Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 8 (22) | nr 2 | 7-28
Tytuł artykułu

How Google Trends Can Improve Market Predictions - the Case of the Warsaw Stock Exchange

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this paper is to investigate interdependencies between the WIG20 index and economic policy uncertainty (EPU) related keywords quantified by a Google Trends search index. Tests for two periods from January 2015 till December 2019 and from June 2016 till May 2021 have been performed. This allowed the period of relative stability from the time of economic shock caused by the COVID-19 pandemics followed by various restrictions imposed by the governments to be distinguished. A bivariate VAR model to selected search terms and the value of the WIG20 index was applied. After using AIC to establish the optimal number of lags the Granger causality test was performed. The increased empirical relationship has been confirmed between twelve EPU related terms and changes in the WIG20 index in the second period versus six terms for the pre-COVID period. It was also found that in the post-COVID period the intensity of reverse relations increased. (original abstract)
Rocznik
Tom
Numer
Strony
7-28
Opis fizyczny
Twórcy
  • Poznań University of Economics and Business
  • Poznań University of Economics and Business
Bibliografia
  • Algaba, A., Borms, S., Boudt, K., & Van Pelt, J. (2020, July 3). The Economic Policy Uncertainty Index for Flanders, Wallonia and Belgium. SSRN Electronic Journal, 6, 1-16. https://doi.org/10.2139/ssrn.3580000
  • Ali, B.J. (2020). Impact of COVID-19 on consumer buying behavior toward online shopping in Iraq. Economic Studies Journal, 18(42), 267-280. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3729323
  • Aljanabi, A.R.A. (2021). The impact of economic policy uncertainty, news framing and information overload on panic buying behavior in the time of COVID-19: A conceptual exploration. International Journal of Emerging Markets. https://doi.org/10.1108/IJOEM-10-2020-1181
  • Anghinoni, L., Zhao, L., Ji, D., & Pan, H. (2019). Time series trend detection and forecasting using complex network topology analysis. Neural Networks, 117, 295-306. http://doi.org/10.1016/j.neunet.2019.05.018
  • Appel, G., Grewal, L., Hadi, R., & Stephen, A.T. (2020). The future of social media in marketing. Journal of the Academy of Marketing Science, 48(1), 79-95. https://doi.org/10.1007/s11747-019-00695-1
  • Baker, S., Bloom, N., & Davis, S. (2016). Measuring economic policy uncertainty. Quarterly Journal of Economics, 131(4), 1593-1636. https://doi.org/10.1093/qje/qjw024
  • Bar-Ilan, J., & Gutman, T. (2005). How do search engines respond to some non-English queries? Journal of Information Science, 31(1), 13-28. https://doi.org/10.1177/0165551505049255
  • Bergman, M.U., & Worm, C.H. (2021). Economic Policy Uncertainty and consumer perceptions: The Danish case. Retrieved from https://www.researchgate.net/publication/343832963_Economic_Policy_Uncertainty_and_Consumer_Perceptions_The_Danish_Case
  • Bloom, N. (2009). The impact of uncertainty shocks. Econometrica, 77(3), 623-685. https://doi.org/10.3982/ecta6248
  • Choi, H., & Varian, H. (2012). Predicting the present with Google Trends. Economic Record, 88(1), 2-9. https://doi.org/10.1111/j.1475-4932.2012.00809.x
  • Colliri, T., & Zhao, L. (2019). A network-based model for optimizing returns in the stock market. (2019 8th Brazilian Conference on Intelligent Systems (BRACIS), IEEE). http://doi.org/10.1109/BRACIS.2019.00118
  • Da, Z., Engelberg, J., & Gao, P. (2011). In search of attention. Journal of Finance, 66(5), 1461-1499. https://doi.org/10.1111/j.1540-6261.2011.01679.x
  • Depoux, A., Martin, S., Karafillakis, E., Preet, R., Wilder-Smith, A., & Larson, H. (2020). The pandemic of social media panic travels faster than the COVID-19 outbreak. Journal of Travel Medicine, 27(3). http://doi.org/10.1093/jtm/taaa031
  • Dickey, D.A., & Fuller, W.A. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431, http://doi.org/10.1080/01621459.1979.10482531
  • Ding, X., Zhang, Y., Liu, T., & Duan, J. (2014). Using structured events to predict stock price movement: An empirical investigation. (2014 Conference on Empirical Methods in Natural Language Processing EMNLP), 1415-1425). http://doi.org/10.3115/v1/D14-1148
  • Fuller, W.A. (1996). Introduction to statistical time series. New York: John Wiley & Sons. http://doi.org/10.1002/9780470316917
  • Gałązka, M. (2011). Characteristics of the Polish Stock Market correlations. International Review of Financial Analysis, 20(1), 1-5. http://doi.org/10.1016/j.irfa.2010.11.002
  • Gera, I., & London, A. (2019). Portfolio selection based on a configuration model and hierarchical clustering for asset graphs. (Proceedings of the MATCOS 2019, 39-42).
  • Goel, S., Hofman, J.M., Lahaie, S., Pennock, D.M., & Watts, D.J. (2010). Predicting consumer behavior with web search. (Proceedings of the National Academy of Sciences of the United States of America, 107(41), 17486-17490). https://doi.org/10.1073/pnas.1005962107
  • Granger, C.W.J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3). http://doi.org/10.2307/1912791
  • Gruhl, D., Guha, R., Kumar, R., Novak, J., & Tomkins, A. (2005). The predictive power of online chatter. (Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 78-87). https://doi.org/10.1145/1081870.1081883
  • Gusev, M., Kroujiline, D., Govorkov, B., Sharov, S.V., Ushanov, D., & Zhilyaev, M. (2015). Predictable markets? A news-driven model of the stock market. Algorithmic Finance, 4(1-2), 5-51. https://doi.org/10.3233/AF-150042
  • Hołda, M. (2019). Newspaper-based economic uncertainty indices for Poland. (NBP Working Papers No. 310, 1-49). Retrieved from https://ideas.repec.org/p/nbp/nbpmis/310.html
  • Hu, H., Tang, L., Zhang, S., & Wang, H. (2018). Predicting the direction of stock markets using optimized neural networks with Google Trends. Neurocomputing, 285, 188-195. https://doi.org/10.1016/j.neucom.2018.01.038
  • Huang, M.Y., Rojas, R.R., & Convery, P.D. (2019). Forecasting stock market movements using Google Trend searches. Empirical Economics, 59, 2821-2839. https://doi.org/10.1007/s00181-019-01725-1
  • Jun, S.P., Yoo, H.S., & Choi, S. (2018). Ten years of research change using Google Trends: From the perspective of big data utilizations and applications. Technological Forecasting and Social Change, 130, 69-87. https://doi.org/10.1016/j.techfore.2017.11.009
  • Karanasos, M., Yfanti, S., & Hunter, J. (2021). Emerging stock market volatility and economic fundamentals: The importance of US uncertainty spillovers, financial and health crises. Annals of Operations Research, 313, 1077-1116. https://doi.org/10.1007/s10479-021-04042-y
  • Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1-3), 159-178. http://doi.org/10.1016/0304-4076(92)90104-Y
  • Liu, H. (2018). Leveraging financial news for stock trend prediction with attention-based recurrent neural network. Retrieved from https://arxiv.org/abs/1811.06173
  • Liu, J., Chao, F., Lin, Y., & Lin, C. (2019). Stock prices prediction using deep learning models. Retrieved from https://arxiv.org/abs/1909.12227
  • Lütkepohl, H. (2015). New introduction to multiple time series analysis. Berlin, Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-540-27752-1
  • Mirjalili, S. (2016). SCA: A sine cosine algorithm for solving optimization problems. Knowledge-Based Systems, 96, 120-133. https://doi.org/10.1016/j.knosys.2015.12.022
  • Moat, H.S., Curme, C., Avakian, A., Kenett, D.Y., Eugene Stanley, H., & Preis, T. (2013). Quantifying Wikipedia usage patterns before stock market moves. Scientific Reports, 3, 1801. https://doi.org/10.1038/srep01801
  • Patil, P., Wu, C.S.M., Potika, K., & Orang, M. (2020). Stock market prediction using ensemble of graph theory, machine learning and deep learning models. (Proceedings of the 3rd International Conference on Software Engineering and Information Management. ACM, 85-92). http://doi.org/10.1145/3378936.3378972
  • Podsiadlo, M., & Rybinski, H. (2016). Financial time series forecasting using rough sets with time-weighted rule voting. Expert Systems with Applications, 66(30) 219-233. http://doi.org/10.1016/j.eswa.2016.08.066
  • Preis, T., Moat, H.S., & Stanley, H.E. (2013). Quantifying trading behavior in financial markets using Google Trends. Scientific Reports, 3, 1684. https://doi.org/10.1038/srep01684
  • Simon, B.H.A. (1955). A behavioral model of rational choice. Quarterly Journal of Economics, 69(1), 99-118. http://doi.org/10.2307/1884852
  • Sorić, P., & Lolić, I. (2017). Economic uncertainty and its impact on the Croatian economy. Public Sector Economics, 41(4), 443-477. https://doi.org/10.3326/pse.41.4.3
  • Tan, S.D., & Tas, O. (2021). Social media sentiment in international stock returns and trading activity. Journal of Behavioral Finance, 22(2), 221-234. https://doi.org/10.1080/15427560.2020.1772261
  • Ticknor, J.L. (2013). A Bayesian regularized artificial neural network for stock market forecasting. Expert Systems with Applications, 40(14), 5501-5506. http://doi.org/10.1016/j.eswa.2013.04.013
  • Zebrowska-Suchodolska, D., Karpio, A., & Kompa, K. (2021). COVID-19 pandemic: Stock markets situation in European Ex-communist countries. European Research Studies Journal, 24(3), 1106-1128. https://doi.org/10.35808/ersj/2408
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171654414
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.