Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: Coke production is hindered by a number of serious environmental nuisances. It is also a capital- and cost-intensive production. Despite these complex production conditions, coke is regarded as a critical raw material due to its key importance in steel production worldwide and there are few circumstances nowadays that indicate a possibility of rapid change of the existing state of affairs. For these reasons, it is becoming extremely important in coke production to look for investment solutions that will enable the reduction of environmental hazards while at the same time rationalizing the economic outlays incurred in their implementation. Thus, the goal of this article is to present a methodology for evaluating the environmental effectiveness of investments in coking plants, making it possible to balance environmental and economic benefits. Design/methodology/approach: The research made use of an analysis of environmental hazards in process terms, an index for evaluating environmental effectiveness and rules for assessing compliance with the Best Available Techniques (BAT) conclusions. In order to verify the proposed methodology, a multi-variant analysis was used relating to selected pro- environmental investment projects. Findings: Against the background of previous analyses in this area, the considerations and research carried out are distinguished by the inclusion of a process approach to sources of emissions in coke production, rather than a point approach, and simultaneous consideration of environmental and economic criteria. Practical implications: The presented methodology can also be applied to coking plants without major difficulties and additional costs, which is an additional, application value added of the article. (original abstract)
Rocznik
Strony
153-171
Opis fizyczny
Twórcy
- Institute of Energy and Fuel Processing Technology, Zabrze
autor
- Silesian University of Technology, Poland
Bibliografia
- 1. Amodio, M., Andriani, E., Dambruoso Gde Gennaro, P.R., Di Gilio, G., Intini, M., Palmisani, J., Tutino, M. (2013). A monitoring strategy to assess the fugitive emission from a steel plant. Atmospheric Environment, 79, pp. 455-461.
- 2. Babich, A. (2021). Blast furnace injection for minimizing the coke rate and CO2 emissions. Ironmaking & Steelmaking, 48(6), pp. 728-741.
- 3. Bailey, N., Dong, G., Minton, J., Pryce, G. (2018). Reconsidering the Relationships Between Air Pollution and Deprivation. International Journal of Environmental Research and Public Health, 15(4), p. 629.
- 4. Blaschke, W., Ozga-Blaschke, U. (2015). Węgiel koksowy surowcem krytycznym w UE. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, No. 90, pp. 131-143.
- 5. Brizga, J., Jurušs, M., Šmite-Roķe, B. (2021). Impact of the environmental taxes on reduction of emission from transport in Latvia. Post-Communist Economies, doi:10.1080/14631377.2021.1965358.
- 6. Chen, Q., Taylor, D. (2018). Transboundary atmospheric pollution in Southeast Asia: current methods, limitations and future developments. Critical Reviews in Environmental Science and Technology, 48(16-18), pp. 997-1029.
- 7. Chornomaz, V., Gawron, M., Górska, D., Iurkova, M., Jędrzejczak, M., Lewandowska, U., Tarnas, A. (2016). Eco-efficiency as a problem in managing contemporary enterprises. Systemy Wspomagania w Inżynierii Produkcji, 3, pp. 52-58.
- 8. Dehghani, F., Omidi, F., Heravizadeh, O., Chamgordani, S.B., Gharibi, V., Manesh, A.S. (2020). Occupational health risk assessment of volatile organic compounds emitted from the coke production unit of a steel plant. International Journal of Occupational Safety and Ergonomics, 26(2), pp. 227-232.
- 9. Dellise, M., Villota, J., Gaucher, R., Lafores, V. (2020). Challenges in assessing Best Available Techniques (BATs) compliance in the absence of industrial sectoral reference. Journal of Cleaner Production, 263, Article 121474.
- 10. Deng, H., Yang, O., Wang, Z. (2017). Considerations of applicable emission standards for managing atmospheric pollutants from new coal chemical industry in China. International Journal of Sustainable Development & World Ecology, 24(5), pp. 427-432.
- 11. Dudek-Dyduch, E., Dyduch, T. (2005). Synchronizacja wzajemnie uwarunkowanych cyklicznych procesów produkcyjnych. Automatyka, 9(3), pp. 699-711.
- 12. EEA Technical report Costs of air pollution from European Industrial facilities 2008-2012 - an updated assessment.
- 13. Evrard, D., Laforest, V., Villot, J., Gaucher, R. (2016). Best Available Technique assessment methods: a literature review from sector to installation level. Journal of Cleaner Production, 121, pp. 72-83.
- 14. Evrard, D., Villot, J., Armiyaou, Ch., Gaucher, R., Bouhrizi, S., Laforest, V. (2018). Best Available Techniques: An integrated method for multicriteria assessment of reference installations. Journal of Cleaner Production, 176, pp. 1034-1044.
- 15. Generalova, L.M., Eltanskaya, E.A., Rebrina, L.M. (2019). Best available technique in the environmental management system of ceramic enterprises. IOP Conf. Ser.: Mater. Sci. Eng., 483, 012029.
- 16. Giljam, R.A. (2018). Extended application of 'best available techniques' as a means to facilitate ecological governance. Journal of Energy & Natural Resources Law, 36(2), pp. 181-208.
- 17. Guidance on Assessment under the EU Air Quality Directives, http://eceuropaeu/environment/air/pdf/guidanceunderairqualitypdf.
- 18. Hu, X., Sun, Y., Liu, J., Meng, J., Wang, X., Yang, H., Xu, J., Yi, K., Xiang, Yun, S. (2019). The impact of environmental protection tax on sectoral and spatial distribution of air pollution emissions in China. Environ. Research Lett., 14, 054013.
- 19. Huybrechts, D., Derdena, A., Van den Abeele, L., Vander, S., Smets, T. (2018). Best available techniques and the value chain perspective. Journal of Cleaner Production, 174, pp. 847-856.
- 20. Hys, A., Dumańska, J., Tworek, K. (2018). Stężenie pyłów zawieszonych PM10 w Polsce w 2015 roku - porównanie danych z serwisu CAMS programu Copernicus z danymi Głównego Inspektoratu Ochrony Środowiska. Technika i Pomiary Metrologia i Probiernictwo. Biuletyn Głównego Urzędu Miar, 1(20), p. 15.
- 21. Iraldo, F., Testa, F., Frey, M. (2009). Is an environmental management system able to influence environmental and competitive performance? The case of the eco-management and audit scheme EMAS in the European Union. Journal of Cleaner Production, 1716, pp. 1444-1452.
- 22. Kozielska, B., Konieczyński, J. (2015). Polycyclic aromatic hydrocarbons in particulate matter emitted from coke oven battery. Fuel, 144, pp. 327-334.
- 23. Kulczycka, J., Smol, M. (2015). Application LCA for eco-efficiency assessment of investments projects. Acta Innovations, 16, pp. 29-38.
- 24. Kuznetsov, N.G., Tyaglov, S.G., Ponomareva, M.A., Rodionova, N.D. (2019). Innovations as a Source of the Best Available Technique in Russia. IOP Conf. Ser.: Earth Environ. Sci., 392, 012028.
- 25. Kwiecińska, A., Lajnert, R., Bigda, R. (2017). Coke oven wastewater - formation, treatment and utilization methods - a review. Proceedings of ECOpole, 11(1), pp. 19-28.
- 26. Li, J., Zhang, S., Nie, Y., Ma, X., Xu, L., Wu, L. (2020). A holistic life cycle evaluation of coking production covering coke oven gas purification process based on the subdivision method. Journal of Cleaner Production, 248, Article 119183.
- 27. Li, J., Cheng, W. (2020). Comparative life cycle energy consumption carbon emissions and economic costs of hydrogen production from coke oven gas and coal gasification. International Journal of Hydrogen Energy, DOI:101016/jijhydene202007079.
- 28. Lovreglio, P., De Palma, G., Barbieri, A., Andreoli, R., Drago, I., Greco, L., Gallo, E., Diomede, L., Scaramuzzo, P., Ricossa, M.C., Fostinelli, J., Apostoli P., Soleo, L. (2018). Biological monitoring of exposure to low concentrations of benzene in workers at a metallurgical coke production plant: new insights into S-phenylmercapturic acid and urinary benzene. Biomarkers, 23(1), pp. 70-77.
- 29. Ma, J., Liu, B., Mitchell, G., Dong, G. (2019). A spatial analysis of air pollution and environmental inequality in Beijing, 2000-2010. Journal of Environmental Planning and Management, 62(14), pp. 2437-2458.
- 30. Martins, F., Fonseca, L. (2018). Comparison between eco-management and audit scheme and ISO 14001:2015. Energy Procedia, 153, pp. 450-454.
- 31. Mavrotas, G., Georgopoulou, E., Mirasgedis, S. et al. (2009). Multi-objective combinatorial optimization for selecting best available techniques (BAT) in the industrial sector: the COMBAT tool. Journal of the Operational Research, 60, pp. 906-920.
- 32. Mostafanezhad, M. (2021). The materiality of air pollution: Urban political ecologies of tourism in Thailand Tourism. Geographies, 23(4), pp. 855-872.
- 33. Mu, L., Peng, L., Liu, X., He, Q., Bai, H., Yan, Y., Li, Y. (2017). Emission characteristics and size distribution of polycyclic aromatic hydrocarbons from coke production in China. Atmospheric Research, 197, pp. 113-120.
- 34. Mu, L., Peng, L., Liu, X., Song, C., Bai, H., Zhang, J., Hu, D., He, Q., Li, F. (2014). Characteristics of polycyclic aromatic hydrocarbons and their gas/particle partitioning from fugitive emissions in coke plants. Atmospheric Environment, 83, pp. 202-210.
- 35. Niu, K., Tian, K., Xue, J. (2016). Pollutant emission reduction effect through effluent tax, concentration-based effluent standard, or both. Chinese Journal of Population Resources and Environment, 14(2), pp. 68-80.
- 36. Osmólski, J. Morel, J. (2013). Zwiększenie skuteczności usuwania związków azotu z oczyszczanych ścieków przemysłowych w Koksowni PRZYJAŹŃ SA w Dąbrowie Górniczej. KARBO, 4, pp. 311-314.
- 37. Ozga-Blaschke, U. (2016). Rynki surowców metalurgicznych. Zeszyty Naukowe Instytutu Gospodarki Surowcami Mineralnymi i Energią PAN, 95, 7-2.
- 38. Pilarczyk, E., Sowa, F., Kaiser, M., Kern, W. (2013). Emissions at Coke Plants: European Environmental Regulations and Measures for Emission Control. Indian Institute of Metals, pp. 723-730.
- 39. Podręcznik dotyczący zasad udzielania odstępstw od granicznych wielkości emisyjnych zawartych w Konkluzjach BAT dla dużych źródeł spalania LCP2017, wwwekoportalgovpl.
- 40. Rychlewska, K., Telenga-Kopyczyńska, J., Bigda, R., Żeliński, J. (2021). Periodic Inspections of Residential Heating Appliances for Solid Fuels: Review of Legal Regulations in Selected European Countries. Journal of Ecological Engineering, 222, pp. 54-62.
- 41. Sobolewski, A., Ściążko, M. (2006). Najlepsze dostępne techniki (BAT). Wytyczne dla branży koksowniczej. Zabrze: IChPW, p. 47.
- 42. Szlęk, E., Smółka, B., Lewandowski, L. (2009). Analiza porównawcza technologii suchego chłodzenia i mokrego gaszenia koksu na podstawie doświadczeń Koksowni PRZYJAŹŃ w Dąbrowie Górniczej. KARBO, 4, pp. 240-246.
- 43. Telenga-Kopyczyńska, J., Lajnert, R., Robak, J., Sobolewski, A. (2010). Ocena ekologiczna koksowni w świetle nowych uregulowań prawnych. In: A. Musialik- Piotrowska, D.J. Rutkowski (eds.), Współczesne osiągnięcia w ochronie powietrza atmosferycznego. Materiały z X konferencji "POL-EMIS 2010": Polanica-Zdrój, p. 379.
- 44. Van Donkelaar, A., Martin, R.V., Brauer, M., Hsu, N.C., Kahn, R.A., Levy, R.C., Lyapustin, A., Sayer, A.M., Winker, D.M. (2016). Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Models, and Monitors Environmental Science and Technology, 50(7), pp. 3762- 3772.
- 45. Wang, F., Xing, S., Hou, X. (2012). Study on the Distribution Pattern of PAHs in the Coking Dust from the Coking Environment. Procedia Engineering, 45, pp. 959-961.
- 46. Warzecha, A., Jarno, M. (2014). Rynek koksu i węgla koksowego na świecie, KARBO, 1, pp. 2-14.
- 47. Wasiuta, A. (2015). Ekonomiczne instrumenty polityki ekologicznej w kontekście zarządzania środowiskowego. In: T. Noch, J. Saczuk (eds.), Współdziałanie systemu zarządzania i inżynierii produkcji Teoria i praktyka. Gdańsk: Wydawnictwo Gdańskiej Szkoły Wyższej, Wydział Nauk Ekonomicznych.
- 48. Yang, H., Liu, Y., Liu, J., Wang, Y., Tao, S. (2018). The roles of the metallurgy, nonmetal products and chemical industry sectors in air pollutant emissions in China. Environ. Research Lett., 13, 084013.
- 49. Yang, H., Tao, W., Wang, Y., Liu, Y., Liu, J., Zhang, Y., Tao, S. (2019). Air quality and health impacts from the updated industrial emission standards in China. Environ. Research Lett., 14, 12405.
- 50. Yuan, X., Zhang, M., Wang, Q., Wang, Y., Zuoc, J. (2017). Evolution analysis of environmental standards: Effectiveness on air pollutant emissions reduction. Journal of Cleaner Production, 149, pp. 511-520.
- 51. Zabelina, A.V., Sergienko, O.I. (2021). Applying of the Best Available Techniques in the Municipal Solid Waste Recycling. IOP Conf. Ser.: Earth Environ. Sci., 720, 012073.
- 52. Żeliński, J., Kaleta, D., Telenga-Kopyczyńska, J. (2018). Inclusion of Increased Air Turbulence Caused by Coke Production into Atmospheric Propagation Modelling. International Journal of Environmental Research, 12, pp. 803-813.
- 53. Zhang, P., Wu, J. (2020). Performance targets, path dependence, and policy adoption: evidence from the adoption of pollutant emission control policies in Chinese provinces. International Public Management Journal, 23(3), pp. 405-420.
- 54. Zhong, M., Jiang, L., Jia, X., Liang, J., Xia, T., Yao, J. (2013). Health Risk Assessment on PAHs Contaminated Site - A Case Study in a Relocated Coke and Chemical Plant in Beijing. Procedia Environmental Sciences, 18, pp. 666-678.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171680010