Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Introduction: Parkinson's disease (PD) is one of the most common neurodegenerative diseases that mainly affects older people over 60 years of age. Since life expectancy is increasing not only in Europe but also around the world, the number of people suffering from PD will gradually increase. State of knowledge: One of the newest techniques used to study the mechanisms of diseases of the nervous system, which allows monitoring the activity of neurons by modifying their functions, is optogenetics. This method involves controlling neuronal activity using light. The sensitivity of cells to light is achieved by introducing into the body the genes of ion channels from algae or bacteria, which are incorporated into the cell membrane and then become excited when exposed to light. Depending on the gene used, the activity of a nerve cell can be intensified or inhibited. An important advantage of the method is the possibility of using it in vivo and recording the results in real time. Summary: This publication aims to present the basics of optogenetics and is a review of works related to its use in the study of PD pathomechanism. For this purpose, the PubMed and Google Scholar databases were verified using the following words: "Parkinson optogenetic", "optogenetic stimulation", "channelrhodopsin".(original abstract)
Słowa kluczowe
Twórcy
autor
- University Clinical Hospital Fryderyk Chopin
autor
- University Clinical Hospital Fryderyk Chopin
autor
- Medicadent Clinic
autor
- University Clinical Hospital Fryderyk Chopin
autor
- University Clinical Hospital Fryderyk Chopin
autor
- University Clinical Hospital Fryderyk Chopin
autor
- University Clinical Hospital Fryderyk Chopin
autor
- University Clinical Hospital Fryderyk Chopin
Bibliografia
- Deisseroth K. Controlling the Brain with Light. Scientific American. 2010;303(5):48-55. doi:10.1038/scientificamerican1110-48.
- Oesterhelt D, Stoeckenius W. Rhodopsin-like Protein from the Purple Membrane of Halobacterium halobium. Nature New Biology. 1971;233(39):149-152. doi:10.1038/newbio233149a0.
- Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience. 2005;8(9):1263-1268. doi:10.1038/nn1525.
- Nagel G, Brauner M, Liewald JF, Adeishvili N, Bamberg E, Gottschalk A. Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses. CB/Current Biology. 2005;15(24):2279-2284. doi:10.1016/j.cub.2005.11.032.
- Zhang F, Wang LP, Brauner M, et al. Multimodal fast optical interrogation of neural circuitry. Nature. 2007;446(7136):633-639. doi:10.1038/nature05744.
- Lim SAO, Surmeier DJ. Enhanced GABAergic inhibition of cholinergic interneurons in the ZQ175+/- mouse model of Huntington's Disease. Frontiers in Systems Neuroscience. 2021;14. doi:10.3389/fnsys.2020.626412.
- Osawa SI, Tominaga T. Application of optogenetics in Epilepsy research. In: Advances in Experimental Medicine and Biology. ; 2021:557-562. doi:10.1007/978-981-15-8763-4_39.
- Yu C, Cassar IR, Sambangi J, Grill WM. Frequency-Specific optogenetic deep brain stimulation of subthalamic nucleus improves parkinsonian motor behaviors. the Journal of Neuroscience/the Journal of Neuroscience. 2020;40(22):4323-4334. doi:10.1523/jneurosci.3071-19.2020.
- Zhang Z, Jing Y, Ma Y, et al. Driving GABAergic neurons optogenetically improves learning, reduces amyloid load and enhances autophagy in a mouse model of Alzheimer's disease. Biochemical and Biophysical Research Communications. 2020;525(4):928-935. doi:10.1016/j.bbrc.2020.03.004.
- Jiang C, Li HT, Zhou YM, Wang X, Wang L, Liu ZQ. Cardiac optogenetics: a novel approach to cardiovascular disease therapy. Europace. December 2017. doi:10.1093/europace/eux345.
- Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. International Journal of Neuropsychopharmacology. 2015;18(11):pyv079. doi:10.1093/ijnp/pyv079.
- Ji ZG, Wang H. ChR2 transgenic animals in peripheral sensory system: Sensing light as various sensations. Life Sciences. 2016;150:95-102. doi:10.1016/j.lfs.2016.02.057.
- Klapoetke NC, Murata Y, Kim SS, et al. Independent optical excitation of distinct neural populations. Nature Methods. 2014;11(3):338-346. doi:10.1038/nmeth.2836.
- Fenno L, Yizhar O, Deisseroth K. The development and application of optogenetics. Annual Review of Neuroscience. 2011;34(1):389-412. doi:10.1146/annurev-neuro-061010-113817.
- Berndt A, Schoenenberger P, Mattis J, et al. High-efficiency channelrhodopsins for fast neuronal stimulation at low light levels. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(18):7595-7600. doi:10.1073/pnas.1017210108.
- Yang F, Tu J, Pan J q, et al. Light-controlled inhibition of malignant glioma by opsin gene transfer. Cell Death and Disease. 2013;4(10):e893. doi:10.1038/cddis.2013.425.
- Guru A, Post RJ, Ho YY, Warden MR. Making sense of optogenetics. International Journal of Neuropsychopharmacology. 2015;18(11):pyv079. doi:10.1093/ijnp/pyv079.
- Rindner DJ, Lur G. Practical considerations in an era of multicolor optogenetics. Frontiers in Cellular Neuroscience. 2023;17. doi:10.3389/fncel.2023.1160245.
- Jiang J, Cui H, Rahmouni K. Optogenetics and pharmacogenetics: principles and applications. American Journal of Physiology Regulatory, Integrative and Comparative Physiology/American Journal of Physiology Regulatory, Integrative, and Comparative Physiology. 2017;313(6):R633-R645. doi:10.1152/ajpregu.00091.2017.
- Bott JB, Héraud C, Cosquer B, et al. APOE-Sensitive cholinergic sprouting compensates for hippocampal dysfunctions due to reduced entorhinal input. the Journal of Neuroscience/the Journal of Neuroscience. 2016;36(40):10472-10486. doi:10.1523/jneurosci.1174-16.2016.
- Miyashita T, Shao YR, Chung J, Pourzia O, Feldman DE. Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Frontiers in Neural Circuits. 2013;7. doi:10.3389/fncir.2013.00008.
- Shim HJ, Im GH, Jung WB, et al. Protocol for mouse optogenetic fMRI at ultrahigh magnetic fields. STAR Protocols. 2022;3(4):101846. doi:10.1016/j.xpro.2022.101846.
- Van Duyne GD. Cre recombinase. Microbiology Spectrum. 2015;3(1). doi:10.1128/microbiolspec.mdna3-0014-2014.
- Kim H, Kim M, Im SK, Fang S. Mouse Cre-LoxP system: general principles to determine tissue-specific roles of target genes. Laboratory Animal Research. 2018;34(4):147. doi:10.5625/lar.2018.34.4.147.
- Warden MR, Cardin JA, Deisseroth K. Optical neural interfaces. Annual Review of Biomedical Engineering. 2014;16(1):103-129. doi:10.1146/annurev-bioeng-071813-104733.
- Tysnes OB, Storstein A. Epidemiology of Parkinson's disease. Journal of Neural Transmission. 2017;124(8):901-905. doi:10.1007/s00702-017-1686-y.
- Elbaz A, Carcaillon L, Kab S, Moisan F. Epidemiology of Parkinson's disease. Revue Neurologique. 2016;172(1):14-26. doi:10.1016/j.neurol.2015.09.012.
- Warren N, O'Gorman C, Lehn A, Siskind D. Dopamine dysregulation syndrome in Parkinson's disease: a systematic review of published cases. Journal of Neurology, Neurosurgery and Psychiatry. 2017;88(12):1060-1064. doi:10.1136/jnnp-2017-315985.
- Segura-Aguilar J, Paris I, Muñoz P, Ferrari E, Zecca L, Zucca FA. Protective and toxic roles of dopamine in Parkinson's disease. Journal of Neurochemistry. 2014;129(6):898-915. doi:10.1111/jnc.12686.
- Jankovic J. Parkinson's disease: clinical features and diagnosis. Journal of Neurology, Neurosurgery and Psychiatry. 2008;79(4):368-376. doi:10.1136/jnnp.2007.131045
- Schapira AHV, Chaudhuri KR, Jenner P. Non-motor features of Parkinson disease. Nature Reviews Neuroscience. 2017;18(7):435-450. doi:10.1038/nrn.2017.62
- Wakabayashi K, Tanji K, Odagiri S, Miki Y, Mori F, Takahashi H. The lewy body in Parkinson's disease and related neurodegenerative disorders. Molecular Neurobiology. 2012;47(2):495-508. doi:10.1007/s12035-012-8280-y
- Araújo B, Caridade-Silva R, Soares-Guedes C, et al. Neuroinflammation and Parkinson's Disease-From Neurodegeneration to therapeutic opportunities. Cells. 2022;11(18):2908. doi:10.3390/cells11182908
- Balestrino R, Schapira AHV. Parkinson disease. European Journal of Neurology. 2019;27(1):27-42. doi:10.1111/ene.14108
- Nuytemans K, Theuns J, Cruts M, Van Broeckhoven C. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Human Mutation. 2010;31(7):763-780. doi:10.1002/humu.21277
- Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson Disease gene SNCA: Evolutionary and structural insights with pathological implication. Scientific Reports. 2016;6(1). doi:10.1038/srep24475
- Kluss JH, Mamais A, Cookson MR. LRRK2 links genetic and sporadic Parkinson's disease. Biochemical Society Transactions. 2019;47(2):651-661. doi:10.1042/bst20180462
- Rivero-Ríos P, Romo-Lozano M, Fasiczka R, Naaldijk Y, Hilfiker S. LRRK2-Related Parkinson's Disease due to Altered Endolysosomal biology with variable lewy body pathology: a hypothesis. Frontiers in Neuroscience. 2020;14. doi:10.3389/fnins.2020.00556
- Dawson TM, Dawson VL. The role of parkin in familial and sporadic Parkinson's disease. Movement Disorders. 2010;25(S1). doi:10.1002/mds.22798
- Vizziello M, Borellini L, Franco G, Ardolino G. Disruption of mitochondrial homeostasis: The role of PINK1 in Parkinson's disease. Cells. 2021;10(11):3022. doi:10.3390/cells10113022
- Repici M, Giorgini F. DJ-1 in Parkinson's Disease: Clinical Insights and Therapeutic Perspectives. Journal of Clinical Medicine. 2019;8(9):1377. doi:10.3390/jcm8091377
- Cardona F, Perez-Tur J. Other proteins involved in Parkinson's disease and related disorders. Current Protein and Peptide Science/Current Protein & Peptide Science. 2017;18(7):765-778. doi:10.2174/1389203717666160311122152
- Guimarães RP, Ribeiro DL, Santos KBD, Godoy LD, Corrêa MR, Padovan-Neto FE. The 6-hydroxydopamine rat model of Parkinson's disease. Journal of Visualized Experiments. 2021;(176). doi:10.3791/62923
- Mustapha M, Taib CNM. MPTP-induced mouse model of Parkinson's disease: A promising direction of therapeutic strategies. Bosnian Journal of Basic Medical Sciences. December 2020. doi:10.17305/bjbms.2020.5181
- Harvey BK, Wang Y, Hoffer BJ. Transgenic rodent models of Parkinson's disease. In: Acta Neurochirurgica. Supplementum. ; 2009:89-92. doi:10.1007/978-3-211-78205-7_15
- Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, De Oliveira ACP. Lipopolysaccharide-Induced Neuroinflammation as a bridge to understand Neurodegeneration. International Journal of Molecular Sciences. 2019;20(9):2293. doi:10.3390/ijms20092293
- Bentea E, Verbruggen L, Massie A. The proteasome inhibition model of Parkinson's disease. Journal of Parkinson's Disease/Journal of Parkinson's Disease (Online). 2017;7(1):31-63. doi:10.3233/jpd-160921
- Kravitz AV, Freeze BS, Parker PRL, et al. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466(7306):622-626. doi:10.1038/nature09159
- Groiss SJ, Wojtecki L, Südmeyer M, Schnitzler A. Review: Deep brain stimulation in Parkinson's disease. Therapeutic Advances in Neurological Disorders. 2009;2(6):379-391. doi:10.1177/1756285609339382
- Parker KL, Kim Y, Alberico SL, Emmons EB, Narayanan NS. Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease. Dialogues in Clinical Neuroscience. 2016;18(1):99-107. doi:10.31887/dcns.2016.18.1/kparker
- Ingles-Prieto A, Furthmann N, Crossman SH, et al. Optogenetic delivery of trophic signals in a genetic model of Parkinson's disease. PLOS Genetics. 2021;17(4):e1009479. doi:10.1371/journal.pgen.1009479
- Di Bisceglie Caballero S, Ces A, Liberge M, Ambroggi F, Amalric M, Ouagazzal AM. Optogenetic globus pallidus stimulation improves motor deficits in 6-Hydroxydopamine-Lesioned mouse model of Parkinson's Disease. International Journal of Molecular Sciences. 2023;24(9):7935. doi:10.3390/ijms24097935
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171700190