Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 16 | 33-46
Tytuł artykułu

Risk Management in the Heating Industry

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The heating industry plays a very important role in countries with cold and tem-perate climates; together with the power industry, it determines the energy security of thesecountries. The aim of this article is to examine the risks that threaten the stability of heatingcompanies. The study is based on an analysis of the scientific literature and the macroeco-nomic environment as well as on interviews with employees from the heating industry. Thearticle identifies the risks and divides them into three groups: general economic, industry,and specific risks. A risk map was drawn, and a qualitative analysis of their impact wascarried out for the aforementioned companies. This map is a useful tool for making decisionsthat are related to risk management and ensuring the stability of the functioning of businessentities as well as gaining information for both government and local authorities in the searchfor effective ways to drive the sector's development.(original abstract)
Rocznik
Tom
16
Strony
33-46
Opis fizyczny
Twórcy
  • AGH University of Science and Technology Kraków, Poland
  • Cracow University of Technology, Poland
Bibliografia
  • Baca-Pogorzelska K. (2021). Polska importuje mniej węgla, ale nadal najwięcej z Rosji. https://biznesalert.pl/import- wegiel- polska- 2020- eurostat- rosja- energetyka/ [5.05.2021].
  • Bankier.pl. https://www.bankier.pl/mieszkaniowe/stopy- procentowe/wibor?rateDate=2021-08-24&rateChartType=6m [25.08.2021].
  • Biznes Insider (2018). W 2017 roku znacznie urósł import węgla, którego większość pochodzi z Rosji. https://businessinsider.com.pl/wiadomosci/import-wegla-w-2017-r-wzrost-o-60-proc/qpz2tlr [10.07.2018].
  • Chen Y., Wang J. & Lund P.D. (2020). Sustainability evaluation and sensitivity analysis of district heating systems coupled to geothermal and solar resources. Energy Conversion and Management, 220, art. no. 113084. doi: 10.1016/j.enconman.2020.113084.
  • Edling L. & Danks C. (2021). Supporting actors: The role of state policy and private programs in advancing local and renewable heating technology. Energy Policy, 153, art. no. 112266. doi: 10.1016/j.enpol.2021.112266.
  • Egging-Bratseth R., Kauko H., Knudsen B.R., Bakke S.A., Ettayebi A. & Haufe I.R. (2021). Seasonal storage and demand side management in district heating systems with demand uncertainty. Applied Energy, 285(100), art. no. 116392. doi: 10.1016/j.apenergy.2020.116392.
  • Hopkin P. (Ed.). (2017). Fundamentals of Risk Management. Understanding, Evaluating and Implementing Effective Risk Management. Kogan Page, London.
  • Lygnerud K. & Werner S. (2018). Risk assessment of industrial excess heat recovery in district heating systems. Energy, 151, pp. 430-441. doi: 10.1016/j.energy.2018.03.047.
  • Mirl N., Schmid F. & Spindler K. (2018). Reduction of the return temperature in district heating systems with an ammonia-water absorption heat pump. Case Studies in Thermal Engineering, 12, pp. 817-822. doi: 10.1016/j.csite.2018.10.010.
  • Nielsen S., Hansen K., Lund R. & Moreno D. (2020). Unconventional excess heat sources for district heating in a national energy system context. Energies, 13(19), art. no. 5068. doi: 10.3390/en13195068.
  • Rozporządzenie Ministra Klimatu z dnia 7 kwietnia 2020 r. w sprawie szczegółowych zasad kształtowania i kalkulacji taryf oraz rozliczeń z tytułu zaopatrzenia w ciepło (Dz.U., poz. 718).
  • Schüwer D. & Schneider C. (2018). Electrification of industrial process heat: long-term applications, potentials and impacts. ECEEE Industrial Summer Study Proceedings. Industrial Efficiency 2018, pp. 411-422.
  • Sorknæs P., Østergaard P.A., Thellufsen J.Z., Lund H., Nielsen S., Djørup S. & Sperling K. (2020). The benefits of 4th generation district heating in a 100% renewable energy system. Energy, 213, art. no. 119030. doi: 10.1016/j.energy.2020.119030.
  • Triebs M.S., Papadis E., Cramer H. & Tsatsaronis G. (2021). Landscape of district heating systems in Germany - Status quo and categorization. Energy Conversion and Management: X, 9, art. no. 100068. doi: 10.1016/j.ecmx.2020.100068.
  • Urząd Regulacji Energetyki (2022). Energetyka cieplna w liczbach - 2022. Urząd Regulacji Energetyki, Warszawa.
  • Wei W., Wang B., Gu H., Ni L. & Yao Y. (2021). Investigation on the regulating methods of air source heat pump system used for district heating: Considering the energy loss caused by frosting and on-off. Energy and Buildings, 235, art. no. 110731. doi: 10.1016/j.enbuild.2021.110731.
  • Zhang L., Li Y., Zhang H., Xu X., Yang Z. & Xu W. (2021). A review of the potential of district heating system in Northern China. Applied Thermal Engineering, 188, art. no. 116605. doi: 10.1016/j.applthermaleng.2021.116605
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171689472
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.