Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | 17 | nr 1 | 63-76
Tytuł artykułu

What Managers of SMEs in the CEE Region Should Know About Challenges of Artificial Intelligence's Adoption? - an Introductive Discussion

Warianty tytułu
Co menedżerowie MŚP w regionie Europy Środkowo-Wschodniej powinni wiedzieć o wyzwaniach związanych z wprowadzeniem sztucznej inteligencji? - dyskusja wprowadzająca
Języki publikacji
EN
Abstrakty
Kolejnym krokiem cyfrowej transformacji jest przyjęcie sztucznej inteligencji (AI), nawet jeśli sama technologia wciąż ewoluuje. Niemniej jednak dyskusje na temat zalet i wad AI są żywe: menedżerowie znajdują się na pierwszej linii podejmowania decyzji dotyczących najlepszych sposobów wprowadzenia takich zmian. Jeśli korporacje są już zaznajomione ze sztuczną inteligencją, przynajmniej częściowo w przypadku niektórych procesów, małe i średnie przedsiębiorstwa (MŚP) stoją przed podwójną presją: nierównym stopniem dojrzałości cyfrowej, a także codziennymi ograniczeniami w zwiększaniu konkurencyjności. W szczególności MŚP z Europy Środkowo-Wschodniej znajdują się w skomplikowanych ramach, a przyjęcie sztucznej inteligencji, nawet jeśli jest trudne, może być jednym z rozwiązań umożliwiających postęp pod względem wydajności. Mimo wszystko ryzyko w takim podejściu musi być dokładnie rozważone. Opierając się na częściowo ustrukturyzowanym przeglądzie literatury przedmiotu, w niniejszym artykule omówiono główne zagrożenia, które menedżerowie MŚP w regionie Europy Środkowo-Wschodniej powinni zrozumieć w odniesieniu do sztucznej inteligencji, i wynikające z niej wyzwania związane z jej przyjęciem w biznesie. Końcowe rozważania i przyszłe dyskusje badawcze zamykają prace. (abstrakt oryginalny)
EN
The next step of the digital transformation is to adopt artificial intelligence (AI), even if the technology itself is still evolving. Nevertheless, discussions on AI pros and cons are vivid: managers are in the frontline of the decision-making on the best ways for such transitions. If corporations are already familiar with AI, at least partially for some processes, small and medium enterprises (SMEs) face a double pressure: their inequal degree of digital maturity, as well as the everyday constraints on how to increase competitiveness. CEE SMEs, in particular, find themselves in a complex framework, and the adoption of AI, even if challenging, could be one of the solutions to advance in terms of efficiency. Nevertheless, risks in such an approach must be carefully considered. Based on a semi-structured literature review, this opinion paper discusses the main risks that managers of SMEs in the CEE region should understand regarding AI and the consequent challenges of adopting it in business. Final considerations and future research discussions conclude the paper. (original abstract)
Rocznik
Tom
17
Numer
Strony
63-76
Opis fizyczny
Twórcy
  • National University of Political Studies and Public Administration, Romania
  • National University of Political Studies and Public Administration, Romania
  • National University of Political Studies and Public Administration, Romania
Bibliografia
  • Accenture, 2019. 2019 Global Risk Management Study, https://www.accenture.com/us-en/insights/financial-services/global-risk-study (17.01.2022).
  • Accenture, 2021. Scaling Digital Transformation with Future Systems. Accenture. Retrieved from HTTP DIW ECON, SMEs Performance Review 2017/2018. www.diw-econ.com (18.05.2018).
  • Al-Shabandar, R., Lightbody, G., Browne, F., Liu, J., Wang, H., Zheng, H., 2019. The Application of Artificial Intelligence in Financial Compliance Management, Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing, AIAM 2019. New York, NY, USA: Association for Computing Machinery. https://doi.org/10.1145/3358331.3358339 (10.01.2022).
  • Ammanath, B., Jarvis, D., Hupfer, S., 2020. Thriving in the era of pervasive AI Deloitte.
  • Araujo, T., Helberger, N., Kruikemeier, S., de Vreese, C.H., 2020. In AI, we trust? Perceptions about automated decision-making by artificial intelligence, AI and Society, No. 35(3).
  • Bada, M., Nurse, J.R., 2019. Developing cybersecurity education and awareness programmes for small-and-medium-sized enterprises (SMEs), Information & Computer Security, No. 27(3).
  • Belle, V., Papantonis, I., 2021. Principles and Practice of Explainable Machine Learning, Frontiers in Big Data, No. 4.
  • Bostrom, N., 2017. Superintelligence, Dunod.
  • Brynjolfsson, E., McAfee, A., 2014. The second machine age: Work, progress, and prosperity in a time of brilliant technologies, WW Norton & Company.
  • Bughin, J., Hazan, E., Ramaswamy, S., Chui, M., Allas, T., Dahlström, P., Henke, N., Trench, M., 2017. Artificial intelligence: The next digital frontier?, McKinsey Global Institute.
  • Bughin, J., Janoskuti, L., Havas, A., 2016. The next gold medal: How Hungary can win the productivity race in the digital age, McKinsey Global Institute.
  • Calp, H.M., 2020. The Role of Artificial Intelligence Within the Scope of Digital Transformation in Enterprises, [in:] Gülay, E., Alptekin, E., Birgit, O. (eds.), Advanced MIS and Digital Transformation for Increased Creativity and Innovation in Business. Hershey, PA, USA: IGI Global.
  • Canhoto, A.I., Clear, F., 2020. Artificial intelligence and machine learning as business tools: A framework for diagnosing value destruction potential, Business horizons, artificial intelligence and machine learning, No. 63(2).
  • Čerka, P., Grigienė, J., Sirbikytė, G., 2015. Liability for damages caused by artificial intelligence, Computer Law & Security Review, No. 31(3).
  • Cobbe, J., Singh, J., 2021. Artificial intelligence as a service: Legal responsibilities, liabilities, and policy challenges, Computer Law & Security Review, No. 42.
  • Dambrot, S.M., 2020. Theoretical and hypothetical pathways to real-time neuromorphic AGI/post-AGI ecosystems, Procedia Computer Science, Postproceedings of the 10th Annual International Conference on Biologically Inspired Cognitive Architectures. BICA 2019, No. 169.
  • Davenport, T.H., Bean, R., 2018. Big companies are embracing analytics, but most still don't have a data-driven culture, Harvard Business Review, No. 6.
  • Davenport, T.H., Redman, T.C., 2020. Digital Transformation Comes Down to Talent in 4 Key Areas, Harvard Business Review, May.
  • Dawid, H., Muehlheusser, G., 2022. Smart products: Liability, investments in product safety, and the timing of market introduction, Journal of Economic Dynamics and Control, No. 134.
  • de Bruijn, H., Warnier, M., Janssen, M., 2021. The perils and pitfalls of explainable AI: Strategies for explaining algorithmic decision-making, Government Information Quarterly, 101666.
  • Deloitte Digital, 2019. Digital transformation: A PRIMER, https://www.wired.com/brandlab/2019/10/deloitte-digital-transformation-a-primer/ (22.05.2021).
  • DIW ECON, 2018. SMEs Performance Review 2017/2018, https://ec.europa.eu/docsroom/documents/32601/attachments/3/translations/en/renditions/native (02.03.2020).
  • European Commission, 2008. Think Small First. A Small Business Act for Europe COM (2008) 394 final.
  • European Commission, 2003. COMMISSION RECOMMENDATION of May 6 2003 concerning the definition of micro, small and medium-sized enterprises (2003/361/E.C.).
  • European Commission, 2015. European User guide to the SME Definition. Ref. Ares (2016) 956541 - 24/02/2016.
  • European Commission, 2020. Entrepreneurship and small and medium-sized enterprises (SMEs).
  • European Commission, 2021. Proposal for a regulation of the European Parliament and of the Council laying down harmonised rules on artificial intelligence (Artificial Intelligence Act) and amending certain union legislative acts.
  • Fogel, D.B., 2006. Evolutionary computation: Toward a new philosophy of machine intelligence. Vol. 1, John Wiley & Sons.
  • Frey, C.B., Osborne, M.A., 2017. The future of employment: How susceptible are jobs to computerisation?, Technological forecasting and social change, No. 114.
  • Heaven, W., 2020. Our weird behavior during the pandemic is messing with AI models, https://www.technologyreview.com/2020/05/11/1001563/covid-pandemic-broken-ai-machine-learning-amazon-retail-fraud-humans-in-the-loop/?truid=538165e6a853542703d07b8605ff2f0f&utm_source=the_algorithm&utm_medium=email&utm_campaign=the_algorithm.unpaid.engage (15.02.2021).
  • Hope, K. (ed.), 2019. ANNUAL REPORT ON EUROPEAN SMEs 2018/2019. Research & Development and Innovation by SMEs, https://op.europa.eu/en/publication-detail/-/publication/b6a34664-335d-11ea-ba6e-01aa75ed71a1/language-en/format-PDF/source-search (10.05.2020).
  • Ipsmiller, E., Dikova, D., 2021. Internationalization from central and Eastern Europe: a Systematic Literature Review,Journal of International Management, No. 27(4).
  • Jaklič, A., Obloj, K., Svetličič, M., Kronegger, L., 2020. Evolution of Central and Eastern Europe related international business research, Journal of Business Research, No. 108(C).
  • Jaklič, A., Rašković, M., Schuch, A., 2018. Examining the Contextual Richness of Central and Eastern Europe, AIB Insights, No. 18(1).
  • Jarrahi, M.H., 2018. Artificial intelligence and the future of work: Human-AI symbiosis in organizational decision making, Business Horizons, No. 61(4).
  • Jormanainen, I., Koveshnikov, A., 2012. International Activities of Emerging Market Firms A Critical Assessment of Research in Top International Management Journals, Management International Review, No. 52.
  • Kaplan, A., Haenlein, M., 2019. Siri, Siri, in my hand: Who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence, Business Horizons, No. 62(1).
  • Karppi, T., 2018. "The Computer Said So": On the Ethics, Effectiveness, and Cultural Techniques of Predictive Policing, Social Media + Society, No. 4(2).
  • Kietzmann, J., Pitt, L.F., 2020. Artificial intelligence and machine learning: What managers need to know, Business Horizons, Artificial Intelligence and Machine Learning, No. 63(2).
  • Kitsios, F., Kamariotou, M., 2021. Artificial intelligence and business strategy towards digital transformation: A research agenda, Sustainability, No. 13(4).
  • Koch, R., 2019. What is considered personal data under the EU GDPR?, https://gdpr.eu/eu-gdpr-personal-data/ (10.06.2021).
  • Königstorfer, F., Thalmann, S., 2020. Applications of Artificial Intelligence in commercial banks - A research agenda for behavioral finance, Journal of Behavioral and Experimental Finance, No. 27.
  • Kop, M., 2021. E.U. Artificial Intelligence Act: The European Approach to AI. Vol. 2, Stanford University.
  • Kornai, J., 2008. The Great Transformation of Central Eastern Europe: Success and Disappointment, [in:] Kornai, J., Mátyás, L., Roland, G. (eds.), Institutional Change and Economic Behaviour. International Economic Association Series, Palgrave Macmillan.
  • KPMG, 2018. Many Companies Are Not Assessing Risks Of Adopting Emerging Technologies: KPMG Study, https://www.proquest.com/wire-feeds/many-companies-are-not-assessing-risks-adopting/docview/1995233718/se-2?accountid=15539 (02.05.2021).
  • Kurzweil, R., 2013. How to create a mind: The secret of human thought revealed, Penguin.
  • Lee, M.K., 2018. Understanding perception of algorithmic decisions: Fairness, trust, and emotion in response to algorithmic management, Big Data & Society, No. 5(1).
  • Loureiro, S.M.C., Guerreiro, J., Tussyadiah, I., 2021. Artificial intelligence in business: State of the art and future research agenda, Journal of Business Research, No. 129.
  • Lu, Y., 2019. Artificial intelligence: A survey on evolution, models, applications and future trends, Journal of Management Analytics, No. 6(1).
  • Madiega, T.A., 2021. Artificial intelligence act, https://www.europarl.europa.eu/thinktank/en/document/EPRS_BRI(2021)698792 (22.10.2021).
  • Meyer, K.E., Peng, M.W., 2005. Probing theoretically into Central and Eastern Europe: Transactions, resources, and institutions, Journal of International Business Studies, No. 36(6).
  • Meyer, K.E., Peng, M.W., 2016. Theoretical foundations of emerging economy business research, Journal of International Business Studies, No. 47(1).
  • Morel, B., 2011. Artificial intelligence and the future of cybersecurity, Proceedings of the 4th ACM workshop on Security and artificial intelligence, October.
  • Ng, A., 2016. AI Winter Isn't Coming, https://www.technologyreview.com/2016/12/07/155592/ai-winter-isnt-coming/ (17.03.2020).
  • OECD, 2021. The Digital Transformation of SMEs, OECD Studies on SMEs and Entrepreneurship.Paris: OECD Publishing.
  • Ozkan, B.Y., Spruit, M., 2021. Cybersecurity Standardisation for SMEs: The Stakeholders' Perspectives and a Research Agenda, [in:] Research Anthology on Artificial Intelligence Applications in Security, IGI Global.
  • Patel, F., 2015. Be Cautious About Data-Driven Policing, https://www.nytimes.com/roomfordebate/2015/11/18/can-predictive-policing-be-ethical-and-effective/be-cautious-about-data-drivenpolicing (22.06.2021).
  • PwC, 2022. Entrepreneurship and SMEs, https://www.pwc.com/c1/en/future-of-government-cee/entrepreneurship-and-smes-in-CEE.html (06.05.2021).
  • Rupeika-Apoga, R., Bule, L., Petrovska, K., 2022. Digital Transformation of Small and Medium Enterprises: Aspects of Public Support, Journal of Risk and Financial Management, No. 15(2).
  • Russell, S.J., Norvig, P., 2020. Artificial intelligence: A modern approach. Prentice-Hall series in artificial intelligence (4th ed.), Upper Saddle River: Prentice-Hall.
  • Selbst, A.D., Powles, J., 2017. Meaningful information and the right to explanation, International Data Privacy Law, No. 7(4).
  • Șerban-Oprescu, G.L., 2019. Digitalization and business activity. The struggle to catch up in CEE countries, Sustainability, No. 11(8).
  • Soulsby, A., Clark, E., 2007. Organization theory and the post-socialist transformation: Contributions to organizational knowledge, Human Relations - HUM RELAT, No. 60.
  • Straub, J., 2021. Expert system gradient descent style training: Development of a defensible artificial intelligence technique, Knowledge-Based Systems, No. 228.
  • Stuurman, k, Lachaud, E., 2022. Regulating AI A label to complete the proposed Act on Artificial Intelligence, Computer Law & Security Review, No. 44.
  • Taddeo, M., McCutcheon, T., Floridi, L., 2019. Trusting artificial intelligence in cybersecurity is a double-edged sword, Nature Machine Intelligence, No. 1(12).
  • Trașcă, D., Stefan, G., Sahlian, D., van Hoinaru, R., Serban-Oprescu, G., 2019. Digitalization and Business Activity. The Struggle to Catch Up in CEE Countries, Sustainability, No. 11.
  • Tutak, M., Brodny, J., 2022. Business Digital Maturity in Europe and Its Implication for Open Innovation, Journal of Open Innovation: Technology, Market, and Complexity, No. 8(1).
  • Vătămănescu, E.-M., Andrei, A.G., Nicolescu, L., Pînzaru, F., Zbuchea, A., 2017. The Influence of Competitiveness on SMEs Internationalization Effectiveness. Online versus Offline Business Networking, Information Systems Management, No. 34(3).
  • Vătămănescu, E.-M., Gorgos, E.-A., Ghigiu, A.M., Pătruț, M., 2019. Bridging Intellectual Capital and SMEs Internationalization through the Lens of Sustainable Competitive Advantage: A Systematic Literature Review, Sustainability, No. 11(9).
  • Wagner, B., 2019. Liable, but Not in Control? Ensuring Meaningful Human Agency in Automated Decision-Making Systems, Policy & Internet, No. 11(1).
  • Whitley, R., Czaban, L., 1998. Institutional transformation and enterprise change in Hungary, Organization Studies, No. 19(2).
  • World Bank, 2022. SME Finance, https://www.worldbank.org/en/topic/smefinance (10.02.2022).
  • Yudkowsky, E., 2008. Artificial intelligence as a positive and negative factor in global risk, Global catastrophic risks, No. 1(303).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171647254
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.