Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
This research develops an academic production function for the educational process of industrial engineers in Colombia. The proposed function objectively analyses the relationships between the academic competencies obtained in secondary education and the university. The data used correspond to the standardized tests of 4,977 students at the end of high school and university. In the first stage of the model, the structure of the production function was empirically evaluated using a Partial Least Square - Structural Equation Modeling approach. Consequently, in the second stage, the efficiency of the relationships in the academic production function is estimated using Data Envelopment Analysis. The Goodness of Fit index of the empirical model was 0.89, thus, confirming the relationships between the construct's variables. The model validates four transformation relationships and subsequently estimates the efficiency of the interactions in the production function. The average efficiency results of the model in its constant scale are 16.30%, 2.17%, and 5.43%. In conclusion, the model explains the capacity of universities to transform inputs (basic competencies of the secondary school) into desired outputs (professional academic competencies). Additionally, the model analyses professional performance from the interactions among academic competencies. (original abstract)
Czasopismo
Rocznik
Tom
Numer
Strony
107-121
Opis fizyczny
Twórcy
autor
- Universidad de Sinú Cartagena, Colombia
- Universidad Tecnológica de Bolívar, Cartagena, Colombia
autor
- Escuela Militar de Cadetes General José María Córdova, Bogotá, Colombia
Bibliografia
- Agasisti, T., Munda, G., & Hippe, R. (2019). Measuring the efficiency of European education systems by combining Data Envelopment Analysis and Multiple-Criteria Evaluation. Journal of Productivity Analysis, 51(2), 105-124. https://doi.org/10.1007/SC_11123-019-00549-6
- Alabdulmenem, F. M. (2016). Measuring the Efficiency of Public Universities: Using Data Envelopment Analysis (DEA) to Examine Public Universities in Saudi Arabia. International Education Studies, 10(1), 137. https://doi.org/10.5539/ies.v10n1p137
- Bernal, G. P., Villegas, L., & Toro, M. (2020). Saber Pro success prediction model using decision tree based learning. ArXiv.
- Bianchi, N., & Giorcelli, M. (2020). Scientific Education and Innovation: From Technical Diplomas to University Stem Degrees. Journal of the European Economic Association, 18(5), 2608-2646. https://doi.org/10.1093/jeea/jvz049
- Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. 1978, 2(6), 429-444. https://doi.org/10.1016/0377-2217(78)90138-8
- Colbert, A., Levary, R. R., & Shaner, M. C. (2000). Determining the relative efficiency of MBA programs using DEA. European Journal of Operational Research, 125(3), 656-669. https://doi.org/10.1016/S0377-2217(99)00275-1
- Coll-Serrano, V., Benítez, R., & Bolós, V. (2018). Data Envelopment Analysis with deaR (1.2.0) [Computer software]. Universidad de Valencia. https://CRAN.R-project.org/package=deaR
- Colombo, M. G., & Piva, E. (2020). Start-ups launched by recent STEM university graduates: The impact of university education on entrepreneurial entry. Research Policy, 49(6), 103993. https://doi.org/10.1016/j.respol.2020.103993
- Cook, W. D., Ramón, N., Ruiz, J. L., Sirvent, I., & Zhu, J. (2019). DEA-based benchmarking for performance evaluation in pay-for-performance incentive plans. Omega, 84, 45-54. https://doi.org/10.1016/j.omega.2018.04.004
- De La Hoz, E., Zuluaga, R., & Mendoza, A. (2021). Assessing and Classification of Academic Efficiency in Engineering Teaching Programs. Journal on Efficiency and Responsibility in Education and Science, 14(1), 41-52. https://doi.org/10.7160/eriesj.2021.140104
- de la Torre, E. M., Casani, F., & Sagarra, M. (2018). Defining typologies of universities through a DEA-MDS analysis: An institutional characterization for formative evaluation purposes. Research Evaluation, 27(4), 388-403. https://doi.org/10.1093/reseval/rvy024
- Delahoz-Dominguez, E., Zuluaga, R., & Fontalvo-Herrera, T. (2020). Dataset of academic performance evolution for engineering students. Data in Brief, 30, 105537. https://doi.org/10.1016/j.dib.2020.105537
- Duan, S. X. (2019). Measuring university efficiency: An application of data envelopment analysis and strategic group analysis to Australian universities. Benchmarking: An International Journal, 26(4), 1161-1173. https://doi.org/10.1108/BIJ-10-2017-0274
- Galbraith, C. S., & Merrill, G. B. (2015). Academic performance and burnout: An efficient frontier analysis of resource use efficiency among employed university students. Journal of Further and Higher Education, 39(2), 255-277. https://doi.org/10.1080/0309877X.2013.858673
- Gralka, S., Wohlrabe, K., & Bornmann, L. (2019). How to measure research efficiency in higher education? Research grants vs. publication output. Journal of Higher Education Policy and Management, 41(3), 322-341. https://doi.org/10.1080/1360080X.2019.1588492
- Hanushek, E. A. (1979). Conceptual and Empirical Issues in the Estimation of Educational Production Functions. The Journal of Human Resources, 14(3), 351-388. https://doi.org/10.2307/145575
- Hoeg, D. G., & Bencze, J. L. (2017). Values Underpinning STEM Education in the USA: An Analysis of the Next Generation Science Standards. Science Education, 101(2), 278-301. https://doi.org/10.1002/sce.21260
- Jakaitiene, A., Zilinskas, A., & Stumbriene, D. (2018). Analysis of Education Systems Performance in European Countries by Means of PCA-DEA. Informatics in Education, 17(2), 245-263. https://eric.ed.gov/?id=EJ1195648
- Johnes, J. (2006). Measuring teaching efficiency in higher education: An application of data envelopment analysis to economics graduates from UK Universities 1993. European Journal of Operational Research, 174(1), 443-456. https://doi.org/10.1016/j.ejor.2005.02.044
- Jones, C. I. (2016). Chapter 1-The Facts of Economic Growth (J. B. Taylor & H. Uhlig, Eds.; Vol. 2, pp. 3-69). Elsevier. https://doi.org/10.1016/bs.hesmac.2016.03.002
- Jones, T. H. (1981). Equal Educational Opportunity Revisited. Journal of Education Finance, 6(4), 471-484.
- Kalapouti, K., Petridis, K., Malesios, C., & Dey, P. K. (2020). Measuring efficiency of innovation using combined Data Envelopment Analysis and Structural Equation Modeling: Empirical study in EU regions. Annals of Operations Research, 294(1), 297-320. https://doi.org/10.1007/s10479-017-2728-4
- Law, L., & Fong, N. (2020). Applying partial least squares structural equation modeling (PLS-SEM) in an investigation of undergraduate students' learning transfer of academic English. Journal of English for Academic Purposes, 46, 100884. https://doi.org/10.1016/j.jeap.2020.100884
- Long, P., & Siemens, G. (2014). Penetrating the fog: Analytics in learning and education. Italian Journal of Educational Technology, 22(3), 132-137. https://www.learntechlib.org/p/183382/
- Lorcu, F., & Bolat, B. A. (2015). Comparison of secondary education PISA results in European member states and Turkey via DEA and SEM. Journal of WEI Business and Economics, 4(3), 7.
- Madria, W. F., Miguel, A. S., & Li, R. C. (2019). Quality-Oriented Network DEA Model for the Research Efficiency of Philippine Universities. 2019 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), 596-600. https://doi.org/10.1109/IEEM44572.2019.8978816
- Nazarko, J., & Šaparauskas, J. (2014). Application of DEA method in efficiency evaluation of public Higher Education Institutions. Technological and Economic Development of Economy, 20(1), 25-44. https://doi.org/10.3846/20294913.2014.837116
- Ondé, D., & Alvarado, J. (2018). Scale Validation Conducting Confirmatory Factor Analysis: A Monte Carlo Simulation Study With LISREL. https://doi.org/10.3389/fpsyg.2018.00751
- Puertas, R., & Marti, L. (2019). Sustainability in Universities: DEA-GreenMetric. Sustainability, 11(14), 3766. https://doi.org/10.3390/su11143766
- Sanchez, G. (2013). PLS Path Modeling with R (0.4.9) [R]. https://github.com/gastonstat/plspm
- Santín, D., & Sicilia, G. (2018). Using DEA for measuring teachers' performance and the impact on students' outcomes: Evidence for Spain. Journal of Productivity Analysis, 49(1), 1-15. https://doi.org/10.1007/SC_11123-017-0517-3
- Shambaugh, J., Nunn, R., & Portman, B. (2017). Eleven Facts about Innovation and Patents. Economic Facts, 28.
- Shamohammadi, M., & Oh, D. (2019). Measuring the efficiency changes of private universities of Korea: A two-stage network data envelopment analysis. Technological Forecasting and Social Change, 148, 119730. https://doi.org/10.1016/j.techfore.2019.119730
- Suh, S. C., Bandi, H., Kim, J., & Tanik, U. J. (2020). Case Study: STEM Contribution in Indian IT Clusters. In C. Zintgraff, S. C. Suh, B. Kellison, & P. E. Resta (Eds.), STEM in the Technopolis: The Power of STEM Education in Regional Technology Policy (pp. 285-296). Springer International Publishing. https://doi.org/10.1007/978-3-030-39851-4_15
- Visbal-Cadavid, D., Martínez-Gómez, M., & Guijarro, F. (2017). Assessing the efficiency of public universities through DEA. A case study. Sustainability, 9(8), 1416.
- Wolszczak-Derlacz, J. (2017). An evaluation and explanation of (in)efficiency in higher education institutions in Europe and the U.S. with the application of two-stage semi-parametric DEA. Research Policy, 46(9), 1595-1605. https://doi.org/10.1016/j.respol.2017.07.010
- Yang, G., Fukuyama, H., & Song, Y. (2018). Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model. Journal of Informetrics, 12(1), 10-30. https://doi.org/10.1016/j.joi.2017.11.002
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171650046