Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 13 | nr 2 | 127-138
Tytuł artykułu

Prediction of Quality Level of Product Considering Current Customers' Expectations

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The activities of the organisation concentrate mainly on meeting customers' requirements. For this purpose, various activities are being conducted for customer satisfaction surveys. In this context, it is important to predict the quality of the product and the changes in the cost of the purchase product. The purpose of this study is to propose a method for predicting the quality level of a product and change the cost of the product considering current customers' requirements for a combination of product feature states and pro-quality changes. The method includes the calculation of the quality level of the product using the punctationformalised method, where the level depends on a combination of values of states (parameters) attributes of the product, that is, current and modified. The method was tested as an example of a household vacuum cleaner for which 20 attributes were determined. According to the Pareto rule (20/80), the four product attributes important for customers were selected. Thereafter, for important attributes, possible combinations of the values of these attributes were determined. In addition, an algorithm for determining the possible combinations of product attribute states in the MATLAB program was developed. Additionally, the change in the current cost of the product considering the change in the quality level was estimated. The product cost changes were determined based on the actual cost of the product and the current product quality level. The method allows the determination of all combinations of values of state attributes of the product, such that it is possible to take appropriate improvement actions both in terms of quality and cost. The results from the method allow the prediction of product satisfaction for customers and they are favourable in terms of production cost. Therefore, it is possible to design the product in advance and support the producer in preparatory activities. (original abstract)
Rocznik
Tom
13
Numer
Strony
127-138
Opis fizyczny
Twórcy
  • Rzeszow University of Technology, Poland
  • The Rzeszów University of Technology, Poland
Bibliografia
  • Ali A., Hafeez Y., Hussain S., and Yang S. (2020), Role of Requirement Prioritization Technique to Improve the Quality of Highly-Configurable Systems, IEEE Access, No. 8, pp. 27549-27573. DOI: 10.1109/ AC- CESS.2020.2971382
  • Aliyu R., Arifin A., Haq R., Hassan M., Rahman M., Ismail A., Rahim M., Ibrahim M., Azlan M., Ahmadi M. et al. (2019), An integration of kano model and quality function deployment technique - A case study using sport earphone, Journal of Physics, Vol. 1150, No. 1, pp. 1-9. DOI: 10.1088/1742-6596/ 1150/1/012025
  • Amineha H. and Kosach N. (2016), Assessment of Consumer's' Satisfaction with the Automotive Product Quality, International Journal Of Environmental & Science Education, No. 16, Vol. 11, pp. 8726-8739.
  • Aoyama K., Matshuda N., and Koga T. (2010), A Design Method of Product Family for Unpredictable Customer Requirements Using Fuzzy Sets. In NEW World Situation: New Directions In Concurrent Engineering, ed. J. Pokojski et al., pp. 193-201. London: Springer-Verlag. DOI: 10.1007/978-0-85729-024- 3_19
  • Bils M. and Chang Y. (2000), Understanding how price responds to cost and production, Carnegie-Rochester Conference Series on Public Policy, No. 52, pp. 3377. DOI: 10.1016/S0167-2231(00)00016-6
  • Chen C. and Wang L. (2008), Integrating rough set clustering and grey model to analyse dynamic customer requirements, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 222, No. 2, pp. 319-332. DOI: 10.1243/09544054JEM826
  • Chen C.H., Khoo L.P., and Yan W. (2003), Evaluation of multicultural factors from elicited customer requirements for new product development, Research In Engineering Design Theory Applications And Concurrent Engineering, Vol. 14, No. 30, pp. 119-130. DOI: 10.1007/s00163-003-0032-6
  • Hansen E. and Bush R.J. (1999), Understanding customer quality requirements - Model and application, Industrial Marketing Management, Vol. 28, No. 2, pp. 119-130. DOI: 10.1016/S0019-8501(98)00007-8
  • Hardesty S. and Leff P. (2010), Determining marketing costs and returns in alternative marketing channels, Renewable Agriculture and Food Systems, Vol. 25 No. 01. DOI: 10.1017/S1742170509990196
  • He L., Ming X., Li M., Zheng M., and Xu Z. (2017), Understanding customer requirements through quantitative analysis of an improvement fuzzy Kano's model, Proceedings of the Institution of Mechanical Engineers Part B-Journal of Engineering Manufacture, Vol. 231, No. 4, pp. 699-712. DOI: 10.1177/ 0954405415598894
  • Hoła A., Sawicki M., and Szóstak M. (2018), Methodology of Classifying the Causes of Occupational Accidents Involving Construction Scaffolding Using Pareto-Lorenz Analysis, Appl. Sci.,Vol. 8, No. 48. DOI: 10.3390/app8010048
  • Huang C.-L., Chen Y.-H., Tseng C.-H., Wan T.-L., and Shen M. (2017), The hybrid algorithm for product design in multimedia, International Journal of Applied Systemic Studies, No. 1-3, Vol. 7, pp. 78-91. DOI: 10.1504/IJASS.2017.088902
  • Jaravel X. and O'Connell M. (2020), Real-time price indices: Inflation spike and falling product variety during the Great Lockdown, J Public Econ. Vol. 191. DOI: 10.1016/j.jpubeco.2020.104270
  • Jiao J.X. and Chen C.H. (2006), Customer requirement management in product development: A review of research issues, Concurrent Engineering-Research And Applications, Vol. 14, No. 3, pp. 173-185. DOI: 10.1177/1063293X06068357
  • Jiao Y., Yang Y., and Zhang H.S. (2017), Mapping High Dimensional Sparse Customer Requirements into Product Configurations, International Conference on Artificial Intelligence Applications and Technologies, Vol. 261, pp. 1-9. DOI: 10.1088/1757- 899X/261/1/012022
  • Kijewska J. and Mierzwiak R. (2014), The Empirical Verification of the Kolman's Universal Interpretative Scale, Przedsiębiorczość i Zarządzanie, Vol. 15, No. 10, pp. 335-350.
  • Kolman, R.R. (1992), Quality Engineering, Warsaw, Poland: PWE.
  • Kwong C.K. and Bai H. (2002), A fuzzy AHP approach to the determination of importance weights of customer requirements in quality function deployment, Journal Of Intelligent Manufacturing, Vol. 13, No. 5, pp. 367377. DOI: 10.1023/A:1019984626631
  • Lawlor K.B. and Hornyak M.J. (2012), Smart Goals: How The Application Of Smart Goals Can Contribute To Achievement Of Student Learning Outcomes, Developments in Business Simulation and Experiential Learning, Vol. 39, pp. 259-267.
  • Lee C.H., Chen C.H., Lin CY., Li F., and Zhao X.J. (2019), Developing a Quick Response Product Configuration System under Industry 4.0 Based on Customer Requirement Modelling and Optimization Method, Applied Sciences-Basel, Vol. 23, No. 9. DOI: 10.3390/app9235004
  • Li W., Pomegbe W., and Dogbe C. (2019), Employees' customer orientation and customer satisfaction in the public utility sector: The mediating role of service quality, African Journal of Economic and Management Studies, Vol. 10, No. 4, pp. 408-423. DOI: 10.1108/AJEMS-10-2018-0314
  • Li Z. and Tian H. (2019), Research on Fuzzy Hierarchy Optimization Model of Product Family Parameters Based on Flexible Design of Clothing, IOP Conference Series: Materials Science and Engineering, Vol. 573, No. 1. DOI: 10.1088/1757-899X/573/1/ 012002
  • Mishra P. Pandey C. Keshri A., and Sabaretnam M. (2019), Selection of Appropriate Statistical Methods for Data Analysis, Ann Card Anaesth, Vol. 22, No. 3, pp. 297-301. DOI: 10.4103/aca.ACA_248_18
  • Mu E., and Pereyra-Rojas M. (2017), Practical Decision Making. In Springer Briefs in Operations Research, Appendix A: Practical Questions Related to AHP Modeling, ed. E. Mu and M. Pereyra-Rojas, 105-106. Switzerland: Springer Nature: Basel.
  • Pacana A., Siwiec D., and Bednárová L. (2020), Method of Choice: A Fluorescent Penetrant Taking into Account Sustainability Criteria, Sustainability, Vol. 12, No. 14, p. 5854. DOI: 10.3390/su12145854
  • Pacana A. and Ulewicz R. (2020), Analysis of causes and effects of implementation of the quality management system compliant with ISO 9001, Polish Journal Of Management Studies, Vol. 21, No. 1, pp. 283-296. DOI: 10.17512/pjms.2020.21.1.21
  • Pugna A., Potra S., Negrea R., Miclea and Mocan M. (2016), A Refined Quality Attribute Classification Model for New Product and Service Strategic Design, Procedia Computer Science, Vol. 91, pp. 296305. DOI: 10.1016/j.procs.2016.07.080
  • Realyvásquez-Vargas A., Arredondo-Soto K.C., Carrillo- Gutiérrez T., and Ravelo G. (2018), Applying the Plan-Do-Check-Act (PDCA) Cycle to Reduce the Defects in the Manufacturing Industry. A Case Study, Appl. Sci. Vol. 8, No. 11, p. 2181. DOI: 10.3390/ app8112181
  • Roder B., Heidl M.J., and Birkhofer H. (2013), Reacquisition Clustering of Requirements - Helping Customers to Realize What They Want, Design for Harmonies, Vol. 7: Human Behaviour in Design, pp. 407-416.
  • Shi Y. and Peng Q. (2020), A spectral clustering method to improve importance rating accuracy of customer requirements in QFD, International Journal of Advanced Manufacturing Technology, Vol. 107, No. 5-6, pp. 2579-2596.
  • Simpson M., Padmore J., Taylor N., and Fracknall-Hudges J. (2006), Marketing in Small and Medium Sized Enterprises, International Journal of Entrepreneurial Bahaviour & Research, Vol. 12, No. 6, pp. 361-387. DOI: 10.1108/13552550610710153
  • Siwiec D. and Pacana A. (2021a), A Pro-Environmental Method of Sample Size Determination to Predict the Quality Level of Products Considering Current Customer's' Expectations, Sustainability, Vol. 13, No. 10, p. 5542. DOI: 10.3390/su13105542
  • Siwiec D. and Pacana A. (2021b), Method of improve the level of product quality, Production Engineering Archives, Vol. 27, No. 1, pp. 1-7. DOI: 10.30657/ pea.2021.27.1
  • Siwiec D., Bednarova L., and Pacana A. (2020), Metoda doboru penetrantów dla przemysłowych badań nieniszczących, Przemysł Chemiczny, Vol. 99, No. 5, pp. 771-773. DOI: 10.15199/ 62.2020.5.18
  • Siwiec D., Bednarova L., Pacana A., Zawada M., and Rusko M. (2019), Wspomaganie decyzji w procesie doboru penetrantów fluorescencyjnych do przemysłowych badań nieniszczących, Przemysł Chemiczny, Vol. 98, No. 10, pp. 1594-1596. DOI: 10.15199/62. 2019.10.12
  • Tadeusiewicz R., Izworski A., and Majewski J. (1993), Biometria, Poland: Cracow.
  • Turisova R. (2015), A Generalization of Traditional Kano Model for Customer Requirements Analysis, Quality Innovation Prosperity-Kvalita Inovacia Prosperity, Vol. 19, No. 1, pp. 59-73. DOI: 10.12776/QIP. V19I1.407
  • Turisova R., Sinay J., Pacaiova H., Kotianova Z., Glatz J. (2020), Application of the EFQM Model to Assess the Readiness and Sustainability of the Implementation of I4.0 in Slovakian Companies, Sustainability Vol. 12, No. 14, p. 5591. DOI: 10.3390/su12145591
  • Ulewicz R., Siwiec D., Pacana A., Tutak M., and Brod- ny J. (2021), Multi-Criteria Method for the Selection of Renewable Energy Sources in the Polish Industrial Sector, Energies, Vol. 12, No. 14, p. 2386. DOI: 10.3390/en14092386
  • Wang F., Li H. Liu A.J., and Zhang X. (2015), Hybrid customer requirements rating method for customer- oriented product design using QFD, Journal Of Systems Engineering And Electronics, Vol. 26, No. 3, pp. 533-543. DOI: 10.1109/JSEE.2015.00061
  • Wang Y. and Tseng M.M. (2014), Identifying Emerging Customer Requirements in an Early Design Stage by Applying Bayes Factor-Based Sequential Analysis, Ieee Transactions On Engineering Management, Vol. 61, No. 1, pp. 129-137. DOI: 10.1109/TEM. 2013.2248729
  • Wang Y.M. and Chin K.S. (2011), A linear goal programming approach to determining the relative importance weights of customer requirements in quality function deployment, Information Sciences, Vol. 181, No. 24, pp. 5523-5533. DOI: 10.1016/j.ins.2011.08.016
  • Winiarski J. (2012), Ryzyko w projektach informatycznych - statystyczne narzędzia oceny, Contemporart Economy, Electronic Scientific Journal, Vol. 3, No. 4, pp. 35-42.
  • Xie M.Q., Jiang Q.Q., Cheng W.P., and Ma X.X. (2016), Determining the Importance Ratings of Customer Requirements of Automotive Clutch Based on Quality Function Deployment, International Conference on Mechanics Design, Manufacturing and Automation, pp. 379-386.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171650430
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.