Warianty tytułu
Języki publikacji
Abstrakty
Research background: E-commerce is developing rapidly, especially during the Covid19 pandemic. This fact can benefit individuals who want to sell their already used goods. Importantly, for sellers, it is not always a priority to get the highest price, but sometimes it is simply effective to get rid of the goods at a satisfactory price. Purpose: The aim of this article is to analyze the impact of the broadly understood time of the end of the online auction on the success or failure of a sale. Research methodology: In the study, the raw odds ratio was used for the effect of a single variable. Next, the impact of specific variables within the set of risk factors was determined using the logistic regression. Results: Auctions ending in the evening were found to be more than 150% more likely to be successful, while night hours reduced the chance of success by 50%. The day's most favorable for sales are Monday and Tuesday, the opposite pattern was observed for Wednesday, Thursday and Friday. An interesting relationship was found for the second half of the month, which increased the possibility of selling the goods by over 20%. Novelty: In the literature there are almost none that would focus on the analysis of the possibility of ending the auction with a sale (i.e. success) in the context of the auction end time on the Central European market. This issue is usually discussed on the side and has not been analyzed comprehensively - this paper is a step forward in this direction. (original abstract)
Czasopismo
Rocznik
Numer
Strony
246-264
Opis fizyczny
Twórcy
autor
- University of Lodz, Poland
autor
- University of Lodz, Poland
autor
- University of Lodz, Poland
Bibliografia
- Allegro.pl (2022). Retrieved from https://www.allegro.pl.
- Backus, M., Blake, T., Masterov, D., Tadelis, S. (2015). Is sniping a problem for online auction markets? WWW 2015 - Proceedings of the 24th International Conference on World Wide Web (pp. 88-96). DOI: 10.1145/2736277.2741690.
- Balingit, R., Trevathan, J., Read, W. (2009). Analysing bidding trends in online auctions. In 2009 Sixth International Conference on Information Technology: New Generations (pp. 928-933). DOI: 10.1109/ITNG.2009.315.
- Bandyopadhyay, S., Bandyopadhyay, S. (2009). Estimating time required to reach bid levels in online auctions. Journal of Management Information Systems, 26 (3), 275-301. DOI: 10.2753/MIS0742-1222260309.
- Bapna, R., Day R., Rice, S. (2020). Allocative Efficiency in Online Auctions: Improving the Performance of Multiple Online Auctions Via Seek-and-Protect Agents. Production and Operations Management, 29 (8), 1878-1893. DOI: 10.1111/poms.13194.
- Ben Rhouma, T., Zaccour, G. (2012). An empirical investigation of late bidding in online auctions. Economics Letters, 117 (3), 715-717. DOI: 10.1016/j.econlet.2011.12.022.
- Borle, S., Boatwright, P., Kadane, J. (2006). The timing of bid placement and extent of multiple bidding: An empirical investigation using eBay online auctions. Statistical Science, 21 (2), 194-205. DOI: 10.1214/08834230600000012.
- Bose, S., Daripa, A. (2017). Shills and snipes. Games and Economic Behavior, 104, 507-516. DOI: 10.1016/j.geb.2017.05.010.
- Bradlow, E., Park, Y. (2007). Bayesian estimation of bid sequences in Internet auctions using a generalized record-breaking model. Marketing Science, 26 (2), 218-229. DOI: 10.1287/mksc.1060.0225.
- Canals-Cerdá, J. (2012). The value of a good reputation online: An application to art auctions. Journal of Cultural Economics, 36 (1), 67-85. DOI: 10.2139/ssrn.1123599.
- Chan, N., Li, Z., Yau, C. (2014). Forecasting online auctions via self-exciting point processes. Journal of Forecasting, 33 (7), 501-514. DOI: 10.1002/for.2313.
- Chow, V. (2019). Predicting Auction Price of Vehicle License Plate with Deep Residual Learning. Lecture Notes in Computer Science, 11607, 179-188. DOI: 10.48550/arXiv.1910.04879.
- Cui, X., Lai, V., Lowry, P., Lei, Y. (2020). The effects of bidder factors on online bidding strategies: A motivation-opportunity-ability (MOA) model. Decision Support Systems, 138, 1-36. DOI: 10.2139/ssrn.3679508.
- Czerwonka, P. Zakonnik, L., (2015). Analysis of Selected Behavior of Online Auctions Users. Przedsiębiorczość i Zarządzania, XVI (9, II), 67-81.
- Czerwonka, P., Zakonnik, L., Podgórski G. (2022). The Issue of Overestimating the Final Price in Online Auctions In The Context of User Experience - Based on Selected EEU Markets. Proceeding 39th International Business Information Management Association Conference (IBIMA).
- Du, L., Hua, G. (2010). Bidding strategy and participating threshold in online English auction with buy-it-now option. Proceedings - 2010 IEEE 17th International Conference on Industrial Engineering and Engineering Management. IE and EM2010. DOI: 10.1109/ICIEEM.2010.5646603.
- Elhadary, O. (2010). Is the first bid really important in online auctions? International Conference e-Commerce 2010 (pp. 139-143). MCCSIS.
- Feng, C., Fay, S., Sivakumar, K. (2016). Overbidding in electronic auctions: factors influencing the propensity to overbid and the magnitude of overbidding. Journal of the Academy of Marketing Science, 44 (2), 241-260. DOI: 10.1007/s11747-015-0450-9.
- Haruvy, E., Popkowski-Leszczyc, P. (2010). Search and choice in online consumer auctions. Marketing Science, 29 (6), 1152-1164. DOI: 10.1287/mksc.1100.0601.
- Hayne, S., Wang, H., Mendonca, S. (2012). eBay as the 'Terminator': Determining User Suspension From Feedback Ratings. Journal of Organizational Computing and Electronic Commerce, 22 (2), 160-183. DOI: 10.1080/10919392.2012.667714.
- IBM Support, Cox-Snell and Nagelkerke R^2 (R-squared) statistics - formula and references (2022). Retrieved from https://www.ibm.com/support/pages/cox-snell-and-nagelkerke-r2-r-squared-statistics-formula-and-references.
- Jank, W., Shmueli, G. (2010). Forecasting online auctions using dynamic models. Frontiers in Artificial Intelligence and Applications, 218, 137-148. DOI: 10.3233/978-1-60750-633-1-137.
- Kamins, M., Noy, A., Steinhart, Y., Mazursky, D. (2011). The Effect of Social Cues on Sniping Behavior in Internet Auctions: Field Evidence and a Lab Experiment. Journal of Interactive Marketing, 25 (4), 241-250. DOI: 10.1016/j.intmar.2011.03.002.
- Kaur, P., Goyal, M., Lu, J. (2017). A Comparison of Bidding Strategies for Online Auctions Using Fuzzy Reasoning and Negotiation Decision Functions. IEEE Transactions on Fuzzy Systems, 25 (2), 425-438. DOI: 10.1109/tfuzz.2016.2598297.
- Khadge, M., Kulkarni, M. (2016). Machine learning approach for predicting end price of online auction. Proceedings of the International Conference on Inventive Computation Technologies. ICICT. DOI: 10.1109/INVENTIVE.2016.7830232.
- Klemperer, P. (2004). Auctions: Theory and Practice. Princeton: Princeton University Press.
- Kuruzovich, J. (2012). Time and online auctions. Journal of Electronic Commerce Research,13 (1), 23-32.
- Li, C. (2012). Characteristics of bid processes in online auctions. Advanced Materials Research,403-408, 5199-5203. DOI: 10.4028/www.scientific.net/AMR.403-408.5199.
- Li, X., Dong, H., Han, S. (2020). Multiple Linear Regression with Kalman Filter for Predicting End Prices of Online Auctions. Proceedings - IEEE 18th International Conference on Dependable, Autonomic and Secure Computing. DASC/PiCom/CBDCom/CyberSciTech. DOI: 10.1109/DASC-PICom-CBDCom-CyberSciTech49142.2020.00042.
- Liu, Y., Feng, Y., Shao, Z. (2009). Online auction final price forecasting model based on Bagging and decision tree. Systems Engineering - Theory & Practice, 29 (12), 134-140.
- Majadi, N., Trevathan, J., Bergmann, N. (2018). Real-time collusive shill bidding detection in online auctions. Lecture Notes in Computer Science, 34, 184-192. DOI: 10.1016/j.elerap.2019.100831.
- Majadi, N., Trevathan, J., Gray, H. (2018). A run-time algorithm for detecting shill bidding in online auctions. Journal of Theoretical and Applied Electronic Commerce Research, 13 (3), 17-49. DOI: 10.4067/S0718-18762018000300103.
- Muthitacharoen, A., Tams, S. (2017). The Role of Auction Duration in Bidder Strategies and Auction Prices. International Journal of Electronic Commerce, 21 (1), 71-102. DOI: 10.1080/10864415.2016.1204190.
- Niedzwiedziński, M., Zakonnik, L. (2018). Participants of Online Auctions and their Behavior in the Process of Shaping Prices - Consumer Surveys. Przedsiebiorczosc i Zarzadzanie, XIX (5, I), 237-250.
- Ødegaard, F., Puterman, M. (2012). Estimating intermediate price transitions in online auctions. Applied Stochastic Models in Business and Industry, 28 (6), 529-541. DOI: 10.1002/asmb.928.
- Onur, I., Velamuri, M. (2014). Competition, endogeneity and the winning bid: An empirical analysis of eBay auctions. Information Economics and Policy, 26 (1), 68-74. DOI: 10.1016/j.infoecopol.2013.11.003.
- Park, Y., Bradlow, E. (2005). An integrated model for bidding behavior in Internet auctions: Whether, who, when, and how much. Journal of Marketing Research, 42 (4), 470-482. DOI: 10.1509/jmkr.2005.42.4.470.
- Porebski, K., Zakonnik, L. (2019). Analysis of the Impact of Specific Factors on Purchase Decisions. Przedsiebiorczosc i Zarzadzanie, XX (12, 1), 213-225.
- Rószkiewicz, M. (2011). Analiza Klienta. Kraków: SPPS Polska.
- Srinivasan, K., Wang, X. (2010). Bidders' experience and learning in online auctions: Issues and implications. Marketing Science, 29 (6), 988-993. DOI: 10.1287/mksc.1100.0581.
- Trevathan, J., Read, W. (2006). Undesirable and Fraudulent Behaviour in Online Auctions. Proceedings of the International Conference on Security and Cryptography (pp. 1-9). Setúbal. DOI: 10.5220/0002100704500458.
- Trevathan, J., Read, W., Lee, Y., Atkinson, I. (2011). Targeting the strategies of a bid sniper. Proceedings of the Annual Hawaii International Conference on System Sciences. DOI: 10.1109/HICSS.2011.396.
- Tsai, M., Huang, T. (2011). Using genetic algorithm to help the seller strategies in online auction. Key Engineering Materials, 474-476, 1760-1763. DOI: 10.4028/www.scientific.net/KEM.474-476.1760.
- Yokotani, T., Huang, H., Kawagoe, K. (2012). Predicting online auction final prices using time series splitting and clustering. Lecture Notes in Computer Science, 7235, 207-218. DOI: 10.1007/978-3-642-29253-8_18.
- Zafari, B., Soyer, R. (2020). Modeling first bid in retail secondary market online auctions: A Bayesian approach. Applied Stochastic Models in Business and Industry, 36 (3), 452- 464. DOI: 10.1002/asmb.2498.
- Zafari, B., Soyer, R. (2021). Assessment of uncertainty in bid arrival times: A Bayesian mixture model. Journal of the Operational Research Society, 72 (11), 2517-2528. DOI: 10.1080/01605682.2020.1796539.
- Zakonnik, L. (2019). Consumer behavior and the price formation of used goods on the electronic market. Zachowania konsumenta a kształtowanie się ceny dóbr używanych na rynku elektronicznym. Łódź: Uniwersytet Łódzki.
- Zakonnik L. (2021). Editorial models of 19th-century polish bibles - An attempt at identification, Biblical Annals, 11 (2), 327-374, DOI: 10.31743/biban.12185.
- Zakonnik, L., Czerwonka, P., Podgórski, G., Zajdel, K., Zajdel, R. (2022). Art Market Investment Bubble during COVID-19 - Case Study of the Rare Books Market in Poland. Sustainability, 14 (18), 11648, DOI: 10.3390/su141811648.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171657456