Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 2 (49) | 23-57
Tytuł artykułu

A Generalized Derivation of The Black-Scholes Implied Volatility Through Hyperbolic Tangents

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article extends the previous research on the notion of a standardized call function and how to obtain an approximate model of the Black-Scholes formula via the hyperbolic tangent. Although the Black-Scholes approach is outdated and suffers from many limitations, it is still widely used to derive the implied volatility of options. This is particularly important for traders because it represents the risk of the underlying, and is the main factor in the option price. The approximation error of the suggested solution was estimated and the results compared with the most common methods available in the literature. A new formula was provided to correct some cases of underestimation of implied volatility. Graphic evidence, stress tests and Monte Carlo analysis confirm the quality of the results obtained. Finally, further literature is provided as to why implied volatility is used in decision making.(original abstract)
Rocznik
Numer
Strony
23-57
Opis fizyczny
Twórcy
  • Department of Economics and Finance, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
  • Department of Economics and Finance, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
  • Department of Economics and Finance, Università degli Studi di Bari "Aldo Moro", Bari, Italy.
Bibliografia
  • Barchart (2022). Stock options volume leaders. Available at: https://www.barchart.com/stocks/quotes/ ARCC/overview.
  • Bekiros, S., Jlassi, M., Naoui, K. and Uddin, G. S. (2017). The asymmetric relationship between returns and implied volatility: Evidence from global stock markets. Journal of Financial Stability, 30:156- 174.
  • Berkowitz, J. (2001). Getting the right option price with the wrong model. Available at SSRN: https://ssrn.com/abstract=286816.
  • Bharadia, M., Christofides, N., and Salkin, G. (1995). Computing the Black-Scholes implied volatility: Generalization of a simple formula. Advances in Futures and Options Research, 8:15-30.
  • Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. The Journal of Political Economy, 81(3):637-654.
  • Brenner, M. and Subrahmanyam, M. G. (1998). A simple formula to compute implied standard deviation. Financial Analysts Journal, 44(5):80-83.
  • Bufalo, M. and Orlando, G. (2022). An improved Barone-Adesi Whaley formula for turbulent markets. Journal of Computational and Applied. Mathematics, 406:113993-14009, doi:10.1016/j.cam. 2021.113993.
  • CBOE (2020). VIX and Volatility. http://www.cboe.com/products/vix-index-volatility.
  • CBOE (2021a). Chicago Board Options Exchange, CBOE S&P 500 3-Month Volatility Index [VXVCLS]. Available at FRED: https://fred.stlouisfed.org/series/VXVCLS.
  • CBOE (2021b). VIX Index. Available at CBOE: https://www.cboe.com/tradable_products/vix/faqs/.
  • Chance, D. M. (1996). A generalized simple formula to compute the implied volatility. Financial Review, 31(4):859-867.
  • Corrado, C. J. and Miller, T. W. (1996a). A note on a simple, accurate formula to compute implied standard deviations. Journal of Banking & Finance, 20(3):595-603.
  • Corrado, C. J. and Miller, T. W. (1996b). Volatility without tears: A simple formula for estimating implied volatility from options prices over a wide range of strike prices. Risk, 9(7):49-52.
  • Derman, E. and Kani, I. (1994). Riding on a smile. Risk, 7(2):32-39.
  • Dumas, B., Fleming, J., and Whaley, R. E. (1998). Implied volatility functions: Empirical tests. The Journal of Finance, 53(6):2059-2106.
  • Dupire, B. (1994). Pricing with a smile. Risk, 7(1):18-20.
  • Dura, G. and Moşneagu, A.-M. (2010). Numerical approximation of the Black-Scholes equation. Annals of the Alexandru Ioan Cuza University - Mathematics, 56(1):39-64.
  • Estrella, A. (1995). Taylor, Black and Scholes: series approximations and risk management pitfalls. Technical Report No. 9501, Federal Reserve Bank of New York. Available at: https://www.newyorkfed.org/research/staff_reports/research_papers/9501.html.
  • Fairclough, T. J. (2000). The case of the counterfeit error function. Institut Teknologi Brunei.
  • Fassas, A. P. and Siriopoulos, C. (2021). Implied volatility indices - a review. The Quarterly Review of Economics and Finance, 79:303-329.
  • Georgiev, S. G. and Vulkov, L. G. (2020). Computational recovery of time-dependent volatility from integral observations in option pricing. Journal of Computational Science, 39:101054.
  • Georgiev, S. G. and Vulkov, L. G. (2021). Computation of the unknown volatility from integral option price observations in jump-diffusion models. Mathematics and Computers in Simulation, 188:591-608.
  • Giot, P. (2005). Relationships between implied volatility indexes and stock index returns. The Journal of Portfolio Management, 31(3):92-100.
  • Glasserman, P. and Wu, Q. (2011). Forward and future implied volatility. International Journal of Theoretical and Applied Finance, 14(03):407-432.
  • Guerrero, J. and Orlando, G (2022). Stochastic local volatility models and the Wei-Norman factorization method. Discrete and Continuous Dynamical Systems-S, doi:10.3934/dcdss.2022026.
  • Han, B. (2008). Investor sentiment and option prices. The Review of Financial Studies, 21(1):387-414.
  • Hofstetter, E. and Selby, M. J. (2001). The logistic function and implied volatility: Quadratic approximation and beyond. Technical Report No. 04-214, Warwick Business School Preprint Serie. Available at: https://warwick.ac.uk/fac/soc/wbs/subjects/finance/research/wpaperseries/2004/04- 214.pdf.
  • Hull, J. C. (2006). Options, futures, and other derivatives. Pearson Education India.
  • Ingber, L. (1982). Statistical mechanics of neocortical interactions: I. Basic formulation. Physica D: Nonlinear Phenomena, 5(1):83-107.
  • Jeon, J. and Taylor, J. W. (2013). Using CAViaR models with implied volatility for Value-at-Risk estimation. Journal of Forecasting, 32(1):62-74.
  • Kim, T.-K., Kim, H.-G., and Huh, J. (2022). Large-scale online learning of implied volatilities. Expert Systems with Applications, 203:117365.
  • Komatsu, Y. (1955). Elementary inequalities for Mills' ratio. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs., 4:69-70.
  • Li, M. (2008). Approximate inversion of the Black-Scholes formula using rational functions. European Journal of Operational Research, 185(2):743-759.
  • Li, S. (2005). A new formula for computing implied volatility. Applied Mathematics and Computation, 170(1):611-625.
  • Liang, S. and Tahara, Y. (2009). A formula to compute implied volatility, with error estimate. Interdisciplinary Information Sciences, 15(2):267-272.
  • Liu, S., Oosterlee, C. W., and Bohte, S. M. (2019). Pricing options and computing implied volatilities using neural networks. Risks, 7(1):1-22.
  • Malliaris, M. and Salchenberger, L. (1996). Using neural networks to forecast the S&P 100 implied volatility. Neurocomputing, 10(2):183-195.
  • Manaster, S. and Koehler, G. (1982). The calculation of implied variances from the Black-Scholes model: A note. The Journal of Finance, 37(1):227-230.
  • Matić, I., Radoičić, R., and Stefanica, D. (2017). Pólya-based approximation for the ATM-forward implied volatility. International Journal of Financial Engineering, 4(02-03):1750032.
  • Merton, R. C. (1973). Theory of rational option pricing. The Bell Journal of Economics and Management Science, 4(1):141-183.
  • Millo, Y. and MacKenzie, D. (2009). The usefulness of inaccurate models: Towards an understanding of the emergence of financial risk management. Accounting, Organizations and Society, 34(5):638-653.
  • Mininni, M., Orlando, G., and Taglialatela, G. (2021). Challenges in approximating the Black and Scholes call formula with hyperbolic tangents. Decisions in Economics and Finance, 44:73-100.
  • Mo, H. and Wu, L. (2007). International capital asset pricing: Evidence from options. Journal of Empirical Finance, 14(4):465-498.
  • Nielsen, L. T. (1993). Understanding n(d1) and n(d2): Risk adjusted probabilities in the Black-Scholes model. Journal of the French Finance Association, 14:95-106.
  • Orlando, G. and Taglialatela, G. (2017). A review on implied volatility calculation. Journal of Computational and Applied Mathematics, 320:202-220.
  • Orlando, G. and Taglialatela, G. (2021). On the approximation of the Black and Scholes call function. Journal of Computational and Applied Mathematics, 384:113-154.
  • Park, S. Y., Ryu, D., and Song, J. (2017). The dynamic conditional relationship between stock market returns and implied volatility. Physica A: Statistical Mechanics and its Applications, 482:638-648.
  • Pianca, P. (2005). Simple formulas to option pricing and hedging in the Black-Scholes model. Rendiconti per gli Studi Economici Quantitativi, 1:223-231.
  • Pollak, H. O. (1956). A remark on "Elementary inequalities for Mills' ratio" by Yûsaku Komatsu. Rep. Statist. Appl. Res. Un. Jap. Sci. Engrs., 4:110.
  • Pólya, G. (1949). Remarks on computing the probability integral in one and two dimensions. In Neyman, J., editor, Proceedings of the First Berkeley Symposium on Mathematical Statistics and Probability, August 13-18, 1945 and January 27-29, 1946, pp. 63-78, Berkeley, Calif. Statistical Laboratory of the University of California, Berkeley, University of California Press.
  • Ramos, H. P. and Righi, M. B. (2020). Liquidity, implied volatility and tail risk: A comparison of liquidity measures. International Review of Financial Analysis, 69:101463.
  • Rubinstein, M. (1994). Implied binomial trees. The Journal of Finance, 49(3):771-818.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171657756
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.