Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | z. 184 Współczesne zarządzanie = Contemporary Management | 251-273
Tytuł artykułu

Enabling Digital Transformation and Knowledge Migration: the Impact of NLP, AI, and ML in Mobile Applications

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The study intends to draw attention to the limitations of human complex values, the absence of user-facing connectivity and interoperability among mobile apps, and how these factors have slowed down the pace of digital transformation. Design/methodology/approach: Through Google Play Store download rates, the study tracked consumer interactions with digital transformation through mobile apps. Based on their categories, a total of seventy-eight (78) mobile apps were analyzed, contrasted, and assessed. Each download rate was interpreted as the user's acquisition of the integrated NLP, AI, and ML algorithms in mobile app system settings. Findings: The findings demonstrated low user involvement in NLP, AI, and ML as tools of knowledge migration from mobile applications to digital transformation compared to the global population, and none of the 78 mobile apps have interconnection and interoperability with other apps. Research limitations/implications: The study draw attention to the limitations of human complex values, the absence of (study) user-facing connectivity and interoperability among mobile apps, and how these factors have slowed down the pace of digital transformation. In order to advance the pace of digital transformation, there must be an active presence of non-user-facing connectivity and interoperability issues among mobile apps. Practical implications: A wealth of research has shown that because people are complex, digital transformation has not succeeded and instead relies on human values and interactions. Furthermore, users' access and operational scope are restricted by the absence of connectivity and compatibility among mobile apps, resulting in an excessively dispersed distribution of knowledge and data. Social implications: The ability to continuously drive improvements in the global economy from institutionalization to business and healthcare is made possible by contemporary instruments such as digital transformation and knowledge transfer. Emerging mobile applications that organize events, manage lectures, and transmit knowledge, human thoughts, and sentiments are the result of natural language processing, artificial intelligence, and machine learning. These technologies have revolutionized the traditional documentary into a digitalized system. Originality/value. The study revealed that digital transformation has not achieved the anticipated transformation due to low user engagement and a lack of interconnectivity among mobile apps. As a result, knowledge migration has not been properly disseminated over the world. (original abstract)
Twórcy
  • AGH University of Science and Technology
autor
  • AGH University of Science and Technology
  • AGH University of Science and Technology
  • AGH University of Science and Technology
  • Leeds Trinity University, United Kingdom
  • Buena Vista University, USA
Bibliografia
  • 1. AlDhaheri, R.A., Sulaiman, I.F., Matrooshi, H.A.A. (2022, April). The Relationship Between Digital Transformation and Quality of UAE Government Services Through Machine Learning. The 8th International Conference on Advanced Machine Learning and Technologies and Applications (AMLTA2022) (pp. 412-421). Cham: Springer International Publishing.
  • 2. Alekseevna, T.E., Yakovlevna, R.E., Vasilievich, R.D. (2017, October). The concept of digital transformation of the society. Tenth International Conference Management of Large-Scale System Development (MLSD).
  • 3. AlGothami, S.S., Saeed, S. (2021). Digital Transformation and Usability: User Acceptance of Tawakkalna Application during COVID-19 in Saudi Arabia. Pandemic, Lockdown, and Digital Transformation: Challenges and Opportunities for Public Administration, NGOs, and Businesses, 95-109.
  • 4. Banskota, S., Healy, M., Goldberg, E.M. (2020). 15 smartphone apps for older adults to use while in isolation during the COVID-19 pandemic. Western Journal of Emergency Medicine, 21(3), 514.
  • 5. Berman, S.J. (2012). Digital transformation: opportunities to create new business models. Strategy & leadership, 40(2), 16-24.
  • 6. Bilgili, B., Koc, E. (2021). Digital transformation in tourism. In: Emerging transformations in tourism and hospitality (pp. 53-65). Routledge.
  • 7. Brill, E. (1995). Transformation-based error-driven learning and natural language processing: A case study in part-of-speech tagging. Computational linguistics, 21(4), 543-565.
  • 8. Cho, W., Fan, M., Yoo, B., Zhang, H. (2021). Special issue on digital transformation: challenges and opportunities. Information Systems and e-Business Management, 19(2), 387-388.
  • 9. Christou, P., Hadjielias, E., Simillidou, A., Kvasova, O. (2023). The use of intelligent automation as a form of digital transformation in tourism: Towards a hybrid experiential offering. Journal of Business Research, 155, 113415.
  • 10. Çınar, Z.M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., Safaei, B. (2020). Machine learning in predictive maintenance towards sustainable smart manufacturing in industry 4.0. Sustainability, 12(19), 8211.
  • 11. Cuesta, C., Ruesta, M., Tuesta, D., Urbiola, P. (2015). The digital transformation of the banking industry. BBVA Research, 1, 1-10.
  • 12. Di Giuda, G.M., Locatelli, M., Schievano, M., Pellegrini, L., Pattini, G., Giana, P.E., Seghezzi, E. (2020). Natural language processing for information and project management. Digital transformation of the design, construction and management processes of the built environment, 95-102.
  • 13. Diaz, R., Smith, K., Bertagna, S., Bucci, V. (2023). Digital Transformation, Applications, and Vulnerabilities in Maritime and Shipbuilding Ecosystems. Procedia Computer Science, 217, 1396-1405.
  • 14. Doukidis, G., Spinellis, D., Ebert, C. (2020). Digital transformation-a primer for practitioners. IEEE Software, 37(5), 13-21.
  • 15. Ebert, C., Duarte, C.H.C. (2018). Digital transformation. IEEE Softw., 35(4), 16-21.
  • 16. Feliciano-Cestero, M.M., Ameen, N., Kotabe, M., Paul, J., Signoret, M. (2023). Is digital transformation threatened? A systematic literature review of the factors influencing firms' digital transformation and internationalization. Journal of Business Research, 157, 113546.
  • 17. Gens, F. (2013). The 3rd platform: Enabling digital transformation. USA: IDC, 209.
  • 18. Gong, C., Ribiere, V. (2021). Developing a unified definition of digital transformation. Technovation, 102, 102217.
  • 19. Guarda, T., Balseca, J., García, K., González, J., Yagual, F., Castillo-Beltran, H. (2021, March). Digital transformation trends and innovation. IOP Conference Series: Materials Science and Engineering, Vol. 1099, No. 1. IOP Publishing, p. 012062.
  • 20. Heilig, L., Schwarze, S., Voß, S. (2017). An analysis of digital transformation in the history and future of modern ports.
  • 21. Ho, S.C., Hsu, Y.P. (2022). Paving the way for digital transformation: Investigate Customer experiences of using mobile apps. Pacific Asia Journal of the Association for Information Systems, 14(1), 3.
  • 22. Holzinger, A., Keiblinger, K., Holub, P., Zatloukal, K., Müller, H. (2023). AI for life: Trends in artificial intelligence for biotechnology. New Biotechnology, 74, 16-24.
  • 23. Islam, R., Islam, R., Mazumder, T. (2010). Mobile application and its global impact. International Journal of Engineering & Technology, 10(6), 72-78.
  • 24. Kalyanathaya, K.P., Akila, D., Rajesh, P. (2019). Advances in natural language processing-a survey of current research trends, development tools and industry applications. International Journal of Recent Technology and Engineering, 7(5C), 199-202.
  • 25. Kasztelnik, K., Delanoy, N. (2020). Data analytics and social media as the innovative business decision model with natural language processing. Journal of Business and Accounting, 13(1), 136-153.
  • 26. Khoa, B.T., Anh, H.N., Ly, N.M., Truong, N.X. (2022). A Study on Buying Attitude on Facebook in the Digital Transformation Era: A Machine Learning Application. In: Data Engineering for Smart Systems: Proceedings of SSIC 2021 (pp. 497-510). Singapore: Springer.
  • 27. Liébana-Cabanillas, F., García-Maroto, I., Muñoz-Leiva, F., Ramos-de-Luna, I. (2020). Mobile payment adoption in the age of digital transformation: The case of Apple Pay. Sustainability, 12(13), 5443.
  • 28. Locatelli, M., Seghezzi, E., Pellegrini, L., Tagliabue, L.C., Di Giuda, G.M. (2021). Exploring natural language processing in construction and integration with building information modeling: A scientometric analysis. Buildings, 11(12), 583.
  • 29. Malamousi, K., Delibasis, K., Allcock, B., Kamnis, S. (2022). Digital transformation of thermal and cold spray processes with emphasis on machine learning. Surface and Coatings Technology, 433, 128138.
  • 30. Möller, D.P. (2023). Cybersecurity in digital transformation. In: Guide to Cybersecurity in Digital Transformation: Trends, Methods, Technologies, Applications and Best Practices (pp. 1-70). Cham: Springer Nature Switzerland.
  • 31. Morakanyane, R., Grace, A.A., O'reilly, P. (2017). Conceptualizing digital transformation in business organizations: A systematic review of literature.
  • 32. Müller, M., Alexandi, E., Metternich, J. (2021). Digital shop floor management enhanced by natural language processing. Procedia CIRP, 96, 21-26.
  • 33. Nguyen Duc, A., Chirumamilla, A. (2019). Identifying security risks of digital transformation-an engineering perspective. In: Digital Transformation for a Sustainable Society in the 21st Century. 18th IFIP WG 6.11 Conference on e-Business, e-Services, and e-Society, I3E 2019, Trondheim, Norway, September 18-20, 2019, Proceedings, 18 (pp. 677-688). Springer International Publishing.
  • 34. Park, H.S., Jeong, S., Chung, H.Y., Soh, J.Y., Hyun, Y.H., Bang, S.H., Kim, H.S. (2022). Use of video-based telehealth services using a mobile app for workers in underserved areas during the COVID-19 pandemic: A prospective observational study. International Journal of Medical Informatics, 166, 104844.
  • 35. Perazzoli, S., de Santana Neto, J.P., de Menezes, M.J.M.B. (2022). Systematic analysis of constellation-based techniques by using Natural Language Processing. Technological Forecasting and Social Change, 179, 121674.
  • 36. Phalake, V.S., Joshi, S.D. (2021). Low code development platform for digital transformation. In: Information and Communication Technology for Competitive Strategies (ICTCS 2020) Intelligent Strategies for ICT (pp. 689-697). Singapore: Springer.
  • 37. Pihir, I., Tomičić-Pupek, K., Tomičić Furjan, M. (2019). Digital transformation playground-literature review and framework of concepts. Journal of Information and Organizational Sciences, 43(1), 33-48.
  • 38. Ramkumar, G., Othman, B., Malviya, B., Mohamma, A.J., Narayana, M.S., Verma, D. (2022, April). A Conceptual Analysis on the Impact of Machine Learning Towards on Digital Marketing Transformation. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE, pp. 2274-2278.
  • 39. Sahija, D. (2021). Critical review of machine learning integration with augmented reality for discrete manufacturing. Independent Researcher and Enterprise Solution Manager in Leading Digital Transformation Agency, Plano, USA.
  • 40. Sairete, A., Balfagih, Z., Brahimi, T., Mousa, M.E.A., Lytras, M., Visvizi, A. (2021). Artificial Intelligence: Towards Digital Transformation of Life, Work, and Education. Procedia Computer Science, 194, 1-8.
  • 41. Sarirete, A., Balfagih, Z., Brahimi, T., Lytras, M.D., Visvizi, A. (2021). Artificial intelligence and machine learning research: towards digital transformation at a global scale. Journal of Ambient Intelligence and Humanized Computing, 1-3.
  • 42. Schallmo, D.R., Williams, C.A., Schallmo, D.R., Williams, C.A. (2018). History of digital transformation. Digital Transformation Now! Guiding the Successful Digitalization of Your Business Model, 3-8.
  • 43. Schwertner, K. (2017). Digital transformation of business. Trakia Journal of Sciences, 15(1), 388-393.
  • 44. Singh, B.P. (2018, December). Digital Transformation of library services in the Mobile World: The future trends. In: Publishing Technology and Future of Academia [referat na konferencji], pp. 335-49.
  • 45. Sousa, M.J., Rocha, Á. (2019). Digital learning: Developing skills for digital transformation of organizations. Future Generation Computer Systems, 91, 327-334.
  • 46. Tabrizi, B., Lam, E., Girard, K., Irvin, V. (2019). Digital transformation is not about technology. Harvard business review, 13(March), 1-6.
  • 47. Ventola, C.L. (2014). Mobile devices and apps for health care professionals: uses and benefits. Pharmacy and Therapeutics, 39(5), 356.
  • 48. Verina, N., Titko, J. (2019, May). Digital transformation: conceptual framework. Proc. of the Int. Scientific Conference "Contemporary Issues in Business, Management and Economics Engineering", pp. 9-10.
  • 49. von Rosing, M., Etzel, G. (2020). Introduction to the digital transformation lifecycle. CEUR Workshop Proceedings, Vol. 2574, No. 2018, pp. 92-99.
  • 50. Wu, T., Simonetto, D.A., Halamka, J.D., Shah, V.H. (2022). The digital transformation of hepatology: The patient is logged in. Hepatology, 75(3), 724-739.
  • 51. Yip, K.H.T., Lo, P., Ho, K.K., Chiu, D.K. (2021). Adoption of mobile library apps as learning tools in higher education: a tale between Hong Kong and Japan. Online Information Review, 45(2), 389-405.
  • 52. Zaharia, S.E., Pietreanu, C.V. (2018). Challenges in airport digital transformation. Transportation research procedia, 35, 90-99.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171690580
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.