Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 15 | nr 4 | 39-62
Tytuł artykułu

Demand Forecasting: AI-based, Statistical and Hybrid Models vs Practice-based Models - the Case of SMEs and Large Enterprises

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Demand forecasting is one of the biggest challenges of post-pandemic logistics. It appears that logistics management based on demand prediction can be a suitable alternative to the just-in-time concept. This study aims to identify the effectiveness of AI-based and statistical forecasting models versus practice-based models for SMEs and large enterprises in practice. The study compares the effectiveness of the practice-based Prophet model with the statistical forecasting models, models based on artificial intelligence, and hybrid models developed in the academic environment. Since most of the hybrid models, and the ones based on artificial intelligence, were developed within the last ten years, the study also answers the question of whether the new models have better accuracy than the older ones. The models are evaluated using a multicriteria approach with different weight settings for SMEs and large enterprises. The results show that the Prophet model has higher accuracy than the other models on most time series. At the same time, the Prophet model is slightly less computationally demanding than hybrid models and models based on artificial neural networks. On the other hand, the results of the multicriteria evaluation show that while statistical methods are more suitable for SMEs, the prophet forecasting method is very effective in the case of large enterprises with sufficient computing power and trained predictive analysts. (original abstract)
Rocznik
Tom
15
Numer
Strony
39-62
Opis fizyczny
Twórcy
  • VŠB -Technical University Ostrava, Czech Republic
  • Pan-European University, Prague, Czech Republic
Bibliografia
  • Adda, G., Dokor, G., Azigwe, J., & Odai, N. (2021). Management commitment and corporate sustainability integration into small and medium-scale enterprises: A mediation effect of strategic decision-making. Economics, Management and Sustainability, 6(2), 6-20. https://doi.org/10.14254/jems.2021.6-2.1
  • Akimova, L., Akimov, O., Maksymenko, T., Hbur, Z., & Orlova, V. (2020). Adaptive management of entrepreneurship model as a component of enterprise resource planning. Academy of Entrepreneurship Journal, 26(3), 1-8.
  • Balcerak, A., & Woźniak, J. (2021). Reactions to some ICT-based personnel selection tools. Economics and Sociology, 14(1), 214-231. https://doi.org/10.14254/2071-789X.2021/14-1/14
  • Bandara, K., Bergmeir, C., & Smyl, S. (2020). Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach. Expert Systems with Applications, 140. https://doi.org/10.1016/j.eswa.2019.112896
  • Basak, A., Rahman, A., Das, J., Hosono, T., & Kisi, O. (2022). Drought forecasting using the Prophet model in a semi-arid climate region of western India. Hydrological Sciences Journal, 2022, 1-21. https://doi.org/10.1080/02626667.2022.2082876
  • Bencsik, A. (2021). The sixth generation of knowledge management - the headway of artificial intelligence. Journal of International Studies, 14(2), 84-101. https://doi.org/10.14254/2071-8330.2021/14-2/6
  • Bilan, Y., Mishchuk, H., & Dzhyhar, T. (2017). Human capital factors and remuneration: analysis of relations, modelling of influence. Business: Theory and Practice, 18, 208-214. Https://doi.org/10.3846/btp.2017.022
  • Bittucci, L., Marzioni, S., Murè, P., & Spallone, M. (2021). Securitization of (bad) loans to Italian SMES: The role of the public guarantee. Banks and Bank Systems, 16(4), 193-208. https://doi.org/10.21511/bbs.16(4).2021.16
  • Civelek, M., Gajdka, K., Světlík, J., & Vavrečka, V. (2020). Differences in the usage of online marketing and social media tools: evidence from Czech, Slovakian and Hungarian SMEs. Equilibrium. Quarterly Journal of Economics and Economic Policy, 15(3), 537-563. https://doi.org/10.24136/eq.2020.024
  • Civelek, M., Ključnikov, A., Fialova, V., Folvarčná, A., & Stoch, M. (2021). How innovativeness of family-owned SMEs differ depending on their characteristics? Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(2), 413-428. https://doi.org/10.24136/eq.2021.015
  • Civelek, M., & Krajčík, V. (2022). How do SMEs from different countries perceive export impediments depending on their firm-level characteristics? System approach. Oeconomia Copernicana, 13(1), 55-78. https://doi.org/10.24136/oc.2022.002
  • Çelik, M. N. & Çevirgen, A. (2021). The Role of Accommodation Enterprises in the Development of Sustainable Tourism. Journal of Tourism and Services, 23(12), 181-198. https://doi.org/10.29036/jots.v12i23.264
  • Doornik, J., Castle, J., & Hendry, D. (2020). Card forecasts for M4. International Journal of Forecasting, 36(1), 129-134. https://doi.org/10.1016/j.ijforecast.2019.03.012
  • Dudek, G., Pelka, P., & Smyl, S. (2022). A Hybrid Residual Dilated LSTM and Exponential Smoothing Model for Midterm Electric Load Forecasting. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2879-2891. https://doi.org/10.1109/TNNLS.2020.3046629
  • Dvorský, J., Petráková, Z., Ajaz Khan, K., Formánek, I., &Mikoláš, Z. (2020). Selected aspects of strategic management in the service sector. Journal of Tourism and Services, 20(11), 109-123. https://doi.org/10.29036/jots.v11i20.146
  • Dvorský, J., Čepel, M., Kotásková, A., & Bugánová, K. (2021). Differences in business risk effects on the future of SMEs due to Covid-19 pandemic. International Journal of Entrepreneurial Knowledge, 9(2), 14-31. https://doi.org/10.37335/ijek.v9i2.144
  • Fiorucci, J., Pellegrini, T., Louzada, F., Petropoulos, F., & Koehler, A. (2016). Models for optimising the theta method and their relationship to state-space models. International Journal of Forecasting, 32(4), 1151-1161. https://doi.org/10.1016/j.ijforecast.2016.02.005
  • Forecast Pro. (2022). Retrieved from https://www.forecastpro.com/solutions/forecast-pro/?gclid=EAIaIQobChMIluHb7bWs-AIVmvdRCh2b4A9iEAAYASACEgKMxfD_BwE
  • Gavurova, B., Belas, J., Bilan, Y., & Horak, J. (2020a). Study of legislative and administrative obstacles to SMEs business in the Czech Republic and Slovakia. Oeconomia Copernicana, 11(4), 689-719. https://doi.org/10.24136/oc.2020.028
  • Gavurova, B., Ivankova, V., Rigelsky, M., & Přívarová, M. (2020b). Relations Between Tourism Spending and Global Competitiveness - an Empirical Study in Developed OECD Countries. Journal of Tourism and Services, 21(11), 38-54. https://doi.org/10.29036/jots.v11i21.175
  • Gavurova, B., Schonfeld, J., Bilan, Y., & Dudas, T. (2022). Study of the Differences in the Perception of the Use of the Principles of Corporate Social Responsibility in Micro, Small and Medium-Sized Enterprises in the V4 Countries. Journal of Competitiveness, 14(2), 23-40. https://doi.org/10.7441/joc.2022.02.02
  • Gilliland, M. (2020). The value added by machine learning approaches in forecasting. International Journal of Forecasting, 36(1), 161-166. https://doi.org/10.1016/j.ijforecast.2019.04.016
  • Green, K. & Armstrong, J. (2015). Simple versus complex forecasting: The evidence. Journal of Business Research, 68(8), 1678-1685. https://doi.org/10.1016/j.jbusres.2015.03.026
  • Gya, R. (2020). Fast forward: Rethinking supply chain resilience for a post-COVID-19 world [Online]. Capgemini Research Institute, 44. Retrieved from https://www.capgemini.com/wp-content/uploads/2020/11/Fast-forward_Report.pdf
  • Hazudin, S.F., Sabri, M.F., Kader, M.A.R.A., Saripin, M.S., & Ridzuan, M.R. (2022). Social capital, entrepreneurial skills, and business performance among rural micro-enterprises in times of crisis. Knowledge and Performance Management, 6(1), 75-86. https://doi.org/10.21511/kpm.06(1).2022.07
  • Hyndman, R. & Athanasopoulos, G. (2021). Forecasting: Principles and Practice. OTexts: Melbourne, Australia: OTexts.com/fpp3.
  • Hyndman, R., & Athanasopoulos, G. (2018). Forecasting: Principles and Practice. OTexts: Melbourne, Australia: OTexts.
  • Hyndman, R., Koehler, A., Snyder, R. & Grose, S. (2002). A state space framework for automatic forecasting using exponential smoothing methods. International Journal of Forecasting, 18(3), 439-454. https://doi.org/10.1016/S0169-2070(01)00110-8
  • IBM Cognos Analytics. (2021). Retrieved 2022-06-28, from https://www.ibm.com/docs/cs/cognos-analytics/11.1.0?topic=stories-get-started-dashboards
  • Introduction Demand forecasting. (2022). Retrieved 2022-06-28, from https://docs.microsoft.com/en-us/dynamics365/supply-chain/master-planning/introduction-demand-forecasting
  • Jaganathan, S., & Prakash, P. (2020). A combination-based forecasting method for the M4 Competition. International Journal of Forecasting, 36(1), 98-104. https://doi.org/10.1016/j.ijforecast.2019.03.030
  • Jana, R., Ghosh, I. & Wallin, M. (2022). Taming energy and electronic waste generation in bitcoin mining: Insights from Facebook prophet and deep neural network. Technological Forecasting and Social Change, 178. https://doi.org/10.1016/j.techfore.2022.121584
  • Jeza, S., & Lekhanya, L.M. (2022). The influence of digital transformation on the growth of small and medium enterprises in South Africa. Problems and Perspectives in Management, 20(3), 297-309. https://doi.org/10.21511/ppm.20(3).2022.24
  • Kliuchnikava, Y. (2022). The Impact of the Pandemic on Attitude to Innovations of SMEs in the Czech Republic. International Journal of Entrepreneurial Knowledge, 10(1), 34-45. https://doi.org/10.37335/ijek.v10i1.13
  • Ključnikov, A., Civelek, M., Polách, J., Mikoláš, Z., & Banot, M. (2020). How do security and benefits instill trustworthiness of a digital local currency? Oeconomia Copernicana, 11(3), 433-465. https://doi.org/10.24136/oc.2020.018
  • Ključnikov, A., Civelek, M., Vozňáková, I., & Krajčík, V. (2020). Can discounts expand local and digital currency awareness of individuals depending on their characteristics? Oeconomia Copernicana, 11(2), 239-266. https://doi.org/10.24136/oc.2020.010
  • Ključnikov, A., Civelek, M., Fialova, V., & Folvarčná, A. (2021). Organizational, local, and global innovativeness of family-owned SMEs depending on firm-individual level characteristics: evidence from the Czech Republic. Equilibrium. Quarterly Journal of Economics and Economic Policy, 16(1), 169-184. https://doi.org/10.24136/eq.2021.00
  • Ključnikov, A., Civelek, M., Klimeš, C., & Farana, R. (2022). Export risk perceptions of SMEs in selected Visegrad countries. Equilibrium. Quarterly Journal of Economics and Economic Policy, 17(1), 173-190. https://doi.org/10.24136/eq.2022.007
  • Kolková, A., & Ključnikov, A. (2021). Demand forecasting: an alternative approach based on technical indicator Pbands. Oeconomia Copernicana, 12(4), 1063-1094. https://doi.org/10.24136/oc.2021.035
  • Kolková, A., & Navrátil, M. (2021). Demand forecasting in Python: Deep learning model based on LSTM architecture versus statistical models. Acta Polytechnica Hungarica, 18(8), 123-141. https://doi.org/10.12700/APH.18.8.2021.8.7
  • Kolková, A., Rozehnal, P., Gaži, F., & Fajmon, L. (2022). The use of quantitative methods in business practice: study of Czech Republic. International Journal of Entrepreneurial Knowledge, 10(1), 80-99. https://doi.org/10.37335/ijek.v10i1.159
  • Kocisova, K., Gavurova, B., & Behun, M. (2018). The evaluation of stability of Czech and Slovak banks. Oeconomia Copernicana, 9(2), 205-223. https://doi.org/10.24136/oc.2018.011
  • Legaki, N., Karpouzis, K., Assimakopoulos, V., & Hamari, J. (2021). Gamification to avoid cognitive biases: An experiment of gamifying a forecasting course. Technological Forecasting and Social Change, 167. https://doi.org/10.1016/j.techfore.2021.120725
  • Luchko, M., Arzamasova, O., & Vovk, I. (2019). Personnel potential of national economy and gross domestic product: The case of Ukraine. Montenegrin Journal of Economics, 15(2), 59-70. https://doi.org/10.14254/1800-5845/2019.15-2.5
  • Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). The M4 Competition: Results, findings, conclusion and way forward. International Journal of Forecasting, 34(4), 802-808. https://doi.org/10.1016/j.ijforecast.2018.06.001
  • Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2022). M5 accuracy competition: Results, findings, and conclusions. International Journal of Forecasting, article in press. https://doi.org/10.1016/j.ijforecast.2021.11.013
  • Metzker, Z.,Marousek, J.,Hlawiczka, R., Belas, J.Jr.,& Khan, K.A.(2021a). The Perception of the Market and Operational Area of Business by Service Sector and Tourism Companies in terms of CSR implementation. Journal of Tourism and Services, 23(12), 217-236. https://doi.org/10.29036/jots.v12i23.328
  • Metzker, Z., Marousek, J., Zvarikova, K., Hlawiczka, R.(2021b). The perception of SMEs bankruptcy concerning CSR implementation. International Journal of Entrepreneurial Knowledge, 9(2), 85-95. https://doi.org/10.37335/ijek.v9i2.133
  • Mikušová, M., & Čopíková, A. (2016). What Business Owners Expect From a Crisis Manager? A Competency Model: Survey Results From Czech Businesses. Journal of Contingencies and Crisis Management, 24(3), 162-180. https://doi.org/10.1111/1468-5973.12111
  • Montero-Manso, P., Athanasopoulos, G., Hyndman, R., & Talagala, T. (2020). FFORMA: Feature-based forecast model averaging. International Journal of Forecasting, 36(1), 86-92. https://doi.org/10.1016/j.ijforecast.2019.02.011
  • Msomi T.S., & Nzama, S. (2022). Financial literacy and SME loan repayments in South Africa during the COVID-19 era. Investment Management and Financial Innovations, 19(4), 113-121. https://doi.org/10.21511/imfi.19(4).2022.09
  • Mura, L., & Hajduová, Z. (2021). Measuring efficiency by using selected determinants in regional SMEs. Entrepreneurship and Sustainability Issues, 8 (3), 487-503. https://doi.org/10.9770/jesi.2021.8.3(31)
  • Ning, Y., Kazemi, H., & Tahmasebi, P. (2022). A comparative machine learning study for time series oil production forecasting: ARIMA, LSTM, and Prophet. Computers & Geosciences, 164. https://doi.org/10.1016/j.cageo.2022.105126
  • Nyahuna, T., & Doorasamy, M. (2021). Application of environmental management accounting by small and medium enterprises in South Africa. Environmental Economics, 12(1), 103-111. https://doi.org/10.21511/ee.12(1).2021.09
  • Pawlikowski, M., & Chorowska, A. (2020). Weighted ensemble of statistical models. International Journal of Forecasting, 36(1), 93-97. https://doi.org/10.1016/j.ijforecast.2019.03.019
  • Pedregal, D., Villegas, M., Villegas, D., & Trapero, J. (2019). Time Series Modeling with MATLAB: The SSpace Toolbox. Theory and Applications of Time Series Analysis, 71-84. https://doi.org/10.1007/978-3-030-26036-1_6
  • Petropoulos, F., & Svetunkov, I. (2020). A simple combination of univariate models. International Journal of Forecasting, 36(1), 110-115. https://doi.org/10.1016/j.ijforecast.2019.01.006
  • Ptak, C. (2018). The Demand Driven Adaptive Enterprise Model. DynaSys. Retrieved from https://blog.dys.com/ddae-model/
  • Rashed, A., & Ghoniem, W. (2022). The impact of cash holding on stock returns in small and medium enterprises on the Egyptian Nile Stock Exchange. Investment Management and Financial Innovations, 19(3), 83-92. https://doi.org/10.21511/imfi.19(3).2022.08
  • Roshchyk, I., Oliinyk, O., Mishchuk, H., Bilan, Y. (2022). IT Products, E-Commerce, and Growth: Analysis of Links in Emerging Market. Transformations in Business & Economics, 21(1), 209-227
  • Samanta, I. (2022). Examining relationship marketing and strategic branding in b2b Greek SMEs: A family business development. Innovative Marketing, 18(3), 110-120. https://doi.org/10.21511/im.18(3).2022.10
  • Shaub, D. (2020). Fast and accurate yearly time series forecasting with forecast combinations. International Journal of Forecasting, 36(1), 116-120. https://doi.org/10.1016/j.ijforecast.2019.03.032
  • Siregar, Z.M.E., Supriadi, Y.N., Pranowo, A.S., Ende, & Harahap, N.J. (2022). A multidimensional approach in examining the role of self-efficacy on innovative work behavior: Evidence from the creative industry. Problems and Perspectives in Management, 20(2), 588-597. https://doi.org/10.21511/ppm.20(2).2022.48
  • Smyl, S. (2020). A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting. International Journal of Forecasting, 36(1), 75-85. https://doi.org/10.1016/j.ijforecast.2019.03.017
  • Sobczak, A. (2022). Analysis of the Conditions Influencing the Assimilation of the Robotic Process Automation by Enterprises. Human Technology, 18(2), 143-190. https://doi.org/10.14254/1795-6889.2022.18-2.4
  • Štefko, R., Džuka, J., & Lačný, M. (2022a). Psychological Factors of Tourist Expenditure: Neglected or Negligible?. Frontiers in psychology, 13. https://doi.org/10.3389/fpsyg.2022.942252
  • Stefko, R., Bacik, R., Fedorko, R., & Olearova, M. (2022b). Gender-generation characteristic in relation to the customer behavior and purchasing process in terms of mobile marketing. Oeconomia Copernicana, 13(1), 181-223. ISSN 2353-1827. HTTPS://DOI.ORG/10.24136/oc.2022.006
  • Stefko, R., Heckova, J., Gavurova, B., Valentiny, T., Chapcakova, A., & Ratnayake Kascakova, D. (2022c). An analysis of the impact of economic context of selected determinants of cross-border mergers and acquisitions in the EU. Economic Research-Ekonomska Istraživanja, 1-18. https://doi.org/10.1080/1331677X.2022.2048200
  • Stefko, R., Džuka, J., & Lačný, M. (2022d). Factors influencing intention to go on a summer holiday during the peak and remission of the Covid-19 Pandemic. Ekonomický časopis (Journal of Economics), 70(2), 144 - 170
  • Stefko, R., Jenčová, S. & Vašaničová, P. (2020). The Slovak Spa Industry and Spa Companies: Financial and Economic Situation. Journal of Tourism and Services, 20(11), 28-43. https://doi.org/10.29036/jots.v11i20.137
  • Stefko, R., Fedorko, R., Bacik, R., Rigelsky, M. & Olearova, M. (2020. Effect of service quality assessment on perception of TOP hotels in terms of sentiment polarity in the Visegrad group countries. Oeconomia Copernicana. 11(4), 721-742. https://doi.org/10.24136/oc.2020.029
  • Szeiner, Z., Kovács, Ádám, Zsigmond, T., Mura, L., Sanders, E., & Poor, J. (2022). An empirical study of consulting in a transitional economy in the Central European region during COVID-19. Journal of Eastern European and Central Asian Research (JEECAR), 9(3), 471-485. https://doi.org/10.15549/jeecar.v9i3.854
  • Šuleř, P., & Machová, V. (2020).s Better results of artificial neural networks in predicting ČEZ share prices. Journal of International Studies, 13(2), 259-278. https://doi.org/10.14254/2071-8330.2020/13-2/18
  • Taylor, S., & Letham, B. (2018). Forecasting at Scale. The American Statistician, 72(1), 37-45. https://doi.org/10.1080/00031305.2017.1380080
  • Tkacova, A., Gavurova, B., Danko, J., & Cepel, M. (2017). The importance of evaluation of economic determinants in public procurement processes in Slovakia in 2010-2016. Oeconomia Copernicana, 8(3), 367-382. https://doi.org/10.24136/oc.v8i3.23
  • Virglerová, Z., Kramoliš, J., & Capolupo, N. (2022). The impact of social media use on the internationalisation of SMEs. Economics and Sociology, 15(1), 268-283. https://doi.org/10.14254/2071-789X.2022/15-1/17
  • Wang, J., Du, X., & Qi, X. (2022). Strain prediction for historical timber buildings with a hybrid Prophet-XGBoost model. Mechanical Systems and Signal Processing, 179. https://doi.org/10.1016/j.ymssp.2022.109316
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171657842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.