Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 184 Współczesne zarządzanie = Contemporary Management | 425-440
Tytuł artykułu

Application of Association Rules in Filling Gaps in Survey Data

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: Surveys are one of the most popular data acquisition tools used in economics and management sciences. The results of surveys provide a lot of information and allow for fast response to changes in the socio-economic environment. Unfortunately, in many cases there are missing data in surveys, which can be caused by various reasons. Design/methodology/approach: One of the most common reasons are the respondent's reluctance to provide an answer or distraction while completing the questionnaire. This study presents a novel approach for filling gaps in the survey data. Findings: The main idea of the proposed method is to use the associations between the answers to given sets of questions for different respondents. Originality/value: The obtained association rules were used as input variables and a number of well-known machine learning tools were applied for filling data gaps. The results of numerical experiments confirmed a very high performance of the proposed novel method for filling data gaps in surveys. (original abstract)
Twórcy
  • Lublin University of Technology
  • Lublin University of Technology
  • University of Szczecin
  • Catholic University of Lublin
Bibliografia
  • 1. Bazeley, P. (2015). Writing up multimethod and mixed methods research for diverse audiences. In: S.S. Hesse-Biber, R.B. Johnson (Eds.), The Oxford Handbook of Multimethod and Mixed Methods Research Inquiry (pp. 296-313). Oxford University Press.
  • 2. Bennett, A., Elman, C. (2006). Qualitative research: Recent developments in case study methods. Annu. Rev. Polit. Sci., vol. 9, pp. 455476.
  • 3. Berthold, M.R. (2003). Mixed fuzzy rule formation. Int. J. Approx. Reason., vol. 32, no. 2-3, pp. 67-84.
  • 4. Bertsimas, D., Pawlowski, C., Zhuo, Y.D. (2017). From predictive methods to missing data imputation: an optimization approach. J. Mach. Learn. Res., vol. 18, no. 1, pp. 7133-7171.
  • 5. Boumans, M., Davis, J.B. (2015). Economic methodology: Understanding economics as a science. Macmillan International Higher Education.
  • 6. Burke, C.M., Morley, M.J. (2016). On temporary organizations: A review, synthesis and research agenda. Hum. Relat., vol. 69, no. 6, pp. 1235-1258.
  • 7. Coppersmith, D., Hong, S.J., Hosking, J.R. (1999). Partitioning nominal attributes in decision trees. Data Min. Knowl. Discov., vol. 3, no. 2, pp.197-217.
  • 8. Denscombe, M. (2008). Communities of practice: A research paradigm for the mixed methods approach. J. Mix. Methods Res., vol. 2, no. 3, pp. 270-283.
  • 9. Düppe, T. (2011). How economic methodology became a separate science. J. Econ. Methodol., vol. 18, no. 2, pp. 163-176.
  • 10. Eriksson, P., Kovalainen, A. (2015). Qualitative methods in business research: A practical guide to social research. Sage.
  • 11. Farmer, J.D. (2013). Hypotheses non fingo: Problems with the scientific method in economics. J. Econ. Methodol., vol. 20, no. 4, pp. 377-385.
  • 12. Ferreira, F.N.H., Cova, B., Spencer, R., Proença, J.F. (2017). A phase model for solution relationship development: a case study in the aerospace industry. J. Bus. Ind. Mark.
  • 13. Friedman, J.H. (2002). Stochastic gradient boosting. Comput. Stat. Data Anal., vol. 38, no. 4, pp. 367-378.
  • 14. Gerring, J. (2006). Case study research: Principles and practices. Cambridge University Press.
  • 15. Gibson, C.B. (2017). Elaboration, generalization, triangulation, and interpretation: On enhancing the value of mixed method research. Organ. Res. Methods, vol. 20, no. 2, pp. 193-223.
  • 16. Greene, J.C., Caracelli, V.J., Graham, W.F. (1989). Toward a conceptual framework for mixed-method evaluation designs. Educ. Eval. Policy Anal., vol. 11, no. 3, pp. 255-274.
  • 17. Hands, D.W. (2004). Pragmatism, knowledge, and economic science: Deweyan pragmatic philosophy and contemporary economic methodology. In: E.L. Khalil (Ed.), Pragmatism, Knowledge, and Economic Science (pp. 255-270). London/New York: Routledge.
  • 18. Harrison, R.L., Reilly, T.M., Creswell, J.W. (2020). Methodological rigor in mixed methods: An application in management studies. J. Mix. Methods Res., vol. 14, no. 4, pp. 473-495.
  • 19. Hong, Q.N., Pluye, P. (2019). A conceptual framework for critical appraisal in systematic mixed studies reviews. J. Mix. Methods Res., vol. 13, no. 4, pp. 446-460.
  • 20. Jap, S.D., Anderson, E. (2007). Testing a life-cycle theory of cooperative interorganizational relationships: Movement across stages and performance. Manage Sci., vol. 53, no. 2, pp. 260-275.
  • 21. Jerez, J.M., Molina, I., García-Laencina, P.J., Alba, E., Ribelles, N., Martín, M., Franco, L. (2010). Missing data imputation using statistical and machine learning methods in a real breast cancer problem. Artif. Intell. Med., vol. 50, no. 2, pp. 105-115.
  • 22. Johnson, R.B., Onwuegbuzie, A.J. (2004). Mixed methods research: A research paradigm whose time has come. Educ. Res., vol. 33, no. 7, pp. 14-26.
  • 23. Kam, B.H., Lai, M.K. (2018). Buyer-supplier exchange relationship: How do exchange partners behave across the relationship life-cycle? Transp. Res. E: Logist. Transp. Rev., vol. 113, pp. 239-257.
  • 24. Karczmarek, P., Kiersztyn, A., Pedrycz, W., Al, E. (2020). K-means-based isolation forest. Knowl.-Based Syst., vol. 195, p. 105659.
  • 25. Keizer, P. (2015). Multidisciplinary Economics: A Methodological Account. Oxford: University Press.
  • 26. Kiersztyn, A., Karczmarek, P., Kiersztyn, K., Pedrycz, W. (2020). The concept of detecting and classifying anomalies in large data sets on a basis of information granules. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), pp. 1-7.
  • 27. Kiersztyn, A., Karczmarek, P., Kiersztyn, K., Pedrycz, W. (2021). Detection and classification of anomalies in large data sets on the basis of information granules. IEEE Trans. Fuzzy Syst.
  • 28. Kiersztyn, A., Karczmarek, P., Łopucki, R., Pedrycz, W., Al, E., Kitowski, I., Zbyryt, A. (2020). Data imputation in related time series using fuzzy set-based techniques. 2020 IEEE international conference on fuzzy systems (FUZZ-IEEE). IEEE, pp. 1-8.
  • 29. Kiersztyn, A., Kiersztyn, K., Karczmarek, P., Kaminski, M., Kitowski, I., Zbyryt, A., Łopucki, R., Pitucha, G., Pedrycz, W. (2021). Classification of complex ecological objects with the use of information granules. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 1-6.
  • 30. Kiersztyn, A., Łopucki, R., Kiersztyn, K., Karczmarek, P., Powroźnik, P., Czerwiński, D., Pedrycz, W. (2021). A comprehensive analysis of the impact of selecting the training set elements on the correctness of classification for highly variable ecological data. 2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, pp. 1-6.
  • 31. Kiersztyn, K. (2021). Intuitively adaptable outlier detector. Stat. Anal. Data Min.: ASA Data Sci. J., pp. 1-17.
  • 32. Lee, C.-J., Johnsen, R.E. (2012). Asymmetric customer-supplier relationship development in Taiwanese electronics firms. Ind. Mark. Manag., vol. 41, no. 4, pp. 692-705.
  • 33. Maciaszczyk, M., Makieła, Z., Miśkiewicz, R. (2023). Industry 5.0: A New Reality, New Challenges. In: A. Rzepka (Ed.), Innovation in the Digital Economy New Approaches to Management for Industry 5.0 (pp. 51-61). London/New York: Routledge. ISBN 978-1-03-246993-5.
  • 34. Mäki, U. (2009). The methodology of positive economics: Reflections on the Milton Friedman legacy. Cambridge University Press.
  • 35. Maylor, H., Turkulainen, V. (2019). The concept of organisational projectification: past, present and beyond? Int. J. Manag. Proj. Bus.
  • 36. Miśkiewicz, R. (2020). Efficiency of Electricity Production Technology from Post-Process Gas Heat: Ecological, Economic and Social Benefits. Energies, 13, 6106.
  • 37. Miśkiewicz, R., Rzepka, A., Borowiecki, R., Olesińki, Z. (2021). Energy efficiency in the industry 4.0 era: Attributes of teal organisations. Energies, vol. 14, no. 20, p. 6776.
  • 38. Miśkiewicz, R., Rzepka, A., Borowiecki, R., Olesińki, Z. (2021). Energy Efficiency in the Industry 4.0 Era: Attributes of Teal Organisations. Energies, 14, 6776.
  • 39. Miterev, M., Mancini, M., Turner, R. (2017). Towards a design for the project-based organization. Int. J. Proj. Manag., vol. 35, no. 3, pp. 479-491.
  • 40. Molina-Azorín, J.F. (2011). The use and added value of mixed methods in management research. J. Mix. Methods Res., vol. 5, no. 1, pp. 7-24.
  • 41. Molina-Azorín, J.F. (2012). Mixed methods research in strategic management: Impact and applications. Organ. Res. Methods, vol. 15, no. 1, pp. 33-56.
  • 42. Molina-Azorín, J.F., López-Gamero, M.D. (2016). Mixed methods studies in environmental management research: Prevalence, purposes and designs. Bus. Strategy Environ., vol. 25, no. 2, pp. 134-148.
  • 43. Molina-Azorín, J.F., López-Gamero, M.D., Pereira-Moliner, J., Pertusa-Ortega, E.M. (2012). Mixed methods studies in entrepreneurship research: Applications and contributions. Entrepreneurship Reg. Dev., vol. 24, no. 5-6, pp. 425-456.
  • 44. Pal, M. (2005). Random forest classifier for remote sensing classification. Int. J. Remote Sens., vol. 26, no. 1, pp. 217-222.
  • 45. Restuccia, R., Legoux, R. (2019). B2b relationships on the fast track: An empirical investigation into the outcomes of solution provision. Ind. Mark. Manag., vol. 76, pp. 203-213.
  • 46. Rzepka, A. (2020). Turkusowe organizacje w Gruzji. In: Z. Olesiński (Ed.), Składniki turkusowych organizacji (pp. 293-306). Warszawa: Difin.
  • 47. Rzepka, A. (2021). Teal organizations in times of Industry 4.0. Eur. Res. Stud. J., vol. 24, pp. 60-71.
  • 48. Rzepka, A. (2022). Self-management, Entrepreneurial Culture, and Economy 4.0: a Contemporary Approach to Organizational Theory Development. London/New York: Routledge.
  • 49. Rzepka, A. (2023). Innovation in the Digital Economy New Approaches to Management for Industry 5.0. London/New York: Routledge.
  • 50. Samimi, E., Sydow, J. (2021). Human resource management in project based organizations: revisiting the permanency assumption. Int. J. Hum. Resour. Manag., vol. 32, no. 1, pp. 49-83.
  • 51. Whitehead, T.M., Irwin, B.W., Hunt, P., Segall, M.D., Conduit, G.J. (2019). Imputation of assay bioactivity data using deep learning. J. Chem. Inf. Model., vol. 59, no. 3, pp. 1197-1204.
  • 52. Williamson, O.E. (2009). Pragmatic methodology: a sketch, with applications to transaction cost economics. J. Econ. Methodol., vol. 16, no. 2, pp. 145-157.
  • 53. Zhang, Z. (2016). Missing data imputation: focusing on single imputation. Ann. Transl. Med., vol. 4, no. 1.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171690832
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.