Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | 31 | nr 3 | 281-289
Tytuł artykułu

Lightweight LHD BEV Loader with an Individual Drive for Each Wheel

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper is devoted to the construction and design solutions of the power supply and drive systems of a prototype, lightweight LHD (Load-Haul-Dump) loader with an innovative "in-wheel drive" transmission system. The loader is a Battery Electric Vehicle (BEV) with replaceable energy storage. It is intended for use in underground mines with no explosion hazard, especially in metal ore mines. The developed model contains four independent, electric drive systems installed in the road wheels. The paper presents the results of simulation tests, which enabled estimating the required driving power and electricity demand in various regimes and working conditions of the loader. The results of the calculations were used to determine the parameters of the drive system components and the battery capacity. Challenges and problems faced by constructors of BEV LHD loaders with an inwheel drive have been pointed out. (original abstract)
Rocznik
Tom
31
Numer
Strony
281-289
Opis fizyczny
Twórcy
  • Łukasiewicz Research Network - Institute of Innovative Technologies EMAG
  • AGH University of Science and Technology; Łukasiewicz Research Network - Institute of Innovative Technologies EMAG
  • AGH University of Science and Technology; Łukasiewicz Research Network - Institute of Innovative Technologies EMAG
  • Silesian University of Technology; Łukasiewicz Research Network - Ins
  • Łukasiewicz Research Network - Ins
Bibliografia
  • [1] Bołoz Ł. Global Trends in the Development of Battery-Powered Underground Mining Machines. Multidiscip Asp Prod Eng, 2021, 4, 178-89. https://doi.org/10.2478/mape-2021-0016.
  • [2] Bołoz Ł, Castañeda LF. Computer-Aided Support for the Rapid Creation of Parametric Models of Milling Units for Longwall Shearers. Manag Syst Prod Eng, 2018, 26, 193-9. https://doi.org/10.1515/mspe-2018-0031.
  • [3] Eger T, Stevenson J, Callaghan JP, Grenier S, VibRG. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 2 - Evaluation of operator driving postures and associated postural loading. Int J Ind Ergon, 2008, 38, 801-15. https://doi.org/10.1016/j.ergon.2007.09.003.
  • [4] Eger T, Stevenson J, Boileau P-É, Salmoni A. Predictions of health risks associated with the operation of load-haul-dump mining vehicles: Part 1 - Analysis of whole-body vibration exposure using ISO 2631-1 and ISO-2631-5 standards. Int J Ind Ergon, 2008, 38, 726-38. https://doi.org/10.1016/j.ergon.2007.08.012.
  • [5] Fugiel A, Burchart-Korol D, Czaplicka-Kolarz K, Smoliński A. Environmental impact and damage categories caused by air pollution emissions from mining and quarrying sectors of European countries. J Clean Prod, 2017, 143, 159-68. https://doi.org/10.1016/j.jclepro.2016.12.136.
  • [6] Hartman HL, Novak T, Gregg AJ. Health hazards of diesel and electric vehicles in an underground coal mine. Min Sci Technol, 1987, 5, 131-51. https://doi.org/10.1016/S0167- 9031(87)90365-3.
  • [7] Biały W, Bołoz Ł, Sitko J. Mechanical Processing of Hard Coal as a Source of Noise Pollution. Case Study in Poland. Energies 2021, 14, 1332. https://doi.org/10.3390/en14051332.
  • [8] Priyadarshini Nayak N. LHD-LPDT cycle time optimization of underground metal mine. Mater Today Proc, 2023, 72, 2817-21. https://doi.org/10.1016/j.matpr.2022.07.091.
  • [9] Dragt BJ, Camisani-Calzolari FR, Craig IK. Modelling the dynamics of a load-haul-dump vehicle. IFAC Proc, 2005, 38, 49-54. https://doi.org/10.3182/20050703-6-CZ- 1902.01390.
  • [10] Ye W, Shen W, Qian Z, Zheng J. Robust longitudinal motion control of underground mining electric vehicles based on fuzzy parameter tuning sliding mode controller. Comput Electr Eng, 2022, 98, 107683. https://doi.org/10.1016/j.compeleceng.2022.107683.
  • [11] Burd JTJ, Moore EA, Ezzat H, Kirchain R, Roth R. Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions. Appl Energy, 2021, 283, 116269. https://doi.org/10.1016/j.apenergy.2020.116269.
  • [12] Ivanov V, Savitski D, Shyrokau B. A Survey of Traction Control and Antilock Braking Systems of Full Electric Vehicles With Individually Controlled Electric Motors. IEEE Trans Veh Technol, 2015, 64, 3878-96. https://doi.org/10.1109/TVT.2014.2361860.
  • [13] Nasri A, Gasbaoui B, Fayssal BM. Novel Four Wheel Drive Propulsion System Control Using Backstepping Strategy. Procedia Technol, 2016, 22, 509-17. https://doi.org/10.1016/j.protcy.2016.01.110.
  • [14] Cui H, Ruan J, Wu C, Zhang K, Li T. Advanced deep deterministic policy gradient based energy management strategy design for dual-motor four-wheel-drive electric vehicle. Mech Mach Theory, 2023, 179, 105119. https://doi.org/10.1016/j.mechmachthe- ory.2022.105119.
  • [15] Xu W, Zhao H, Ren B, Chen H. A regenerative braking control strategy for electric vehicle with four in-wheel motors. 2016 35th Chin. Control Conf. CCC, 2016, 8671-6. https://doi.org/10.1109/ChiCC.2016.7554741.
  • [16] Artisan Vehicle Systems | The World's Most Powerful Industrial Electric Vehicles. n.d. https://artisanvehicles.com/ (accessed March 24, 2023).
  • [17] Mining Equipment, Parts & Services. Sandvik Min Rock Technol n.d. https://www.rocktechnology.sandvik (ac- cessed March 24, 2023).
  • [18] Epiroc. Epiroc in your region. Epiroc n.d. https://www.epiroc.com/sys/splash (accessed March 24, 2023).
  • [19] Blundell M, Harty D. The Multibody Systems Approach to Vehicle Dynamics. Elsevier; 2015.
  • [20] Schramm D, Hiller M, Bardini R. Vehicle Dynamics. Modeling and Simulation. Berlin: Springer Berlin, Heidelberg; 2014.
  • [21] Bołoz Ł, Kozłowski A, Horak W. Assessment of the Stability of BEV LHD Loader. Manag Syst Prod Eng, 2022, 30, 377- 87. https://doi.org/10.2478/mspe-2022-0048.
  • [22] Nazir MH, Rahil A, Partenie E, Bowkett M, Khan ZA, Hussain MM, et al. Comparison of lithium-ion battery cell technologies applied in the regenerative braking system. Battery Energy, 2022, 1, 20220022. https://doi.org/10.1002/bte2.20220022.
  • [23] The Salt Battery - Mining n.d. https://www.fzson-ick.com/applications/mining (accessed March 28, 2023).
  • [24] Salt Batteries: Opportunities and applications of storage systems based on sodium nickel chloride batteries | Think Tank | European Parliament n.d. https://www.euro-parl.europa.eu/thinktank/en/document/IPOL_IDA(2023)740064 (accessed March 28, 2023).
  • [25] Dorsz A, Lewandowski M. Analysis of Fire Hazards Associated with the Operation of Electric Vehicles in Enclosed Structures. Energies, 2022, 15, 11. https://doi.org/10.3390/en15010011.
  • [26] Halim A, Lööw J, Johansson J, Gustafsson J, van Wageningen A, Kocsis K. Improvement of Working Conditions and Opinions of Mine Workers When Battery Electric Vehicles (BEVs) Are Used Instead of Diesel Machines - Results of Field Trial at the Kittilä Mine, Finland. Min Metall Explor, 2022, 39, 203-19. https://doi.org/10.1007/s42461-021-00506-8.
  • [27] Li YZ, Ingason H. Overview of research on fire safety in underground road and railway tunnels. Tunn Undergr Space Technol, 2018, 81, 568-89. https://doi.org/10.1016/j.tust.2018.08.013.
  • [28] Global Mining Guidelines Group (GMG), Recommended Practices for Battery Electric Vehicles in Underground Mining, n.d. https://gmggroup.org/ (accessed May 10, 2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171679401
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.