 275 0.065601145 12 154 2347.5200 12.83 53797.33 

 
The entire process of sampling and computation is carried out using appropriate 

packages in the R statistical software. 
It has been shown that the mean estimator proposed in this paper is unbiased. As 

a result, the appropriate measure of its variability to be used in this section is the 
variance. However, to ensure uniformity of computation with the estimator due to 
Nematollahi et al. (2008), the mean squared error (MSE) is used. Now, MSE of the two 
competing estimators are obtained empirically using 10000 replications of samples and 
computations. Precisely, the MSE of each estimator of the mean is obtained by: 

   
10000

2

1

1

10000b ab
a

MSE y y 


  ; 1, 2b           (16) 
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where 1ay and 2ay denote ppsrssy  and ˆ rTSCRSS  respectively in tha  replication of the 

sample, 1, 2, ,10000a   . The results for first stage sample sizes n = 4, 5, 6 and 8 
are presented in Table 6 for the new estimator as MSE1 and Nematollahi et al. (2008) 
estimator as MSE2. 

 

Table 6.  Mean square errors corresponding to each mean estimator ppsrssy  and ˆ rTSCRSS   

FSU 
Sample Size 

r = 3, m= 2 r = 3, m= 3 r =3, m= 4 

MSE1 MSE2 MSE1 MSE2 MSE1 MSE2 

4 227.4776 89.4379 193.0703 90.0924 204.7227 91.5629 
5 55.4979 69.9861 51.0138 69.3528 55.0475 70.0885 
6 25.8019 56.7316 26.5967 54.9603 26.0757 54.2575 
8 9.2579 37.5100 9.0912 37.3246 9.2049 36.5891 

 
Finally, the relative efficiency of the new estimator ppsrssy  to ˆ rTSCRSS  at different 

sample sizes in the two stages of the sampling designs are obtained by: 

     
 
ˆ rTSCRSS

ppsrss

MSE
RE

MSE y


                       (17) 

The computed relative efficiencies are presented in Table 7. 
 

Table 7.  Relative efficiencies of the new estimator ppsrssy  to ˆ rTSCRSS  

Number of 
selected FSU’s 

r = 3 
m= 2 

r = 3 
m= 3 

r = 3 
m= 4 

4 0.393 0.467 0.447 
5 1.261 1.359 1.273 
6 2.199 2.067 2.080 
8 4.052 4.105 3.9749 

 
From the results in Table 7, the relative efficiency of the new estimator compared 

to Nematollahi et al. (2008) estimator shows that the new estimator is more efficient for 
different sizes of first stage units sample except, in the case when n = 4. This suggests 
that as the sample size in the first stage of sampling increases, the relative efficiency of 
the new estimator keeps improving. For instance, when n = 5 in the first stage and m = 
5 in the second stage, the relative efficiency improves from 0.39 to 1.26. Similarly, when 
n = 8 and m = 12, it changes from 2.08 when n = 6 and m = 12 to 3.97. However, it is 
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important to note that the preferred performance of the new estimator to the 
Nematollahi et al. (2008) estimator may have been because the population in question 
has significantly varied sizes in the first stage units. If a situation where somewhat 
equality in sizes of the FSU’s is encountered, this preference may not be guaranteed. 

5. Conclusion 

A new two-stage sampling design has been developed where probability 
proportional to size sampling with replacement (PPSWR) is used in the first stage and 
ranked set sampling is used in the second stage. The empirical comparative study 
carried out revealed that our new sampling design is more efficient as it produced better 
estimator for estimating the population mean than similar design built with simple 
random sampling in the first stage and ranked set sampling in the second stage units 
under the condition of significant variation in the sizes of the first stage units. 

Acknowledgements 

The authors wish to thank the two anonymous reviewers and the managing editor 
for their comments and criticisms which have greatly improved the quality of this 
paper. 

References 

Al-Omari A. I., Bouza C. N., (2014). Review of Ranked Set Sampling: Modifications and 
Applications. Revista Investigacion Operacional, 35(3), pp. 215–240. 

Chen Z., Bai Z., Sinha B. K., (2003). Ranked Set Sampling: Theory and Applications. 
Springer, New York. 

Damon, V., (2018). Advantages and disadvantages of multistage sampling. 
https://classroom.synonym.com/advantages-disadvantages-multistage-sampling-
8544049.html 

Dell, T. R., Clutter, J. I., (1972). Ranked set sampling theory with order statistics 
background. Biometrics, 28, pp. 545–553. 

Dilip, N. C., (2015). Two-stage sampling design for estimation of total fertility rate: with 
an illustration for slum dweller married woman. Electronic Journal of Applied 
statistical Analysis, 8(1), pp. 112–121. 



STATISTICS IN TRANSITION new series, September 2022 

 

213

Fears, T. R., Gail, M. H., (2000). Analysis of a two-stage case-control study with cluster 
sampling of controls: Application to Nonmelanoma skin cancer. Biometrics, 56(1), 
pp. 190–198. 

Galway, L. P., Bell, N., Shatari, S. AE. Al., Hagopian, A., Burnham, G., Flaxman, A., 
Weiss, W. M., Rajaratnam, J. and Takaro, T. K., (2012). A two-stage cluster 
sampling method using gridded population data, a GIS and Google Earth TM 
imagery in population-based mortality survey in Iraq. International Journal of 
Health Geographics, 11(12), pp. 1–9. 

Halls, L. S., Dell, T. R., (1966). Trial of ranked set sampling for forage yields. Forest 
Science, 12(1), pp. 22–26. 

Hansen, M. H., Hurwitz, W. N., (1943). On the theory of sampling from a finite 
population. Annals of Mathematical Statistics, 14, pp. 333–362. 

Horney, J. J., Dickinson, M., Hsai, J., Williams, A. and Zotti, M., (2010). Two-stage 
cluster sampling with referral: Improving the efficiency of estimating unmet needs 
among pregnant and postpartum women after flooding in Northwest Georgia. 
Remote Sensing of Environment, 113(6), pp. 1236–1249. 

Innocenti, F., Candel, M. J. J. M., Tan, F. E. S. and van Breukelen, G. J. P., (2019). 
Relative efficiencies of two-stage sampling schemes for mean estimation 
in multilevel populations when cluster size is informative. Statistics in Medicine, 
38(10), pp. 1817–1834. 

Innocenti, F., Candel, M. J. J. M., Tan, F. E. S. and van Breukelen, G. J. P., (2021). 
Optimal two-stage sampling for mean estimation in multilevel populations when 
cluster size is informative. Statistical Methods in Medical Research, 30(2),  
pp. 357–375. 

McIntyre, G. A., (1952). A method of unbiased selective sampling, using ranked sets. 
Australian Journal of Agricultural Research, 3, pp. 385–390. 

Nematollahi, N., Salehi, M. M. and Saba, A. R., (2008). Two-stage cluster sampling with 
ranked set sampling in the secondary sampling frame. Communications 
in Statistics–Theory and methods, 37(15), pp. 2404–2415. 

Okafor, F. C., (2002). Sample Survey Theory with Application. Afro-Orbis Publications 
Ltd. Nsukka. 

Ozturk, O., (2019). Two-stage cluster samples with ranked set sampling designs. Annals 
of the Institute of Statistical Mathematics, 71, pp. 63–91. 



214                     Michael C. Ugwu, Mbanefo S. Madukaife: Two-stage cluster sampling with unequal… 

 

 

Patil, G. P., (2002). Ranked set sampling. Encyclopedia of Environmetrics, 3, pp. 1684–
1690.  

Phillips, A. E., Boily, M. C., Lowndes, C. M., Garnett, G. P., Gurav, K., Ramesh, B. M., 
Anthony, J., Watts, R., Moses, S. and Alary, M., (2008). Sexual identity and its 
contribution to MSM risk behaviour in Bangaluru (Bangalore) India: The results of 
a two-stage cluster sampling survey. Journal of LGBT Health Research, 4, pp. 111–
126. 

Shahbaz, M. Q., Hanif, M., (2010). Some developments in unequal probability sampling: 
selection procedures and estimators. Lap Lambert Academic Publishing, GmbH & 
Co. KG, Deutschland. 

Stehman, S. V., Wichham, J. D., Fattorini, L., Wade, T. D., Baffetta, F. and Smith, J. H., 
(2009). Estimating accuracy of land-cover composition from two-stage cluster 
sampling. Remote Sensing of Environment, 113(6), pp. 1236–1249. 

Stokes, S. L., (1980). Estimation of variance using judgment ordered ranked set samples. 
Biometrics, 36, pp. 35–42. 

Takahasi, K., Wakimoto, K., (1968). On unbiased estimates of the population mean 
based on the sample stratified by means of ordering. Annals of the Institute of 
Statistical Mathematics, 21, pp. 249–255. 

 


