Warianty tytułu
Analiza i ocena ryzyka realizacji instalacji kogeneracyjnej w hodowli żywca
Języki publikacji
Abstrakty
Analiza i ocena ryzyka realizacji instalacji kogeneracyjnej w hodowli żywca biogaz, odpady zwierzęce, ocena ryzyka, identyfikacja ryzyka, analiza ryzyka Wprowadzenie coraz ostrzejszych zasad związanych z przetwarzaniem i składowaniem odchodów zwierzęcych, rosnące zapotrzebowanie na energię oraz tworzenie zrównoważonej hodowli zwierząt spowodowały wzrost zainteresowania produkcją czystej energii z odchodów zwierzęcych. Produkcja biogazu i jego późniejsze spalanie w gospodarstwie należy do najbardziej obiecujących technologii. Jedną z możliwości wykorzystania biogazu jest wykorzystanie małych agregatów do skojarzonej produkcji energii elektrycznej i cieplnej w oparciu o silnik spalinowy. Analiza takich obiektów oddanych do użytku pokazuje, że alternatywne technologie wykorzystujące biogaz jako paliwo są lepsze od konwencjonalnych, zarówno z ekonomicznego, jak i środowiskowego punktu widzenia. Jednakże wprowadzenie takich technologii do eksploatacji zawsze wiąże się z szeregiem zagrożeń, ponieważ na inwestycje w nowe technologie wpływa niepewność techniczna i ekonomiczna. Przy planowaniu i przygotowaniu planu budowy takich biogazowni istotne są koszty inwestycji, wsparcie techniczne i opłacalność projektu. Przedstawienie rolnikowi krytycznych parametrów ekonomicznych i technicznych informujących go o wszelkich możliwych zagrożeniach inwestycyjnych, operacyjnych i nieprzewidywalnym ryzyku pozwoli mu podjąć wyzwania i wybrać najlepsze rozwiązanie dla swojego gospodarstwa. W publikacji dokonano analizy i oceny ryzyka w oparciu o charakterystykę technologii oraz przedstawiono możliwe konsekwencje tego ryzyka. Proponowana jest macierz ryzyka związana ze specyfiką obiektu i technologią, za pomocą której identyfikowany jest rodzaj ryzyka. Na podstawie analizy uzyskanych wyników formułowana jest umotywowana propozycja ograniczenia ryzyka.(abstrakt oryginalny)
The introduction of increasingly strict rules related to the processing and storage of animal waste, the growing demand for energy and the creation of sustainable animal husbandry have led to an increased interest in the production of clean energy from animal waste. The production of biogas and its subsequent burning on the farm is among the most promising technologies. One of the possibilities for the utilization of biogas is through the use of small aggregates for the combined production of electricity and heat energy based on an internal combustion engine. Analysis of such facilities that have been put into operation show that alternative technologies using biogas as fuel are better than conventional options, both from an economic and an environmental point of view. In this sense, however, the introduction of such a technology into operation is always associated with a number of risks, since investments in new technologies are influenced by technical and economic uncertainty. When planning and preparing the plan for the construction of such a biogas facility, the investment costs, technical support and profitability of the project are essential. Introducing critical economic and technical parameters to inform the farmer of all possible investments, operational and unforeseen risks will allow him to accept the challenges and choose the best solution for his farm. In this publication, an analysis and assessment of the risk has been carried out based on the characteristics of the technology - the possible consequences of the risk are also presented. A risk matrix related to the specifics of the object and the technology is proposed, with the help of which, the type of risk is identified. Based on an analysis of the obtained results, a motivated proposal for reducing the risk is made.(original abstract)
Słowa kluczowe
Twórcy
- Technical University of Sofia, Bulgaria
Bibliografia
- Aoki et al. 2006 - Aoki, K., Umetsu, K., Nishizaki, K., Takahashi, J., Kishimoto, T., Tani, M., Hamamoto, O. and Misaki, T. 2006. Thermophilic biogas plant for dairy manure treatment as combined power and heat system in cold regions. International Congress Series 1293, pp. 238-241, DOI: 10.1016/j. ics.2006.03.014.
- Ardebili, S.M.S. 2022. Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran. Renewable Energy 154, pp. 29-37, DOI: 10.1016/j.renene.2020.02.102.
- Barozzi et al. 2021 - Barozzi, M., Contini, S., Raboni, M., Torretta, V., Moreno, V.C. and Copelli, S. 2021. Integration of Recursive Operability Analysis, FMECA and FTA for the Quantitative Risk Assessment in biogas plants: Role of procedural errors and components failures. Journal of Loss Prevention in the Process Industries 71, DOI: 10.1016/j.jlp.2021.104468.
- Bai et al. 2022 - Bai, D., Jain, V., Tripathi, M., Ali, S.A., Shabbir, M.S., Mady A.A. and Ramos-Meza, M.C.S. 2022. Performance of biogas plant analysis and policy implications: Evidence from the commercial sources. Energy Policy 169, DOI: 10.1016/j.enpol.2022.113173.
- Bartela et al. 2015 - Bartela, Ł., Skorek-Osikowska, A. and Kotowicz, J. 2015. An analysis of the investment risk related to the integration of a supercritical coal-fired combined heat and power plant with an absorption installation for CO2 separation. Applied Energy 156, pp. 423-435, DOI: 10.1016/j. apenergy.2015.07.045.
- Brudermann et al. 2015 - Brudermann, T., Mitterhuber, C. and Posch, A. 2015. Agricultural biogas plants - A systematic analysis of strengths, weaknesses, opportunities and threats. Energy Policy 76, pp. 107-111, DOI: 10.1016/j.enpol.2014.11.022.
- Caetano et al. 2022 - Caetano, B.C., Santos, N.D.S.A., Hanriot, V.M., Sandoval, O.R. and Huebner, R. 2022. Energy conversion of biogas from livestock manure to electricity energy using a Stirling engine. Energy Conversion and Management: X 15, DOI: 10.1016/j.ecmx.2022.100224.
- Chevalier, C. and Meunier, F. 2005. Environmental assessment of biogas co- or tri-generation units by life cycle analysis methodology. Applied Thermal Engineering 25(17-18), pp. 3025-3041, DOI: 10.1016/j. applthermaleng.2005.03.011.
- Decker et al. 2010 - Decker, S., Moore, A., Thal, W., Opton, K., Caballero, S. and Beasley, M. 2010. Synergistic Integration of Concept Mapping and Cause and Effect Diagramming Into Simulated Experiences. Clinical Simulation in Nursing 6(4), pp. e153-e159, DOI: 10.1016/j.ecns.2009.11.010.
- Doseva, N. and Chakyrova, D. 2019. Thermoeconomic analysis of biogas engines powered cogeneration system. Journal of Thermal Engineering 5(2), pp. 93-107.
- Gould, W.A. 1992. CHAPTER 11 - Problem Solving - Cause and Effect Diagram, Editor(s): Wilbur A. Gould, Total Quality Management for the Food Industries. Woodhead Publishing pp. 73-77, DOI: 10.1016/B978-1-84569-601-6.50018-9.
- Ibrahim et al. 2022 - Ibrahim, N.A., Alwi, S.R.W., Manan, Z.A., Mustaffa, A.A. and Kidam, K. 2022. Risk matrix approach of extreme temperature and precipitation for renewable energy systems in Malaysia. Energy 254, Part C, DOI: 10.1016/j.energy.2022.124471.
- Igliński et al. 2012 - Igliński, B., Buczkowski, R., Iglińska, A., Cichosz, M., Piechota, H. and Kujawski, W. 2012. Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renewable and Sustainable Energy Reviews 16(7), pp. 4890-4900, DOI: 10.1016/j.rser.2012.04.037.
- Ito et al. 2022 - Ito, A., Hagström, M., Bokrantz, J., Skoogh, A., Nawcki, M., Gandhi, K., Bergsjö, D. and Bärring, M. 2022. Improved root cause analysis supporting resilient production systems. Journal of Manufacturing Systems 64, pp. 468-478, DOI: 10.1016/j.jmsy.2022.07.015.
- Kaur et al. 2022 - Kaur, G., Sharma, N.K., Kaur J., Bajaj, M., Zawbaa, H.M., Turky, R.A. and Kamel, S. 2022. Prospects of biogas and evaluation of unseen livestock based resource potential as distributed generation in India. Ain Shams Engineering Journal 13(4), DOI: 10.1016/j.asej.2021.101657.
- Kozłowski et al. 2019 - Kozłowski, K., Pietrzykowski, M., Czekała, W., Dach, J., Kowalczyk-Juśko, A., Jóźwiakowski, K. and Brzoski, M. 2019. Energetic and economic analysis of biogas plant with using the dairy industry waste. Energy 183, pp. 1023-1031, DOI: 10.1016/j.energy.2019.06.179.
- Lucke et al. 2022 - Lucke, M., Chioua, M. and Thornhill, N.F. 2022. From oscillatory to non-oscillatory disturbances: A comparative review of root cause analysis methods. Journal of Process Control 113, pp. 42-67, DOI: 10.1016/j.jprocont.2022.03.004.
- Marchetti et al. 2022 - Marchetti, R., Vasmara, C. and Orsi, A. 2022. Inoculum production from pig slurry for potential use in agricultural biogas plants. Sustainable Energy Technologies and Assessments 52, Part D, DOI: 10.1016/j.seta.2022.102310.
- Mühl, D.D. and de Oliveira, L. 2022. Features of anaerobic digestion plants in the brazilian agricultural sector. Cleaner and Circular Bioeconomy 1, DOI: 10.1016/j.clcb.2021.100001.
- Nyenno et al. 2020 - Nyenno, I., Selivanova, N., Korolenko, N. and Truba, V. 2020. The energy policy risk management system model: theories and practices. Polityka Energetyczna - Energy Policy Journal 23(4), pp. 33-48, DOI: 10.33223/epj/127699.
- Oyarzabal, O.A. and Rowe, E. 2017. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP) classes. Heliyon 3(4), DOI: 10.1016/j.heliyon. 2017.e00297.
- Pryshliak et al. 2022 - Pryshliak, N., Pronko, L., Mazur, K. and Palamarenko, Y. 2022. The development of the state strategy for biofuel production from agrobiomass in Ukraine. Polityka Energetyczna - Energy Policy Journal 25(2), pp. 163-178, DOI: 10.33223/epj/150091.
- Roman et al. 2022 - Roman, L., Hardesty, B.D. and Schuyler, Q. 2022. A systematic review and risk matrix of plastic litter impacts on aquatic wildlife: A case study of the Mekong and Ganges River Basins. Science of The Total Environment 843, DOI: 10.1016/j.scitotenv.2022.156858.
- Rouhollahi et al. 2020 - Rouhollahi, Z., Ebrahimi-Nik, M., Ebrahimi, S.E., Abbaspour-Fard, M.H., Zeynali, R. and Bayati, M.R. 2020. Farm biogas plants, a sustainable waste to energy and bio-fertilizer opportunity for Iran. Journal of Cleaner Production 2530, DOI: 10.1016/j.jclepro.2019.119876.
- Shi et al. 2022 - Shi, H., Liu, Z. and Liu, H.C. 2022. A new linguistic preference relation-based approach for failure mode and effect analysis with dynamic consensus reaching process. Information Sciences, DOI: 10.1016/j.ins.2022.08.043.
- Terziev et al. 2021 - Terziev, A.K., Beloev, H.I. and Iliev, I.K. 2021. Risk analysis in terms of implementation of large scale cogeneration power plant. IOP Conference Series: Materials Science and Engineering 1031(1), DOI: 10.1088/1757-899X/1031/1/012081.
- Terziev et al. 2021 - Terziev, A., Beloev, H. and Iliev, I. 2021. Risk assessment and management during the implementation process of a small scale hydropower plants, Proceedings of the 2021 6th International Symposium on Environment-Friendly Energies and Applications. EFEA 2021, DOI: 10.1109/ EFEA49713.2021.9406220.
- Tsapekos et al. 2021 - Tsapekos, P., Khoshnevisan, B., Alvarado-Мorales, M., Zhu, X., Pan, J., Tian, H. and Angelidaki, I. 2021. Upcycling the anaerobic digestion streams in a bioeconomy approach: a review. Renewable Sustainable Energy Rev. 151, DOI: 10.1016/j.rser.2021.111635.
- Wang et al. 2021 - Wang, Y., Zhang, Y., Li, J., Lin, J.G., Zhang, N. and Cao, W. 2021. Biogas energy generated from livestock manure in China: Current situation and future trends. Journal of Environmental Management 297, DOI: 10.1016/j.jenvman.2021.113324.
- Wen et al. 2022 - Wen, C.M., Yan, Z., Liang, Y.C., Wu, H., Zhou, L. and Yao, Y. 2022. A control chartbased symbolic conditional transfer entropy method for root cause analysis of process disturbances. Computers & Chemical Engineering 164, DOI: 10.1016/j.compchemeng.2022.107902.
- Zaina et al. 2011 - Zaina, A.N.A., Afiq, A.M. and Risza, R. 2011. Preliminary risk assessment for the bench-scale of biomass gasification system. National Postgraduate Conference pp. 1-6, DOI: 10.1109/ NatPC.2011.6136262.
- Zhan et al. 2022 - Zhan, X., Wu, W., Shen, L., Liao, W., Zhao, Z. and Xia, J. 2022. Industrial internet of things and unsupervised deep learning enabled real-time occupational safety monitoring in cold storage warehouse. Safety Science 152, DOI: 10.1016/j.ssci.2022.105766.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171654298