Warianty tytułu
Języki publikacji
Abstrakty
Friction stir welding (FSW) is gaining traction as a preferred technique due to its potential to reduce heat input and enhance the mechanical properties of welded joints. However, the path to commercializing FSW for flange joints is not without challenges. Two primary obstacles are the complexity of the welding path and the intricate design requirements for the fixtures. These factors contribute to the difficulty in determining the ideal weld settings and process parameters, which are critical for achieving optimal results. The current study addresses these challenges by applying FSW to flange joints using custom-engineered fixtures. These fixtures are meticulously designed to hold the pipes and plates securely during the welding process. The focus of the research is on optimizing the multi-performance characteristics of FSW for Al 6063 flange joints through the hybrid Grey-based Taguchi method. The integrity of the weld joint is assessed by examining various mechanical properties within the weld zone, including rotation speed, travel speed, tool profile, and shoulder diameter. The study identifies the optimal parameter settings for the FSW process: a rotation speed of 3000 rpm, a travel speed of 3 mm/min2, a shoulder diameter of 20 mm, and a conical tool profile. Under these ideal conditions, the welded material exhibited a tensile strength of 170.169 MPa, a hardness of 63.7709 HV, and a corrosion rate of 0.022 mm/year. These findings underscore the effectiveness of the optimized FSW process in producing robust and durable flange joints(original abstract)
Słowa kluczowe
Czasopismo
Rocznik
Tom
Numer
Strony
42-56
Opis fizyczny
Twórcy
autor
- Department of Mechanical Engineering, Benha Faculty of Engineering, Benha University, Benha
autor
- Department of Production Engineering and Mechanical Design, Faculty of Engineering, Tanta University, Tanta, Egypt
Bibliografia
- Anandan, B., and Manikandan, M. (2023). Machine learning approach with various regression models for predicting the ultimate tensile strength of the friction stir welded AA 2050-T8 joints by the K-Fold crossvalidation method. Materials Today Communications, 34, 2352-4928, DOI: 10.1016/j.mtcomm.2022.105286.
- Argesi, B., Shamsipur, A., and Mirsalehi, E. (2021). Preparation of bimetallic nano-composite by dissimilar friction stir welding of copper to aluminum alloy. Transactions of Nonferrous Metals Society of China, 31(5), 1363-1380, DOI: 10.1016/S1003-6326(21)65583-8.
- Benakis, M., Costanzo, D., and Patran, A., (2020). Current mode effects on weld bead geometry and heat affected zone in pulsed wire arc additive manufacturing of Ti-6-4 and inconel 718. Journal of Manufacturing Processes, Elsevier Ltd, 60, 61-74, DOI: 10.1016/j.jmapro.2020.10.018.
- Chen, B., Chen, K., Hao, W., Liang, Z., Yao, J., Zhang, L., and Shan, A. (2015). Friction stir welding of smalldimension Al3003 and pure Cu pipes. Journal of Materials Processing Technology, 233, 48-57, DOI: 10.1016/j.jmatprotec.2015.03.044.
- Chinmay, S., Bhupesh, G., and Patel, V. (2015). Optimization of FSW Process Parameters for AlSiCp PRMMC Using ANOVA. Materials Today: Proceedings, 2(4-5), 2504-2511, DOI: 10.1016/j.matpr.2015.07.195.
- Chnoor, M., and Rahman, T.A. (2019). Dragonfly algorithm and its applications in applied science survey. Computational Intelligence and Neuroscience, Article ID 9293617, DOI: 10.1155/2019/9293617.
- Gul, M., Kalam, M.A., Mujtaba, M.A., Alam, S., Bashir,M.N., Javed, I., Aziz, U., Farid,M.R., Hassan, T., and Iqbal, S. (2020). Multi-objective-optimization of process parameters of industrial-gas-turbine fueled with natural gas by using grey-taguchi and ANN methods for better performance. Elsevier Ltd., 6, 2394-2402, DOI: 10.1016/j.egyr.2020.08.002.
- Hu, W., Zhongwei, M., Chen, M., and Jiang, W., (2020). Improving the mechanical property of dissimilar Al/Mg hybrid friction stir welding joint by PIO-ANN. Journal of Materials Science & Technology, 53, 41-52, DOI: 10.1016/j.jmst.2020.01.069.
- Huang, L., Hua, X., Wu, D., Jiang, Z., and Ye, Y. (2019). study on the metallurgical and mechanical properties of a GMAW-welded Al-Mg alloy with different plate thicknesses. Journal of Manufacturing Processes, 37, 438-445, DOI: 10.1016/j.jmapro.2018.12.017.
- Ingle, A.I., Shashikala, H.D., Narayanan, M.K., Dubeto, M.T., and Gupta, S. (2023). Optimization and analysis of process parameters of melt quenching technique for multiple performances of rare earth doped barium borate glass synthesis using Taguchi's design and grey relational approach. Results in Engineering, 17, Article 100784, DOI: 10.1016/j.rineng. 2022.100784.
- Ismail, A., Awang, M., and Samsudin, H.S. (2015). The Influence of Process Parameters on the Temperature Profile of Friction Stir Welded Aluminium Alloy 6063-T6 Pipe Butt Join. In: Öchsner, A., Altenbach, H. (Eds.) Mechanical and Materials Engineering of Modern Structure and Component Design. Advanced Structured Materials (pp., DOI: 10.1007/978-3-319- 19443-1_19), Cham: Springer.
- Kamal Babu, K., Panneerselvam, K., Sathiya, P., Noorul Haq, A., Sundarrajan, S., Mastanaiah, P. and Srinivasa Murthy, C.V. (2018). Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm. The International Journal of Advanced Manufacturing Technology, 94, 3117-3129 https://doi.org/10.1007/s00170-017-0897-6
- Karuppanan, K., Panneerselvam, K., Sathiya, P., and Noorul Haq, A. (2018). Parameter optimization of friction stir welding of cryorolled AA2219 alloy using artificial neural network modeling with genetic algorithm. The International Journal of Advanced Manufacturing Technology, 84, 3117-3129, DOI: 10.1007/s00170-017- 0897-6.
- Khalkhali, A., Sarmadi, M., and Sarikhani, E. (2017). Investigation on the best process criteria for lap joint friction stir welding of AA1100 aluminum alloy via TAGUCHI technique and ANOVA. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 231, 329-342, DOI: 10.1177/0954408916665651
- Kothapalli, V.A., Ratnam, C.H., Lakshmi, K., and Kumar, S. (17-19 August 2017). Application of Dragonfly algorithm for optimal performance analysis of process parameters in turn-mill operations- A case study. IOP Conference Series: Materials Science and Engineering, Volume 310, International Conference on Advances in Materials and Manufacturing Applications (IConAMMA-2017), 310. Bengaluru, India.
- Krishnan, M., and Subramaniam, S. (2018). Multiresponse optimization of friction stir corner welding of dissimilar thickness AA5086 and AA6061 aluminum alloys by Taguchi grey relational analysis. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(11), 3733-3742, DOI: 10.1177/0954406218806032.
- Krishnan, M.M., Maniraj, J., Deepak, R., and Anganan, K. (2018). Prediction of optimum welding parameters for FSW of aluminium alloys AA6063 and A319 using RSM and ANN. Materials Today Proceedings, 5, 716-723, DOI: 10.1016/j.matpr.2017.11.138.
- Kota Sankara, N., Koka Naga Sai, S., Kothapalli, A.V. (2017). Investigation on Dry Sliding Wear Behavior of Nylon66/GnP Nano-composite, Journal of The Institution of Engineers, 98(1), 71-78.
- Lakshminarayanan, A.K., and Balasubramanian, V. (2009). Comparison of RSM with ANN in predicting tensile strength of friction stir welded AA7039 aluminium alloy joints. Transactions of Nonferrous Metals Society of China, 19(1), 9-18, DOI: 10.1016/S1003- 6326(08)60221-6.
- Lakshminarayanan, A.K., and Balasubramanian, V. (2013). Process Parameters Optimisation for Friction Stir Welding of AISI 409M Grade Ferritic Stainless Steel. Experimental Techniques, 37, 59-73, DOI: 10.1111/j.1747-1567.2011.00802.x.
- Lee, S.H., Lee, D.M., and Lee, K.S. (2016). Process optimisation and microstructural evolution of friction stir spot-welded Al6061 joints. Materials Science and Technology, 33(6), 719-730, DOI: 10.1080/ 02670836.2016.123066.
- Meraihi, Y., Ramdane-Cherif, A., Acheli, D. and Mahseur, M. (2020). Dragonfly algorithm: a comprehensive review and applications. Neural Computing and Application, 32, 16625-16646. DOI: 10.1007/s00521- 020-04866-y.
- Mohammad, W.D., Daniel, J.H., Warren, L., Muhammad, A.W., Ayman M., (2015). Prediction of tensile strength of friction stir weld joints with adaptive neuro-fuzzy inference system (ANFIS) and neural network. Materials & Design, 92, 288-299, DOI: 10.1016/j.matdes.2015.12.005.
- Prasad, D., and Namala, K. (2018). Process Parameters Optimization in Friction Stir Welding by ANOVA. Materials Today: Proceedings, 5, 4824-4831, DOI: 10.1016/j.matpr.2017.12.057.
- Prasanthi Kumari, N., Hyma Laksmi, T.V., Bhavani, D., Mohana Durga, G. (2018). Weighted Transformation and Wavelet Transforms-Based Image Resolution and Contrast Enhancement. In: Singh, R., Choudhury, S., Gehlot, A. (eds.) Intelligent Communication, Control and Devices. Advances in Intelligent Systems and Computing, vol. 624. Springer, Singapore, DOI: 10.1007/978-981-10-5903-2_179.
- Sabry, I., and Zaafarani, N.(2017). Dry and underwater friction stir welding of aa6061 pipes - a comparative study. IOP Conference Series Materials Science and Engineering, 1091(1)-012032, DOI: 10.1088/1757- 899X/1091/1/012032. Egypt.
- Sabry, I., and Moura, A.H.I. (2021a). Friction Stir Welding Process Parameters Optimization Through Hybrid Multi-Criteria Decision-Making Approach. International Review on Modelling and Simulations, 14(1), 32-39, DOI: 10.15866/iremos.v14i1.19537.
- Sabry, I., and Moura, A.H.I. (2021b). Study on Underwater Friction Stir Welded AA 2024-T3 Pipes Using Machine Learning Algorithms. ASME 2021 International Mechanical Engineering Congress and Expositio, DOI: 10.1115/IMECE2021-71378. Online - ASME. Sabry, I., Thekkuden, D.T., and Mourad, A. (2022a).
- TOPSIS - GRA Approach to Optimize Friction Stir Welded Aluminum 6061 Pipes Parameters. Advances in Science and Engineering Technology International Conferences (ASET), pp. 1-6, DOI: 10.1109/ASET53988.2022.9734821. Dubai, United Arab Emirates.
- Sabry, I., Thekkuden D.T., Mourad A.-H.I., and Khan S.H. (2022b). Optimization of Tungsten Inert Gas Welding Parameters using Grey Relational Analysis for joining AA 6082 Pipes. Advances in Science and Engineering Technology International Conferences (ASET), pp. 1-6, DOI: 10.1109/ASET53988. 2022.9735100. Dubai, United Arab Emirates.
- Sabry, I., Mourad, AH.I., Alkhedhe, M., Qazani, M.R.C., and El-Araby, A. (2023a). A comparative study of multiple-criteria decision-making methods for selecting the best process parameters for friction stir welded Al 6061 alloy. Welding International, 37, 626-642, DOI: 10.1080/09507116.2023.2270896.
- Sharma, N., Khan, Z.A., Siddiquee, A.N., and Wahid, M. (2019). Multi-response optimization of friction stir welding process parameters for dissimilar joining of Al6101 to pure copper using standard deviation based TOPSIS method. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(18), 6473-6482, DOI: 10.1177/0954406219858628.
- Taher, A. Shehabeldeen, Jianxin, Z., Xu, S., Yajun, Y., and Xiaoyuan, J. (2019). Comparison of RSM with ANFIS in predicting tensile strength of dissimilar friction stir welded AA2024-AA5083 aluminium alloys. Procedia Manufacturing, 37, 555-562, DOI: 10.1016/j.promfg.2019.12.088.
- Teimouri, R., and Baseri, H. (2015). Forward and backward predictions of the friction stir welding parameters using fuzzy-artificial bee colony-imperialist competitive algorithm systems. Journal of Intelligent Manufacturing, 26, 307-319, DOI: 10.1007/s10845- 013-0784-4.
- Thekkuden, D.T., and Mourad, A. (2019). Investigation of feed-forward back propagation ANN using voltage signals for the early prediction of the welding defect. SN Applied Science, 1, DOI: 10.1007/s42452-019-1660-4.
- Trueba, L., Torres, M.A., and Johannes (2018). Process optimization in the self-reacting friction stir welding of aluminum 6061-T6. International Journal of Material Forming, 11, 559-57, DOI: 10.1007/s12289-017-1365-4.
- Vijayan, S., Raju, R., Subbaiah, K., Sridhar, N., and Rao, S.R.K. (2010). Friction stir welding of Al-Mg alloy optimization of process parameters using Taguchi method. Experimental Techniques, 34, 37-44, DOI: 10.1111/j.1747-1567.2009.00563.x.
- Wakchaure, K.N., Thakur, A.G., and Gadakh, V. (2018). Multi-Objective Optimization of Friction Stir Welding of Aluminium Alloy 6082-T6 Using hybrid Taguchi-Grey Relation Analysis- ANN Method. Materials Today: Proceedings, 5(2), 7150-7159, DOI: 10.1016/j.matpr.2017.11.380.
- Xiaocong, H., Fengshou, G., and Andrew, B. (2014). A review of numerical analysis of friction stir welding. Progress in Materials Science, 65, 1-66, DOI: 10.1016/j.pmatsci.2014.03.003.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171693605