Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The article aims to analyse AI's use for optimising management processes in urban waste incineration plants, making them consistent with the implementation of the sustainable development goals SDG
Rocznik
Numer
Strony
127-138
Opis fizyczny
Twórcy
- Bialystok University of Technology
- Brno University of Technology, Czech Republic
autor
- Poznan University of Economics and Business
autor
- University of Belize, Belmopan, Belize
Bibliografia
- Bibri, S.E. (2021). A novel model for data-driven smart sustainable cities of the future: The institutional transformations required for balancing and advancing the three goals of sustainability. Energy Informatics, 4, 5737. doi: 10.1186/s42162-021-00138-8
- Campbell, D., & Stanley, J. (2000). Experimental and quasi-experimental designs for research. Rand McNally, Chicago, 196-217. doi: 10.1007/978-1-4615-1401-5_11
- Chen, C., Hu, Y., Marimuthu, K., & Kumar, P.M. (2021). Artificial intelligence on economic evaluation of energy efficiency and renewable energy technologies. Sustainable Energy Technologies and Assessments, 47(3), 101358. doi: 10.1016/j.seta.2021.101358
- Chui, K.T., Lytras, M.D., & Visvizi, A. (2018). Energy sustainability in smart cities: Artificial intelligence, smart monitoring, and optimization of energy consumption. Energies, 11(11), 2869. doi: 10.3390/en11112869
- Cubric, M. (2020). Drivers, barriers, and social considerations for AI adoption in business and management: A tertiary study. Technology in Society, 62. doi: 10.1016/j.techsoc.2020.101257
- Czemiel-Grzybowska, W. (2022). Conceptualization and mapping of predictors of technological entrepreneurship growth in a changing economic environment (COVID-19) from the Polish energy sector. Energies, 15(18), 6543. doi: 10.3390/en15186543
- Czemiel-Grzybowska, W. (2023). Trendy rozwoju zrównoważonej przedsiębiorczości technologicznej opartej na sztucznej inteligencji. Akademia Zarządzania, 7(4), 126-137. doi: 10.24427/az-2023-0059
- Ertel, W., & Black, N.T. (2018). Introduction to artificial intelligence. Springer International Publishing, 1-11. doi: 10.1007/978-3-319-58487-4
- Garbuio, M., & Lin, N. (2019). Artificial intelligence as a growth engine for healthcare startups: Emerging business models. California Business Review, 61(2), 59-83. doi: 10.1177/0008125618811931
- Golinska-Dawson, P., & Sethanan, K. (2023). Sustainable urban freight for energy-efficient smart cities -Systematic literature review. Energies, 16(6), 2617. doi: 10.3390/en16062617
- Govindan, K., & Shaw, M. (2021). Social sustainability tensions in multi-tier supply chain: A systematic literature review towards conceptual framework development. Journal of Cleaner Production, 279(1-2), 123075. doi: 10.1016/j.jclepro.2020.123075
- Gupta, B.B., Gaurav, A., Panigrahi, P.K., & Arya, V. (2023). Analysis of artificial intelligence-based technologies and approaches on sustainable entrepreneurship. Technological Forecasting & Social Change, 186(2), 122152. doi: 10.1016/j.techfore.2022.122152
- Jha, S.K., Bilalovic, J., Jha, A., Patel, N., & Zhang, H. (2017). Renewable energy: Present research and future scope of artificial intelligence. Renewable and Sustainable Energy Reviews, 77, 297-317. doi: 10.1016/j.rser.2017.04.018
- Kamel Boulos, M.N., Peng, G., & Vopham, T. (2019). An overview of GeoAI applications in health and health-care. International Journal of Health Geographics, 18(7). doi: 10.1186/s12942-019-0171-2
- Lazaroiu, G., Androniceanu, A., Grecu, I., Grecu, G., & Neguriță, O. (2022). Artificial intelligence-based decision-making algorithms, Internet of Things sensing networks, and sustainable cyber-physical management systems in big data-driven cognitive manufacturing. Oeconomia Copernicana, 13(4), 1047-1080. doi: 10.24136/oc.2022.030
- López-Blanco, R., Martín, J.H., Alonso, R.S., & Prieto, J. (2023). Time series forecasting for improving quality of life and ecosystem services in smart cities. Lecture Notes in Networks and Systems, 603, 74-85. doi: 10.1007/978-3-031-22356-3_8
- Ma, Y., Ping, K., Wu, C., Chen, L., Shi, H., & Chong, D. (2020). Artificial intelligence-powered Internet of Things and smart public service. Library Hi Tech, 38(1), 165-179. doi: 10.1108/LHT-12-2017-0274
- McCarthy, J., Minsky, M.L., Rochester, N., & Shannon, C.E. (2006). A proposal for the Dartmouth Summer Research Project on Artificial Intelligence. AI Magazine, 27(4). doi: 10.1609/aimag.v27i4.1904
- Mikalef, P., & Pateli, A. (2017). Information technology-enabled dynamic capabilities and their indirect effect on competitive performance: Findings from PLSSEM and fsQCA. Journal of Business Research, 70, 1-16. doi: 10.1016/j.jbusres.2016.09.004
- Moravec, V., Hynek, N., Gavurova, B., & Kubak, M. (2024). Everyday artificial intelligence unveiled: Societal awareness of technological transformation. Oeconomia Copernicana, 15(2), 367-406. doi: 10.24136/oc.2961
- Muhammad, K., Lloret, J., & Baik, S.W. (2019). Intelligent and energy-efficient data prioritization in green smart cities: Current challenges and future directions. IEEE Communications Magazine, 57(2), 60-65. doi: 10.1109/MCOM.2018.1800371
- Navarro-Espinoza, A., López-Bonilla, O.R., García-Guerrero, E.E., Tlelo-Cuautle, E., López-Mancilla, D., Hernández-Mejía, C., & Inzunza-González, E. (2022). Traffic flow prediction for smart traffic lights using machine learning algorithms. Technologies, 10(1). doi: 10.3390/technologies10010005
- O'Dwyer, E., Pan, I., Acha, S., & Shah, N. (2019). Smart energy systems for sustainable smart cities: Current developments, trends, and future directions. Applied Energy, 237, 581-597. doi: 10.1016/j.apenergy.2019.01.024
- Ortega-Fernández, A., Martín-Rojas, R., & García-Morales, V.J. (2020). Artificial intelligence in the urban environment: Smart cities as models for developing innovation and sustainability. Sustainability, 12(19), 7860. doi: 10.3390/su12197860
- Pacelli, V. (2012). Forecasting exchange rates: A comparative analysis. International Journal of Business and Social Science, 3(10), 31-45. doi: 10.12846/j. em.2015.02.06
- Paiva, S., Ahad, M.A., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling technologies for urban smart mobility: Recent trends, opportunities, and challenges. Sensors, 21(6), 1-45. doi: 10.3390/s21062143
- Park, S., Choi, M.I., Lee, S., Lee, T., Kim, S., Cho, K., & Park, S. (2020). Reinforcement learning-based BEMS architecture for energy usage optimization. Sensors, 20(17), 4918. doi: 10.3390/s20174918
- Patton, M. (1985). Quality in qualitative research: Methodological principles and recent developments. Journal of the American Educational Research Association, Chicago.
- Ragab, A., Osama, A., & Ramzy, A. (2023). Simulation of the environmental impact of industries in smart cities. Ain Shams Engineering Journal, 14(6), 102103. doi: 10.1016/j.asej.2022.102103
- Rani, S., Mishra, R.K., Usman, M., Kataria, A., Kumar, P., Bhambri, P., & Mishra, A.K. (2021). Amalgamation of advanced technologies for sustainable development of smart city environment: A review. IEEE Access, 9, 150060-150087. doi: 10.1109/ACCESS.2021.3125527
- Serban, A.C., & Lytras, M.D. (2020). Artificial intelligence for smart renewable energy sector in Europe - Smart energy infrastructures for next-generation smart cities. IEEE Access, 8, 77364-77377. doi: 10.1109/ACCESS.2020.2990123
- Sievers, F., Reil, H., Rimbeck, M., Stumpf-Wollersheim, J., & Leyer, M. (2021). Empowering employees in industrial organizations with IoT in their daily operations. Computers in Industry, 129, 103445. doi: 10.1016/j.compind.2021.103445
- Singh, S., Sharma, P.K., Yoon, B., Shojafar, M., Cho, G.H., & Ra, I.-H. (2020). Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city. Sustainable Cities and Society, 63, 102364. doi: 10.1016/j.scs.2020.102364
- Skowronek-Mielczarek, A., & Czemiel-Grzybowska, W. (2015). Entrepreneurship research in Poland. Technological and Economic Development of Economy, 23(3), 504-519. doi: 10.3846/20294913.2015.1070770
- Sousa, M.J., & Rocha, A. (2018). Digital learning: Developing skills for digital transformation of organizations. Future Computer Systems, 91(February), 327-334. doi: 10.1016/j.future.2018.08.048
- Stawasz, D., & Sikora-Fernandez, D. (2016). Koncepcja smart city na tle procesów i uwarunkowań rozwoju współczesnych miast. Łódź, Poland: Wydawnictwo Uniwersytetu Łódzkiego.
- Stone, P., Brooks, R., Brynjolfsson, E., Calo, R., Etzioni, O., & Hager, G. et al. (2016). Artificial intelligence and life in 2030. One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel. Stanford University. Retrieved from http://ai100.stanford.edu/2016-report
- Subotić, V., Eibl, M., & Hochenauer, C. (2021). Artificial intelligence for time-efficient prediction and optimization of solid oxide fuel cell performances. Energy Conversion and Management, 230, 113764. doi: 10.1016/j.enconman.2020.113764
- Šulyová, D., & Kubina, M. (2022). Quality of life in the concept of strategic management for Smart Cities. Forum Scientiae Oeconomia, 10(3), 9-24. doi: 10.23762/FSO_VOL10_NO3_1
- Szpilko, D., Jiménez-Naharro, F., Lăzăroiu, G., Nica, E., & Torre Gallegos, A.d.l. (2023). Artificial intelligence in the smart city - a literature review. Engineering Management in Production and Services, 15(4), 53-75. doi: 10.2478/emj-2023-0028
- Szpilko, D., Szydło, J., & Winkowska, J. (2020). Social Participation of City Inhabitants Versus Their Future Orientation. Evidence From Poland. WSEAS Transactions on Business and Economics, 17, 692-702. doi: 10.37394/23207.2020.17.67
- Taddy, M. (2018). The technological elements of artificial intelligence. The Economics of Artificial Intelligence: An Agenda, National Bureau of Economic Research, 61-87. Retrieved from https://ideas.repec.org/h/nbr/nberch/14021.html
- Ullah, Z., Al-Turjman, F., Mostarda, L., & Gagliardi, R. (2020). Applications of artificial intelligence and machine learning in smart cities. Computer Communications, 154, 313-323. doi: 10.1016/j.comcom.2020.02.069
- United Nations' 2030 Agenda. Retrieved from https://sdgs.un.org/2030agenda
- Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Fellader, A., Langhans, S.D., Tegmark, M., & Nerini, F.F. (2020). The role of artificial intelligence in achieving the Sustainable Development Goals. Nature Communications, 11(1), 233. doi: 10.1038/s41467-019-14108-y
- Walicka, M., & Czemiel-Grzybowska, W. (2015). Technology entrepreneurship - State of the art and future challenges. European Journal of Social Sciences, 3(4), 10-21. doi: 10.15604/ejss.2015.03.04.002
- Wang, K., Zhao, Y.F., Gangadhari, R.K., & Li, Z. X. (2021). Analyzing the adoption challenges of the Internet of Things (IoT) and artificial intelligence (AI) for smart cities in China. Sustainability, 13(19). doi: 10.3390/su131910983
- Winkowska, J., Szpilko, D., & Pejić, S. (2019). Smart city concept in the light of the literature review. Engineering Management in Production and Services, 11(2), 70-86. doi: 10.2478/emj-2019-0012
- Wirtz, B.W., Weyerer, J.C., & Geyer, C. (2019). Artificial intelligence and the public sector - Applications and challenges. International Journal of Public Administration, 42(7), 596-615. doi: 10.1080/01900692.2018.1498103
- Wu, Z., & Chu, W. (2021). Sampling strategy analysis of machine learning models for energy consumption prediction. 2021 9th IEEE International Conference on Smart Energy Grid Engineering (SEGE 2021), 77-81. doi: 10.1109/SEGE52446.2021.9534987
- Wynsberghe, A. (2021). Sustainable AI: AI for sustainability and the sustainability of AI. AI and Ethics, 1(4). doi: 10.1007/s43681-021-00043-6
- Yigitcanlar, T., Desouza, K.C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6). doi: 10.3390/en13061473
- Yin, R. (2009). Case study research: Design and methods. Thousand Oaks: Sage.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171702778