Warianty tytułu
Języki publikacji
Abstrakty
In this note we propose a calculus for piece-wise linear functions, in order to obtain derivatives and second derivatives at points where the function is not differentiable. Such derivatives can be used to calculate coefficients of risk aversion at initial wealth for piece-wise linear utility functions for gains, which display loss aversion-and hence non differentiability at zero gains. (original abstract)
Rocznik
Tom
Numer
Strony
1-10
Opis fizyczny
Twórcy
autor
- Pandit Deendayal Energy University, Gujarat, India
Bibliografia
- Arrow K. J. (1963) Liquidity preference. Lecture VI [in] Lecture Notes for Economics, 285, The Economics of Uncertainty, 33-53, Stanford University.
- Eeckhoudt L., Gollier C., Schlesinger H. (2005) Economic and Financial Decisions Under Risk. Princeton University Press, NJ.
- de Finetti B. (1952) Sulla preferibilita. Giornale Degli Economisti E Annali Di Economia,11, 685-709.
- Kemeny J. G., Snell J. L., Thompson G. L. (1957) Introduction to Finite Mathematics (Third Edition, 1974). Prentice-Hall, Inc., Englewood Cliffs, N. J. Pratt J. (1964) Risk Aversion in the Small and in the Large. Econometrica, 32(1/2), 122-136.
- Ross S. A. (1981) Some Stronger Measures of Risk Aversion in the Small and in the Large with Applications. Econometrica, 49(3), 621-638.
- Stanley W. D. (2004) Technical Analysis and Applications With Matlab. Cengage Learning.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171655088