Warianty tytułu
„Budowniczy katedr”: matematyka a wzniosłość
Języki publikacji
Abstrakty
The paper deals with aesthetic and religious dimensions of mathematics. These dimensions are considered as closely connected, though reciprocally non-reducible. “Mathematical beauty” is already firmly established as a term in the philosophy of mathematics. Here, an attempt is made to bring forward two additional candidates: “mathematical sublime” and “numinous mathematics”. The last one is meant to designate the recognition of some mathematical practices as inspiring anticipation of the meeting with the divine reality or producing a feeling of its presence. The first one is used here to designate the related feelings in disguise, i.e., being reinterpreted or transferred from the straightforwardly religious to the aesthetic sphere. Taking Kant’s theory of the sublime as a starting point, the paper introduces a related account of it that treats mathematical beauty through mathematical sublimity as a more fundamental category. Within this account, religious experience, the aesthetics of the sublime and mathematical practice are closely interlinked through an appropriate interpretation of the idea of the infinite. Both mathematical and art symbolism are seen as an endeavour to represent the infinite within the finite, which correlates well with the definition of mathematics as “the science of the infinite” (Hermann Weyl).
Artykuł poświęcony jest estetycznemu wymiarowi matematyki, a także jego wymiarowi religijnemu. Wymiary te rozważane są jako silnie ze sobą powiązane, choć nie są do siebie sprowadzalne. „Piękno matematyczne” ugruntowało się już jako termin w filozofii matematyki. Podjęto tu próbę wysunięcia dodatkowych kandydatów: „matematyczna wzniosłość” i „matematyka numinotyczna”. Drugi z nich odnosi się do uznania pewnych praktyk matematycznych jako inspirujących do antycypacji spotkania z boską rzeczywistością lub jako wywołujących poczucie jej obecności. Z kolei pierwszy – do związanych z tym odczuć w „przebraniu”, to jest zreinterpretowanych i przeniesionych ze sfery wprost religijnej do estetycznej. Wychodząc od teorii wzniosłości Kanta, artykuł proponuje ujęcie matematycznego piękna poprzez matematyczną wzniosłość jako kategorię podstawową. W tym zakresie doświadczenie religijne, estetyka wzniosłości i praktyka matematyczna są wzajemnie silnie powiązane poprzez odpowiednią interpretację idei nieskończoności. Zarówno symbolizm matematyczny, jak i symbolizm w sztuce są tu postrzegane jako próba przedstawienia nieskończoności w tym, co skończone, co dobrze koreluje z definicją matematyki jako „nauki o nieskończoności” (Hermann Weyl).
Czasopismo
Rocznik
Numer
Strony
195-226
Opis fizyczny
Twórcy
autor
Bibliografia
- Aaronson S.J., Who Can Name the Bigger Number? 1999. Retrieved from http://www.scottaaronson.com/writings/bignumbers.pdf
- Aigner M., Ziegler G.M., Proofs from THE BOOK, 6th ed., Berlin 2018.
- Aristotle, Complete Works, ed. J. Barnes, Princeton, NJ 1984, Vol. I.
- Baldick C., The Oxford Dictionary of Literary Terms, 3rd ed., Oxford 2008.
- Blake W. The Poetical Works: A New and Verbatim Text from the Manuscript Engraved and Letterpress Originals, ed. J. Sampson, Oxford 1947.
- Bollobás B., Paul Erdős: Life and Work, in: The Mathematics of Paul Erdős I, eds. R.L. Graham, J. Nešetřil, S. Butler, 2nd ed., New York, NY 2013, pp. 1–42.
- Bollobás B., To Prove and Conjecture: Paul Erdős and His Mathematics, “The American Mathematical Monthly” 1998, Vol. 105, No. 3, pp. 209–237.
- Bourbaki N., The Architecture of Mathematics, “The American Mathematical Monthly” 1950, Vol. 57, No. 4, pp. 221–232.
- Cellucci C., Mathematical Beauty, Understanding, and Discovery, “Foundations of Science” 2015, Vol. 20, No. 4, pp. 339–355.
- Collins R., Restivo S., Robber Barons and Politicians in Mathematics: A Conflict Model of Science, “Canadian Journal of Sociology / Cahiers canadiens de sociologie” 1983, Vol. 8, No. 2, pp. 199–227.
- Dawson J.W. Jr, Why Do Mathematicians Re-prove Theorems?, “Philosophia Mathematica” 2006, Series III, Vol. 14, No. 3, pp. 269–286.
- Diogenes Laertius, Lives of Eminent Philosophers, with an English Translation by R.D. Hicks (Loeb Classical Library), London; New York 1925, Vol. II.
- Doran R., The Theory of the Sublime from Longinus to Kant, Cambridge 2015.
- Drucker P.F., The Practice of Management, New York, NY 1993.
- Dyck M., Novalis and Mathematics: A Study of Friedrich von Hardenberg’s Fragments on Mathematics and Its Relation to Magic, Music, Religion, Philosophy, Language, and Literature, Chapel Hill, NC 1960.
- Elliott K.C., McKaughan D.J., Nonepistemic Values and the Multiple Goals of Science, “Philosophy of Science” 2014, Vol. 81, No. 1, pp. 1–21.
- Dyson F.J., Prof. Hermann Weyl [an obituary], “Nature” March 10, 1956, Vol. 177, No. 4506, pp. 457–458.
- Euclid, The Thirteen Books of Euclid’s Elements, transl., intr. and commentary T. Heath, Cambridge 1908, vol. I.
- Friedman J.B., The Architect’s Compass in Creation Miniatures of the Later Middle Ages, “Traditio” 1974, Vol. 30, pp. 419–429.
- Gilbert R., Science and the Truthfulness of Beauty: How the Personal Perspective Discovers Creation, Abingdon, UK 2018.
- Gowers T., Introduction, in: Princeton Companion to Mathematics, ed. T. Gowers, Princeton, NJ 2008, pp. 1–76.
- Greek Apocalypse of Ezra (Second to Ninth Century AD), a New Translation and Introduction by M.E. Stone, in: The Old Testament Pseudepigrapha, Vol. I: Apocalyptic Literature and Testaments, ed. J.H. Charlesworth, Peabody, MA 1983, pp. 561–579.
- Gutner G., The Origin and Motivation of Scientific Knowledge: A Treatise on Wonder, Moscow 2018 (in Russian).
- Hacking I., Husserl on the Origins of Geometry, in: Science and the Life-World: Essays on Husserl’s ‘Crisis of European Sciences’, eds. D. Hyder, H.-J. Rheinberger, Stanford 2010, pp. 64–82.
- Hardy G.H., A Mathematician’s Apology [1940], with a foreword by C.P. Snow, Cambridge 1967.
- Harris M., Mathematics Without Apologies: Portrait of a Problematic Vocation, Princeton 2015.
- Hegel G.W.F., Aesthetics: Lectures on Fine Art, tr. T.M. Knox, New York, NY 1975. Vol. I.
- Hilbert D., Über das Unendliche, “Mathematische Annalen” 1926, Vol. 95, pp. 161–190.
- Hoffman P., The Man Who Loved Only Numbers: The Story of Paul Erdős and the Search for Mathematical Truth, London 1998.
- Horgan J., Rational Mysticism: Dispatches from the Border between Science and Spirituality, New York, NY 2003.
- Hutcheson F., An Inquiry into the Original of Our Ideas of Beauty and Virtue in Two Treatises, ed. W. Leidhold, Indianapolis 2004.
- Inglis M., Aberdein A., Beauty Is Not Simplicity: An Analysis of Mathematicians’ Proof Appraisals, “Philosophia Mathematica” 2015, Vol. 23, No. 1, pp. 87–109.
- Kant I., Critique of Practical Reason, in: I. Kant, Practical Philosophy, transl. and ed. M.J. Gregor (The Cambridge Edition of the Works of Immanuel Kant), New York, NY 1996, pp. 133–271.
- Kant I., Critique of Pure Reason, transl. and ed. P. Guyer, A.W. Wood (The Cambridge Edition of the Works of Immanuel Kant), New York, NY 1998.
- Kant I., Critique of the Power of Judgment, ed. P. Guyer, transl. P. Guyer, E. Matthews (The Cambridge Edition of the Works of Immanuel Kant), New York, NY 2000.
- Kant I., Prolegomena, transl. G. Hatfield, in: I. Kant, Theoretical Philosophy after 1781, eds. H. Allison, P. Heath (The Cambridge Edition of the Works of Immanuel Kant), New York, NY 2002, pp. 29–169.
- Kieckhefer R., Theology in Stone: Church Architecture from Byzantium to Berkeley, New York, NY 2004.
- Krajewski S., Theological Metaphors in Mathematics, “Studies in Logic, Grammar and Rhetoric” 2016, Vol. 44(57)): Theology in Mathematics?, eds. S. Krajewski, K. Trzęsicki, pp. 13-30.
- McMillan A., Hansler D., Mission and Vision Statements, in: Encyclopedia of Management, 5th ed., ed. M.M. Helms, Detroit, MI 2006, pp. 556–557.
- Netz R., The Aesthetics of Mathematics: A Study, in: Visualization, Explanation and Reasoning Styles in Mathematics, eds. P. Mancosu, K.F. Jørgensen, S.A. Pedersen, Dordrecht 2005, pp. 251–293.
- Novalis, Schriften, Herausgegeben von Ludwig Tieck und Fr. Schlegel, Fünfte Auflage, Zweiter Teil, Berlin 1837.
- Oakley C.O., Baker J.C., The Morley Trisector Theorem, “American Mathematical Monthly” 1978, Vol. 85, No. 9, pp. 737–745.
- Otto R., The Idea of the Holy, trans. J.W. Harvey, 2nd ed., New York, NY 1950.
- Oxford Advanced Learner’s Dictionary of Current English, 7th ed., ed. S. Wehmeier, Oxford 2005.
- Oxford Dictionary of English, ed. A. Stevenson, 3d ed., Oxford 2010.
- Pascal B., Pensées, ed. and transl. R. Ariew, Indianapolis, IN 2004.
- Pavlovits T., Admiration, Fear, and Infinity in Pascal’s Thinking, in: Philosophy Begins in Wonder: An Introduction to Early Modern Philosophy, Theology and Science, eds. M.F. Deckard, P. Losonczi, Cambridge 2011, pp. 119–126.
- Philo, The Works of Philo Judaeus, transl. C.D. Yonge, London 1890. Vol. I.
- Plato, Complete Works, ed. J.M. Cooper, Indianapolis, IN 1997.
- Plotinus, with an English translation by A.H. Armstrong, In seven volumes, Vol. VII: Enneads VI. 6-9 (Loeb Classical Library), Cambridge, MA; London 1988.
- Poincaré H., Mathematical Discovery [1908], in: H. Poincaré, Science and Method, trans. F. Maitland, London 1914, pp. 46–63.
- Potochnik A., The Diverse Aims of Science, “Studies in History and Philosophy of Science Part A” 2015, Vol. 53, pp. 71–80.
- Proclus, A Commentary on the First Book of Euclid’s Elements, transl. G.R. Morrow, Princeton, NJ 1992.
- Richardson R.G.D., The First Josiah Willard Gibbs Lecture, “Bulletin of the AMS” 1924, Vol. 30, No. 7, pp. 289–291.
- Rogozinski J., The Gift of the World, in: Of the Sublime: Presence in Question, Essays by J.-F. Courtine et al., Albany, NY 1993, pp. 133–156.
- Rota G.-C., The Phenomenology of Mathematical Beauty, “Synthese” 1997, Vol. 111, No. 2, pp. 171–182.
- Russell B., Mysticism and Logic and Other Essays, London 1917.
- Schelling F.W.J., The Philosophy of Art, ed., tr. and introduced by D.W. Stott, Minneapolis, MN 1989.
- Schuchard M.K., Restoring the Temple of Vision: Cabalistic Freemasonry and Stuart Culture, Leiden 2002.
- Shaposhnikov V., Theological Underpinnings of the Modern Philosophy of Mathematics, Parts I and II, “Studies in Logic, Grammar and Rhetoric” 2016, Vol. 44(57)): Theology in Mathematics?, eds. S. Krajewski, K. Trzęsicki, pp. 31–54, 147–168.
- Spencer J., Erdős Magic, in: The Mathematics of Paul Erdős I, eds. R.L. Graham, J. Nešetřil, S. Butler, 2nd ed., New York, NY 2013, pp. 43–46.
- Suber P., Infinite Reflections, “St. John’s Review” 1998, Vol. XLIV, No. 2, pp. 1–34. Available at https://dash.harvard.edu/handle/1/3715468.
- Sweeney L., Divine Infinity in Greek and Medieval Thought, New York, NY 1992.
- Taylor C., A Secular Age, Cambridge, MA 2007.
- Tarnas R., The Passion of the Western Mind: Understanding the Ideas that Have Shaped Our World View. New York, NY 1991.
- The Art of Basic Drawing, Walter Foster Publishing, Laguna Hills, CA 2007.
- The Concise Oxford Companion to English Literature, eds. M. Drabble, J. Stringer, D. Hahn, 3rd ed., Oxford 2007.
- Tomasello M., Carpenter M., Call J., Behne T., Moll H., Understanding and Sharing Intentions: The Origins of Cultural Cognition, “Behavioral & Brain Sciences” 2005, Vol. 28, pp. 675–735.
- Weyl H., Die heutige Erkenntnislage in der Mathematik (1925), in: Gesammelte Abhandlungen, Berlin 1968, Bd. II, p. 511–542.
- Whitehead A.N., Russell B., Principia Mathematica, Vol. I–III, Cambridge 1910–1913
- Zermelo E., Collected Works / Gesammelte Werke, Vol. I / Band I: Set Theory, Miscellanea / Mengenlehre, Varia, eds. H.-D. Ebbinghaus, A. Kanamori, Berlin 2010.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.mhp-702cbf60-e374-4703-9553-2ca83865382c