Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | nr 72 | 36
Tytuł artykułu

Iterative Monotone Comparative Statics

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For an increasing upper order hemi-continuous correspondence F : A ⇒ A, where A a σ-complete lattice, we first provide tight fixed-point bounds for sufficiently large iterations Fk(a0), starting from any point a 0 ∈ A. We use this result for conducting iterative fixed-point comparative statics, and then apply our results to monotone games and economies. For games of strategic complementarities, we improve the correspondence principle based results of Echenique (2002) by allowing for divergent learning processes, unstable fixed points, equilibrium indeterminacies, and unordered perturbations. We also apply our results to the comparative statics of stationary equilibria in large economies and the set of recursive equilibria in macroeconomic models with indeterminacies. (original abstract)
Rocznik
Numer
Strony
36
Opis fizyczny
Twórcy
  • University of Zielona Góra, Poland
  • Arizona State University, USA
  • Warsaw School of Economics, Poland
  • Arizona State University, USA
Bibliografia
  • Acemoglu D., M.K. Jensen (2013): Aggregate comparative statics, Games and Economic Behavior, 81, 27-49.
  • Acemoglu, D., M.K. Jensen (2015): Robust comparative statics in large dynamic economies, Journal of Political Economy, 123, 587-640.
  • Balbus, L., P. Dziewulski, K. Reffet, L. Woźny (2015): Differential information in large games with strategic complementarities, Economic Theory, 59, 201-243.
  • Balbus, L., P. Dziewulski, K. Reffet, L. Woźny (2021): Markov distributional equilibrium dynamics in games with complementarities and no aggregate risk, Theoretical Economics, forthcoming.
  • Balbus, L., K. Reffett, L. Woźny (2015): Time consistent Markov policies in dynamic economies with quasi-hyperbolic consumers, International Journal of Game Theory, 44, 83-112.
  • Barthel, A.-C. and E. Hoffmann (2019): Rationalizability and learning in games with strategic heterogeneity, Economic Theory, 67, 565-587.
  • Benhabib J., R.E. Farmer (1994): Indeterminacy and increasing returns, Journal of Economic Theory, 63, 19-41.
  • Blot, J. (1991): On global implicit functions, Nonlinear Analysis: Theory, Methods and Applications, 17, 947-959.
  • Coleman, W. (1991): Equilibrium in a production economy with an income tax, Econometrica, 59, 1091-1104.
  • Cristea, M. (2017): On global implicit function theorem, Journal of Mathematical Analysis and Applications, 456, 1290-1302.
  • Datta, M., K. Reffett, L. Woźny (2018): Comparing recursive equilibrium in economies with dynamic complementarities and indeterminacy, Economic Theory, 66, 593-626.
  • Dubey, P., O. Haimanko, A. Zapechelnyuk (2006): Strategic complements and substitutes, and potential games, Games and Economic Behavior, 54, 77-94.
  • Dugundji J., A. Granas (1982): Fixed Point Theory, Polish Scientific Publishers.
  • Echenique F. (2002): Comparative statics by adaptive dynamics and the correspondence principle, Econometrica, 70, 833-844.
  • Echenique F. (2004): A weak correspondence principle for models with complementarities, Journal of Mathematical Economics, 40, 145-152.
  • Gale D., H. Nikaido (1965): The Jacobian matrix and global univalence of mappings, Mathematische Annalen, 159, 81-93.
  • Hart S., A. Mas-Colell (2003): Uncoupled dynamics do not lead to Nash equilibrium, The American Economic Review, 93, 1830-1836.
  • Heikkila, S. and K. Reffett ¨ (2006): Fixed point theorems and their applications to theory of Nash equilibria, Nonlinear Analysis, 64, 1415-1436.
  • Hopenhayn, H. A. and E. C. Prescott (1992): Stochastic monotonicity and stationary distribution for dynamic economies, Econometrica, 60, 1387-1406.
  • Huggett M. (2003): When are comparative dynamics monotone? Review of Economic Studies, 6, 1-11.
  • Kamae, T., U. Krengel, and G. L. O'Brien (1977): Stochastic inequalities on partially ordered spaces, Annals of Probability, 5, 899-912.
  • Mas-Colell A. (1985): The Theory of General Economic Equilibrium, Cambridge Press.
  • Mas-Colell A. (1996): The determinacy of equilibria 25 years later, in: Economics in a Changing World, Vol. 2: Microeconomics,, ed. by B. Allen, Palgrave Macmillan, London, 182-189.
  • McGovern J., O. Morand, K. Reffett (2013): Computing minimal state space recursive equilibrium in OLG models with stochastic production, Economic Theory, 54, 623-674.
  • McLennan A. (2015): Samuelson's correspondence principle reassessed, Technical Report, The University of Queensland.
  • McLennan A. (2018): Advanced Fixed Point Theory, Springer.
  • Milgrom P., J. Roberts (1990): Rationalizability, learning and equilibrium in games with strategic complementarities, Econometrica, 58, 1255-1277.
  • Milgrom P., J. Roberts (1991): Adaptive and sophisticated learning in normal form games, Games and Economic Behaviour, 3, 82-100.
  • Milgrom, P. and C. Shannon (1994): Monotone comparative statics,Econometrica, 62, 157-180.
  • Mirman, L., O. Morand, and K. Reffett (2008): A qualitative approach to Markovian equilibrium in infinite horizon economies with capital, Journal of Economic Theory, 139, 75-98.
  • Nagata, R. (2004): Theory of Regular Economies, World Scientific.
  • Olszewski W. (2021a): On convergence of sequences in complete lattices, Order, 38, 251-255.
  • Olszewski W. (2021b): On sequences of iterations of increasing and continuous mappings on complete lattices, Games and Economic Behavior, 126, 453-459.
  • Phillips P.C. (2012) Folklore theorems, implicit maps, and indirect inference, Econometrica, 80, 425-454.
  • Roy S., T. Sabarwal, (2010): Monotone comparative statics for games with strategic substitutes, Journal of Mathematical Economics, 46, 793-806.
  • Roy S., T. Sabarwal, (2012): Characterizing stability properties in games with strategic substitutes, Games and Economic Behavior, 75, 337-353.
  • Samuelson, P. A. (1947): Foundations of Economic Analysis, vol. 80 of Harvard Economic Studies, Harvard University Press, Cambridge.
  • Santos, M. S. (2002): On non-existence of Markov equilibria in competitive-market economies, Journal of Economic Theory, 105, 73-98.
  • Topkis, D. M. (1998): Supermodularity and Complementarity, Frontiers of economic research, Princeton University Press.
  • Van Zandt, T. (2010): Interim Bayesian Nash equilibrium on universal type spaces for supermodular games, Journal of Economic Theory, 145, 249-263.
  • Veinott A.F. (1992): Lattice programming: qualitative optimization and equilibria, Technical Report, Stanford University.
  • Vives, X. (1990): Nash equilibrium with strategic complementarites, Journal of Mathematical Economics, 19, 305-321.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171642905
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.