Warianty tytułu
Efektywność systemów opieki zdrowotnej w krajach OECD - badanie za pomocą metody granicznej analizy danych
Języki publikacji
Abstrakty
Cel: opracowanie ma na celu pomiar efektywności w 37 krajach OECD w roku 2020 za pomocą metody granicznej analizy danych (Data Envelopment Analysis - DEA), a ponadto uszeregowanie efektywnych jednostek decyzyjnych przy użyciu modelu DEA z nadefektywnością. Metodologia: w ramach badania przeprowadzono analizy z wykorzystaniem zorientowanych na nakłady modeli Charnesa, Coopera i Rhodesa (CCR), zorientowanych na nakłady modeli Bankera, Charnesa i Coopera (BCC) oraz tych modeli z nadefektywnością przy użyciu czterech nakładów i trzech wyników. Wyniki: przeprowadzona analiza wykazała, że efektywnością cechuje się czternaście krajów w modelu CCR i dwadzieścia krajów w modelu BCC. Kraje efektywne uszeregowano zgodnie z wynikami modeli z nadefektywnością. Ograniczenia/implikacje badawcze: ograniczeniami badania są analizy oparte na modelach DEA zorientowanych na nakłady oraz to, że zostało ono przeprowadzone w krajach OECD. Oryginalność/wartość: ocena efektywności systemów opieki zdrowotnej zyskała w ostatnich latach na znaczeniu. Wiele krajów podejmuje starania na rzecz poprawy swoich systemów opieki zdrowotnej. Z powodu epidemii, takich jak Covid-19, kraje OECD, podobnie jak wiele krajów na całym świecie, zwiększyły udział wydatków na opiekę zdrowotną w PKB. W związku z tą sytuacją ocena efektywności krajów OECD w dziedzinie zdrowia stała się bardzo istotnym tematem badawczym. (abstrakt oryginalny)
Purpose: This study is aimed at measuring the efficiency of 37 OECD countries for 2020 using the Data Envelopment Analysis (DEA) method. Besides, it is aimed at ranking the efficient decision making units by using the super-efficiency DEA model. Design/methodology/approach: In the study, analyses were carried out with input-oriented Charnes, Cooper and Rhodes (CCR), input-oriented Banker, Charnes and Cooper (BCC) models and super-efficiency models of these models by using 4 inputs and 3 outputs. Findings: As a result of the analysis, 14 countries in the CCR model and 20 countries in the BCC model were efficient. According to the results of the super-efficiency models, the efficient countries were ranked. Research limitations/implications: The limitations of the study are the analyses are based on input-oriented DEA models and the research was conducted in OECD countries. Originality/value: Performance evaluation of health systems has gained importance in recent years. Many countries are making efforts to improve their health systems. Due to epidemics such as COVID-19, OECD countries, like many countries around the world, have increased the share of health expenditures in GDP. Because of this situation, the evaluation of the performance of OECD countries in the field of health has emerged as a very important research topic. (original abstract)
Twórcy
autor
- Muş Alparslan University, Muş, Turkey
autor
- Muş Alparslan University, Muş, Turkey
Bibliografia
- 1. Afonso, A., & St. Aubyn, M. (2006, December). Relative efficiency of health provision: A DEA approach with non-discretionary inputs [ISEG-UTL Economics Working Paper No. 33/2006/DE/UECE]. http://dx.doi.org/10.2139/ssrn.952629.
- 2. Amiri, M.M., Nasiri, T., Saadat, S.H., Anabad, H.A., & Ardakan, P.M. (2016). Measuring efficiency of knowledge production in health research centers using data envelopment analysis (DEA): A case study in Iran. Electronic Physician, 8(11), 3266-3271. http:// dx.doi.org/10.19082/3266.
- 3. Asandului, L., Roman, M., & Fatulescu, P. (2014). The efficiency of healthcare systems in Europe: A data envelopment analysis approach. Procedia Economics and Finance, 10, 261-268. https://doi.org/10.1016/S2212-5671(14)00301-3.
- 4. Banker, R.D., Charnes, A., & Cooper, W.W. (1984). Some models for estimating technical and scale inefficiencies in data envelopment analysis. Management Science, 30(9), 1078-1092.
- 5. Bekaroğlu, C., & Heffley, D. (2018). A multi-stage efficiency analysis of OECD healthcare systems. Journal of Management and Economics, 16(2), 264-285. https:// doi.org/10.11611/yead.421180.
- 6. Bostan, S., & Tehci, A. (2020). Health services marketing strategies: A qualitative research. International Journal of Economic & Administrative Studies, 26, 181-194. https://doi. org/10.18092/ulikidince.590734.
- 7. Boussofiane, A., Dyson, R.G., & Thanassoulis, E. (1991). Applied data envelopment analysis. European Journal of Operational Research, 52(1), 1-15. https://doi. org/10.1016/0377-2217(91)90331-O.
- 8. Carillo, M., & Jorge, J.M. (2017). DEA-like efficiency ranking of regional health systems in Spain. Social Indicators Research, 133, 1133-1149. https://doi.org/10.1007/s11205- 016-1398-y.
- 9. Çetin, V.R., & Bahçe, S. (2016). Measuring the efficiency of health systems of OECD countries by data envelopment analysis. Applied Economics, 48(37), 3497-3507. https:// doi.org/10.1080/00036846.2016.1139682.
- 10. Charles, V., & Kumar, M. (2012). Data envelopment analysis and its application to management. Cambridge Scholars Publishing.
- 11. Charnes, A., Cooper, W.W., & ve Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429-444.
- 12. Cheng, G., Qian, Z., & ve Zervopoulos, P. (2011). Overcoming the infeasibility of superefficiency DEA model: A model with generalized orientation. Munich Personal RePEc Archive, MPRA, (31991), 1-16.
- 13. Chiu, C.-M., Chen, M.-S., Lin, C.-S., Lin, W.-Y., & Lang, H.-Y. (2022). Evaluating the comparative efficiency of medical centers in Taiwan: A dynamic data envelopment analysis application. BMC Health Services Research, 22, 1-11. https://doi.org/10.1186/ s12913-022-07869-8.
- 14. Cooper, W.W., Seiford, L.M., & Zhu, J. (2011). Data envelopment analysis: History, models, and interpretations. In W. Cooper, L. Seiford, & J. Zhu (Eds.), Handbook on data envelopment analysis. Springer.
- 15. Dalfard, V.M., Sohrabian, A., Najafabadi, A.M., & ve Alvani, J. (2012). Performance evaluation and prioritization of the leasing companies using super efficiency data envelopment analysis model. Acta Polytechnica Hungarica, 9(3), 183-194.
- 16. Dimas, G., Goula, A., & Soulis, S. (2012). Productive performance and its components in Greek public hospitals. Operational Research International Journal, 12, 15-27. https:// doi.org/10.1007/s12351-010-0082-2.
- 17. Emrouznejad, A., & Yang, G. (2018). A survey and analysis of the first 40 years of scholarly literature in DEA: 1978-2016. Socio-Economic Planning Sciences, 61, 4-8. https://doi.org/10.1016/j.seps.2017.01.008.
- 18. Ersoy, Y. (2021). Performance evaluation in distance education by using data envelopment analysis (DEA) and TOPSIS methods. Arabian Journal for Science and Engineering, 46(2), 1803-1817. https://doi.org/10.1007/s13369-020-05087-0.
- 19. Fragkiadakis, G., Doumpos, M., Zopounidis, C., & Germain, Ch. (2016). Operational and economic efficiency analysis of public hospitals in Greece. Annals of Operations Research, 247, 787-806. https://doi.org/10.1007/s10479-014-1710-7.
- 20. Gandhi, A.V., & Sharma, D. (2018). Technical efficiency of private sector hospitals in India using data envelopment analysis. Benchmarking: An International Journal, 25(9), 3570-3591. https://doi.org/10.1108/BIJ-06-2017-0135.
- 21. Habib, A.M., & Shahwan, T.M. (2020). Measuring the operational and financial efficiency using a Malmquist data envelopment analysis: A case of Egyptian hospitals. Benchmarking: An International Journal, 27(9), 2521-2536. https://doi. org/10.1108/BIJ-01-2020-0041.
- 22. Hadad, S., Hadad, Y., & Simon-Tuval, T. (2013). Determinants of healthcare system's efficiency in OECD countries. The European Journal of Health Economics, 14, 253-265. https://doi.org/10.1007/s10198-011-0366-3.
- 23. Hafidz, F., Ensor, T., & Tubeuf, S. (2018). Efficiency measurement in health facilities: A systematic review in low- and middle-income countries. Applied Health Economics and Health Policy, 16, 465-480. https://doi.org/10.1007/s40258-018-0385-7.
- 24. Hollingsworth, B. (2008). The measurement of the efficiency and productivity of healthcare delivery. Health Economics, 17, 1107-1728. https://doi.org/10.1002/hec.1391.
- 25. Ibrahim, M.D., & Daneshvar, S. (2018). Efficiency analysis of healthcare system in Lebanon using modified data envelopment analysis. Journal of Healthcare Engineering, (2), 1-6. https://doi.org/10.1155/2018/2060138.
- 26. İlgün, G., Sönmez, S., Konca., M., & Yetim, B. (2022). Measuring the efficiency of Turkish maternal and child health hospitals: A two-stage data envelopment analysis. Evaluation and Program Planning, 91, 1-6. https://doi.org/10.1016/j.evalprogplan.2021.102023.
- 27. Jat, T.R., & Sebastian, M.S. (2013). Technical efficiency of public district hospitals in Madhya Pradesh, India: A data envelopment analysis. Global Health Action, 6(1), 1-9. https://doi.org/10.3402/gha.v6i0.21742.
- 28. Jehu-Appiah, C., Sekidde, S., Avardjuik, M., Akazili, C., Almeida, S.D., Nyonator, F., Baltussen, R., Asbu, E.Z., & Kirigia, J.M. (2014). Ownership and technical efficiency of hospitals: Evidence from Ghana using data envelopment analysis. Cost Effectiveness and Resource Allocation, 12(9), 1-14. https://doi.org/10.1186/1478-7547-12-9.
- 29. Kar, İ., & Demireli, E. (2021). Measuring efficiency with data envelopment analysis: An application in İzmir Province state hospitals. Journal of Academic Researches Studies, 13(24), 122-136. https://doi.org/10.20990/kilisiibfakademik.888360.
- 30. Karahan, M. (2019). Using data envelopment analysis to measure the technical efficiency of public hospitals in Turkey. Ege Academic Review, 19(3), 373-387. https://doi. org/10.21121/eab.475514.
- 31. Kocisova, K., & Sopko, J. (2020). The efficiency of public health and medical care systems in EU countries: Dynamic network data envelopment analysis. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 68(2), 383-394. https://doi. org/10.11118/actaun202068020383.
- 32. Kohl, S., Schoenfelder, J., Fügener, A., & Brunner, J.O. (2019). The use of data envelopment analysis (DEA) in healthcare with a focus on hospitals. Health Care Management Science, 22, 245-286. https://doi.org/10.1007/s10729-018-9436-8.
- 33. Lee, D. (2016). Comparison of efficiency of healthcare systems of countries with global competitiveness using data envelopment analysis. Global Business & Finance Review, 21(1), 46-55. Http://dx.doi.org/10.17549/gbfr.2016.21.1.46.
- 34. Lee, S., & Kim, C. (2018). Estimation of association between healthcare system efficiency and policy factors for public health. Applied Sciences, 8(12), 1-11. https:// doi.org/10.3390/app8122674.
- 35. Liu, J.S., Lu, L.Y.Y., Lu, W-M., & Lin, B.J.Y. (2013). A survey of DEA applications. Omega, 41(5), 893-902. https://doi.org/10.1016/j.omega.2012.11.004.
- 36. Martic, M.M., Novakovic, M.S., & Baggia, A. (2009). Data envelopment analysis - Basic models and their utilization. Organizacija, 42(2), 37-43. https://doi.org/10.2478/v10051- 009-0001-6.
- 37. Mitropoulos, P. (2021). Production and quality performance of healthcare services in EU countries during the economic crisis. Operational Research, 21, 857-873. https://doi. org/10.1007/s12351-019-00483-3.
- 38. Nayar, P., & Ozcan, Y.A. (2008). Data envelopment analysis comparison of hospital efficiency and quality. Journal of Medical Systems, 32, 193-199. doi: 10.1007/s10916- 007-9122-8.
- 39. OECD. (2021a). Retrieved January 21, 2022, from https://www.oecd.org/health/healthdata. htm.
- 40. OECD. (2021b). Retrieved June 6, 2021, from https://stats.oecd.org/index. aspx?queryid=30116.
- 41. OECD. (2021c). Retrieved June 6, 2022, from https://data.oecd.org/healthstat/lifeexpectancy- at-birth.htm. doi: 10.1787/27e0fc9d-en.
- 42. OECD. (2022). Retrieved January 21, 2022, from https://www.oecd.org/.
- 43. Ozcan, Y.A., & Khushalani, J. (2017). Assessing efficiency of public health and medical care provision in OECD countries after a decade of reform. Central European Journal of Operations Research, 25, 325-343. https://doi.org/10.1007/s10100-016-0440-0.
- 44. Popovic, M., Savic, G., Kuzmanovic, M., Martic, M. (2020). Using Data Envelopment Analysis and Multi-Criteria Decision-Making Methods to Evaluate Teacher Performance in Higher Education. Symmetry, 12(4), 1-19. https://doi.org/10.3390/ sym12040563
- 45. Şahin, B., & İlgün, G. (2019). Assessment of the impact of public hospital associations (PHAs) on the efficiency of hospitals under the Ministry of Health in Turkey with data envelopment analysis. Health Care Management Science, 22, 437-446. https:// doi.org/10.1007/s10729-018-9463-5.
- 46. Samut, P.K., & Cafrı, R. (2016). Analysis of the efficiency determinants of health systems in OECD countries by DEA and panel Tobit. Social Indicators Research, 129, 113-132. https://doi.org/10.1007/s11205-015-1094-3.
- 47. Sarıçam, C., & Yilmaz, S.M. (2021). An integrated framework for supplier selection and performance evaluation for apparel retail industry. Textile Research Journal. https:// doi.org/10.1177/0040517521992353.
- 48. Seddighi, H., Nejad, F.N., & Basakha, M. (2020). Health systems efficiency in Eastern Mediterranean region: A data envelopment analysis. Cost Effectiveness and Resource Allocation, 18(22), 1-7. https://doi.org/10.1186/s12962-020-00217-9.
- 49. Seiford, L.M, & Zhu, J (1999). Infeasibility of super-efficiency data envelopment analysis models. INFOR: Information Systems and Operational Research, 37(2), 174-187. https:// doi.org/10.1080/03155986.1999.11732379.
- 50. Selamzade, F. (2020). Efficiency analysis of Azerbaijan hotel organizations. KAUJEASF, 11(22), 864-890. https://doi.org/10.36543/kauiibfd.2020.037.
- 51. Stefko, R., Gavurova, B., & Kocisova, K. (2018). Healthcare efficiency assessment using DEA analysis in the Slovak Republic. Health Economics Review, 8(6), 1-12. https:// doi.org/10.1186/s13561-018-0191-9.
- 52. The World Bank. (2021a). Retrieved June 6, 2021, from https://data.worldbank.org/ indicator/SH.XPD.CHEX.GD.ZS?locations=OE.
- 53. The World Bank. (2021b). Retrieved June 6, 2021, from https://data.worldbank.org/ indicator/SH.DYN.MORT?end=2019&locations=OE&start=1990&view=chart.
- 54. The World Bank. (2022). Retrieved January 21, 2022, from https://www.worldbank.org/ en/home.
- 55. Torabipour, A, Najarzadeh, M., Arab, M., Farzianpour, F., & Ghasemzadeh, R. (2014). Hospitals productivity measurement using data envelopment analysis technique. Iranian Journal of Public Health, 43(11), 1576-1581.
- 56. Varabyova, Y., & Schreyögg, J. (2013). International comparisons of the technical efficiency of the hospital sector: Panel data analysis of OECD countries using parametric and non-parametric approaches. Health Policy, 112(1-2), 70-79. https:// doi.org/10.1016/j.healthpol.2013.03.003.
- 57. Xu, B., & Ouenniche, J. (2012) A data envelopment analysis-based framework for the relative performance evaluation of competing crude oil prices volatility forecasting models. Energy Economics, 34(2), 576-583. https://doi.org/10.1016/j.eneco.2011.12.005.
- 58. Yang, Y., Guo, H., Wang, D., Ke, X., Li, S., & Huang, S. (2021). Flood vulnerability and resilience assessment in China based on super-efficiency DEA and SBM-DEA methods. Journal of Hydrology, 600, 1-14. https://doi.org/10.1016/j.jhydrol.2021.126470
- 59. Yeşilyurt, M.E., Şahin. M., Elbi, M.D., Kızılkaya, A., Koyuncuoğlu, M.U., & Yeşilyurt, F.A. (2021). A novel method for computing single output for DEA with application in hospital efficiency. Socio-Economic Planning Sciences, 76, 1-19. https://doi. org/10.1016/j.seps.2020.100995.
- 60. Yoshimoto, D., Alves, C.J.P., & Caetano, M. (2018). Airport economic efficient frontier. Journal of Operations and Supply Chain Management, 11(1), 26-36. https://doi. org/10.12660/joscmv11n1p26-36.
- 61. Yüksel, O. (2021). Comparision of healthcare systems performances in OECD countries. International Journal of Health Services Research and Policy, 6(2), 251-261. https:// doi.org/10.33457/ijhsrp.935170.
- 62. Zhong, K., Wang, Y., Pei, J., Tang, S., & Han, Z. (2021). Super efficiency SBM-DEA and neural network for performance evaluation. Information Processing & Management, 58(6), 1-13. https://doi.org/10.1016/j.ipm.2021.102728.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171658854