Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | nr 4 | 7-21
Tytuł artykułu

Achieving Career Satisfaction through Fostering Innovation: Lessons from the Engineering Profession in the Australian Public Sector

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a novel approach that integrates the capability of empirical validation of structural equation modelling (SEM) and the prediction ability of Bayesian networks (BN). The Hybrid SEM-BN approach was used as a decision support framework to examine the interplay between salient organisational constructs and their ability to influence engineers' career satisfaction in the Australian Public Service (APS). The results emphasise that the ambidextrous culture for innovation was the most important factor that needed to be implemented in their organisation. Managerial implications are recommended for senior managers on how they can implement innovation culture to increase workplace innovation, which could, in turn, help reduce the turnover rate of engineers employed in the APS. (original abstract)
Rocznik
Numer
Strony
7-21
Opis fizyczny
Twórcy
  • Walailak University, Thailand
  • Thammasat University, Thailand
  • Griffith University, Australia
  • Thammasat University, Thailand
  • Thammasat University, Thailand
Bibliografia
  • Adeniji, A., Osibanjo, O., Salau, O.P., Falola, H.O., Igbinoba, E., Ohunakin, F., & Ogueyungbo, O. (2019). Competence model for measuring career development and organisational growth in the health sector. Business: Theory and Practice, 20, 248-258. doi: 10.3846/btp.2019.2410.3846/btp.2019.24
  • Andersen, P.H., & Kragh, H. (2015). Exploring boundary-spanning practices among creativity managers. Management Decision, 53(4), 786-808. doi: 10.1108/MD-06-2014-039910.1108/MD-06-2014-0399
  • Anderson, R.D., Mackoy, R.D., Thompson, V.B., & Harrell, G. (2004). A Bayesian network estimation of the service-profit chain for transport service satisfaction. Decision Sciences, 35(4), 665-689.10.1111/j.1540-5915.2004.02575.x
  • Anderson, R.D., & Vastag, G. (2004). Causal modeling alternatives in operations research: Overview and application. European Journal of Operational Research, 156(1), 92-109. doi: 10.1016/S0377-2217(02)00904-910.1016/S0377-2217(02)00904-9
  • Arbuckle, J. (2013). AMOS 22. User's guide. Chicago, IL: SmallWaters Corporation.
  • Australian Public Service Commission. (2013). State of the Service Report: State of the Service Series 2012-2013. Canberra, ACT, Australia.
  • Barnett, B.R., & Bradley, L. (2007). The impact of organisational support for career development on career satisfaction. Career Development International, 12(7), 617-636. doi: 10.1108/1362043071083439610.1108/13620430710834396
  • Bielefeldt, A.R., & Canney, N.E. (2019). Working engineers' satisfaction with helping people and society through their jobs. European Journal of Engineering Education, 44(6), 939-953. doi: 10.1080/03043797.2018.147646810.1080/03043797.2018.1476468
  • Blodgett, J.G., & Anderson, R.D. (2000). A Bayesian network model of the consumer complaint process. Journal of Service Research, 2(4), 321-338. doi: 10.1177/10946705002400210.1177/109467050024002
  • Boehmke, B.C., Johnson, A.W., White, E.D., Weir, J.D., & Gallagher, M.A. (2016). Tooth-to-tail impact analysis: Combining econometric modeling and Bayesian networks to assess support cost consequences due to changes in force structure. Journal of Cost Analysis and Parametrics, 9(1), 2-31. doi: 10.1080/1941658X.2016.115518610.1080/1941658X.2016.1155186
  • Bollen, K.A., & Pearl, J. (2013). Eight myths about causality and structural equation models. In Handbook of causal analysis for social research (pp. 301-328). Springer.10.1007/978-94-007-6094-3_15
  • Bretz, J.R.D., & Judge, T.A. (1994). Person-organization fit and the theory of work adjustment: Implications for satisfaction, tenure, and career success. Journal of Vocational Behavior, 44(1), 32-54. doi: 10.1006/jvbe.1994.100310.1006/jvbe.1994.1003
  • Bullock, H.E., Harlow, L.L., & Mulaik, S.A. (1994). Causation issues in structural equation modeling research. Structural Equation Modeling: A Multidisciplinary Journal, 1(3), 253-267. doi: 10.1080/1070551940953997710.1080/10705519409539977
  • Byrne, B.M. (2010). Structural equation modeling with AMOS: Basic concepts, applications, and programming (2nd ed.). New York, NY: Routledge.
  • Cardenas, I.C., Voordijk, H., & Dewulf, G. (2017). Beyond theory: Towards a probabilistic causation model to support project governance in infrastructure projects. International Journal of Project Management, 35(3), 432-450. doi: 10.1016/j.ijproman.2017.01.00210.1016/j.ijproman.2017.01.002
  • Carranza, G., Garcia, M., & Sanchez, B. (2020). Activating inclusive growth in railway SMEs by workplace innovation. Transportation Research Interdisciplinary Perspectives, 7, 100193. doi: 10.1016/j.trip.2020.10019310.1016/j.trip.2020.100193
  • Chan, I.Y.S., Liu, A.M.M., & Fellows, R. (2014). Role of leadership in fostering an innovation climate in construction firms. Journal of Management in Engineering, 30(6), 1-7. doi: 10.1061/(ASCE)ME.1943-5479.000027110.1061/(ASCE)ME.1943-5479.0000271
  • Chanpariyavatevong, K., Wipulanusat, W., Champahom, T., Jomnonkwao, S., Chonsalasin, D., & Ratanavaraha, V. (2021). Predicting airline customer loyalty by integrating structural equation modeling and Bayesian networks. Sustainability, 13(13), 7046.10.3390/su13137046
  • Cheng, C.-F., Lai, M.-K., & Wu, W.-Y. (2010). Exploring the impact of innovation strategy on R&D employees' job satisfaction: A mathematical model and empirical research. Technovation, 30(7-8), 459-470. doi: 10.1016/j.technovation.2010.03.00610.1016/j.technovation.2010.03.006
  • de Oliveira, M.A., Dalla Valentina, L.V.O., & Possamai, O. (2012). Forecasting project performance considering the influence of leadership style on organizational agility. International Journal of Productivity and Performance Management, 61(6), 653-671. doi: 10.1108/1741040121124920110.1108/17410401211249201
  • Demircioglu, M.A. (2018). Examining the effects of social media use on job satisfaction in the Australian Public Service: Testing self-determination theory. Public Performance & Management Review, 41(2), 300-327. doi: 10.1080/15309576.2017.140099110.1080/15309576.2017.1400991
  • Demircioglu, M.A., & Berman, E. (2019). Effects of the innovation climate on turnover intention in the Australian Public Service. The American Review of Public Administration, 49(5), 614-628. doi: 10.1177/027507401880891410.1177/0275074018808914
  • Dlamini, W.M. (2010). A Bayesian belief network analysis of factors influencing wildfire occurrence in Swaziland. Environmental Modelling & Software, 25(2), 199-208. doi: 10.1016/j.envsoft.2009.08.00210.1016/j.envsoft.2009.08.002
  • Dubbelt, L., Demerouti, E., & Rispens, S. (2019). The value of job crafting for work engagement, task performance, and career satisfaction: longitudinal and quasi-experimental evidence. European Journal of Work and Organizational Psychology, 28(3), 300-314. doi: 10.1080/1359432X.2019.157663210.1080/1359432X.2019.1576632
  • Ekici, A., & Ekici, S.O. (2016). A Bayesian network analysis of ethical behavior. Journal of Macromarketing, 36(1), 96-115. doi: 10.1177/027614671560762010.1177/0276146715607620
  • Engineer Australia. (2012). Submission to inquiry into the shortage of engineering and related employment skills. Barton: The Institution of Engineers Australia.
  • Fernandez, S., & Pitts, D.W. (2011). Understanding employee motivation to innovate: Evidence from front line employees in United States federal agencies. Australian Journal of Public Administration, 70(2), 202-222. doi: 10.1111/j.1467-8500.2011.00726.x10.1111/j.1467-8500.2011.00726.x
  • Fuster-Parra, P., García-Mas, A., Ponseti, F.J., Palou, P., & Cruz, J. (2014). A Bayesian network to discover relationships between negative features in sport: a case study of teen players. Quality & Quantity, 48(3), 1473-1491. doi: 10.1007/s11135-013-9848-y10.1007/s11135-013-9848-y
  • García-Chas, R., Neira-Fontela, E., & Varela-Neira, C. (2016). High-performance work systems and job satisfaction: a multilevel model. Journal of Managerial Psychology, 31(2), 451-466. doi: 10.1108/JMP-04-2013-012710.1108/JMP-04-2013-0127
  • Greenhaus, J.H., Parasuraman, S., & Wormley, W.M. (1990). Effects of race on organizational experiences, job performance evaluations, and career outcomes. Academy of Management Journal, 33(1), 64-86. doi: 10.2307/25635210.2307/256352
  • Gupta, S., & Kim, H.W. (2008). Linking structural equation modeling to Bayesian networks: Decision support for customer retention in virtual communities. European Journal of Operational Research, 190(3), 818-833. doi: 10.1016/j.ejor.2007.05.05410.1016/j.ejor.2007.05.054
  • Hair, J.F., Black, W.C., Babin, B.J., & Anderson, R.E. (2010). Multivariate data analysis: A global perspective (7th ed.). Upper Saddle River, NJ: Prentice Hall.
  • Hall, D.T., & Chandler, D.E. (2005). Psychological success: When the career is a calling. Journal of Organizational Behavior, 26(2), 155-176. doi: 10.1002/job.30110.1002/job.301
  • Hsu, C.-I., Shih, M.-L., Huang, B.-W., Lin, B.-Y., & Lin, C.-N. (2009). Predicting tourism loyalty using an integrated Bayesian network mechanism. Expert Systems with Applications, 36(9), 11760-11763. doi: 10.1016/j.eswa.2009.04.01010.1016/j.eswa.2009.04.010
  • Iacobucci, D. (2009). Everything you always wanted to know about SEM (structural equations modeling) but were afraid to ask. Journal of Consumer Psychology, 19(4), 673-680. doi: 10.1016/j.jcps.2009.09.00210.1016/j.jcps.2009.09.002
  • Karia, N., & Abu Hassan Asaari Muhammad, H. (2019). Leadership attributes and their impact on work-related attitudes. International Journal of Productivity and Performance Management, 68(5), 903-919. doi: 10.1108/IJPPM-02-2018-005810.1108/IJPPM-02-2018-0058
  • Kayakutlu, G., Daim, T., Kunt, M., Altay, A., & Suharto, Y. (2017). Scenarios for regional waste management. Renewable and Sustainable Energy Reviews, 74(Supplement C), 1323-1335. doi: 10.1016/j.rser.2016.11.14710.1016/j.rser.2016.11.147
  • Kim, S., Eun, & Chang, G.W. (2009). An empirical analysis of innovativeness in government: findings and implications. International Review of Administrative Sciences, 75(2), 293-310. doi: 10.1177/002085230910417710.1177/0020852309104177
  • Kim, S., & Yoon, G. (2015). An innovation-driven culture in local government: Do senior manager's transformational leadership and the climate for creativity matter? Public Personnel Management, 44(2), 147-168. doi: 10.1177/009102601456889610.1177/0091026014568896
  • Kim, S.E., & Lee, J.W. (2009). The impact of management capacity on government innovation in Korea: An empirical study. International Public Management Journal, 12(3), 345-369. doi: 10.1080/1096749090310333410.1080/10967490903103334
  • Lauría, E.J.M., & Duchessi, P.J. (2006). A Bayesian belief network for IT implementation decision support. Decision Support Systems, 42(3), 1573-1588. doi: 10.1016/j.dss.2006.01.00310.1016/j.dss.2006.01.003
  • Lei, P.-W., & Wu, Q. (2007). Introduction to structural equation modeling: Issues and practical considerations. Educational Measurement: Issues and Practice, 26(3), 33-43. doi: 10.1111/j.1745-3992.2007.00099.x10.1111/j.1745-3992.2007.00099.x
  • Lester, C. (2019). Engineering a local skills shortage in Australia. Retrieved fromhttps://www.goodeducation.com.au/engineering-a-local-skills-shortage-in-australia/
  • Li, X., Zhang, Y., Guo, F., Gao, X., & Wang, Y. (2018). Predicting the effect of land use and climate change on stream macroinvertebrates based on the linkage between structural equation modeling and bayesian network. Ecological Indicators, 85, 820-831. doi: 10.1016/j.ecolind.2017.11.04410.1016/j.ecolind.2017.11.044
  • Lounsbury, J.W., Steel, R.P., Gibson, L.W., & Drost, A.W. (2008). Personality traits and career satisfaction of human resource professionals. Human Resource Development International, 11(4), 351-366. doi: 10.1080/1367886080226121510.1080/13678860802261215
  • Marcot, B.G. (2012). Metrics for evaluating performance and uncertainty of Bayesian network models. Ecological Modelling, 230, 50-62. doi: 10.1016/j.ecolmodel. 2012.01.013
  • McAdam, R., Moffett, S., Hazlett, S.A., & Shevlin, M. (2010). Developing a model of innovation implementation for UK SMEs: A path analysis and explanatory case analysis. International Small Business Journal, 28(3), 195-214. doi: 10.1177/026624260936061010.1177/0266242609360610
  • Menzel, H.C., Aaltio, I., & Ulijn, J.M. (2007). On the way to creativity: Engineers as intrapreneurs in organizations. Technovation, 27(12), 732-743. doi: 10.1016/j.technovation.2007.05.00410.1016/j.technovation.2007.05.004
  • Mohammadfam, I., Ghasemi, F., Kalatpour, O., & Moghimbeigi, A. (2017). Constructing a Bayesian network model for improving safety behavior of employees at workplaces. Applied Ergonomics, 58, 35-47. doi: 10.1016/j.apergo.2016.05.00610.1016/j.apergo.2016.05.006
  • Nair, S.L.S., Aston, J., & Kozlovski, E. (2019). The relationship between organisational culture and the job satisfaction of IT sector's employees in contrasting economies. Forum Scientiae Oeconomia, 7(3), 77-88. doi: 10.23762/FSO_VOL7_NO3_6
  • Ng, T.W.H., Eby, L.T., Sorensen, K.L., & Feldman, D.C. (2005). Predictors of objective and subjective career success: a meta-analysis. Personnel Psychology, 58(2), 367-408. doi: 10.1111/j.1744-6570.2005.00515.x10.1111/j.1744-6570.2005.00515.x
  • Ohunakin, F., Adeniji, A., & Oludayo, O. (2018). Perception of frontline employees towards career growth opportunities: implications on turnover intention. Business: Theory and Practice, 19, 278-287. doi: 10.3846/btp.2018.2810.3846/btp.2018.28
  • Oke, A., Munshi, N., & Walumbwa, F.O. (2009). The influence of leadership on innovation processes and activities. Organizational Dynamics, 38(1), 64-72. doi: 10.1016/j.orgdyn.2008.10.00510.1016/j.orgdyn.2008.10.005
  • Orazi, D.C., Turrini, A., & Valotti, G. (2013). Public sector leadership: new perspectives for research and practice. International Review of Administrative Sciences, 79(3), 486-504. doi: 10.1177/002085231348994510.1177/0020852313489945
  • Panuwatwanich, K., Stewart, R.A., & Mohamed, S. (2008). The role of climate for innovation in enhancing business performance: The case of design firms. Engineering, Construction and Architectural Management, 15(5), 407-422. doi: 10.1108/0969998081090271210.1108/09699980810902712
  • Parry, K., & Proctor-Thomson, S. (2002). Leadership, culture and performance: The case of the New Zealand public sector. Journal of Change Management, 3(4), 376-399. doi: 10.1080/71402384310.1080/714023843
  • Peluchette, J.V.E. (1993). Subjective career success: The influence of individual difference, family, and organizational variables. Journal of Vocational Behavior, 43(2), 198-208. doi: 10.1006/jvbe.1993.104210.1006/jvbe.1993.1042
  • Pot, F. (2011). Workplace innovation for better jobs and performance. International Journal of Productivity and Performance Management, 60(4), 404-415. doi: 10.1108/1741040111112356210.1108/17410401111123562
  • Sarros, J.C., Cooper, B.K., & Santora, J.C. (2008). Building a climate for innovation through transformational leadership and organizational culture. Journal of Leadership & Organizational Studies, 15(2), 145-158. doi: 10.1177/154805180832410010.1177/1548051808324100
  • Seibert, S.E., & Kraimer, M.L. (2001). The five-factor model of personality and career success. Journal of Vocational Behavior, 58(1), 1-21. doi: 10.1006/jvbe.2000.175710.1006/jvbe.2000.1757
  • Solís, M., & Mora-Esquivel, R. (2019). Development and validation of a measurement scale of the innovative culture in work teams. International Journal of Innovation Science, 11(2), 299-322. doi: 10.1108/IJIS-07-2018-007310.1108/IJIS-07-2018-0073
  • Tobing, D.S.K. (2016). The effect of compensation, career development, work-family support on job satisfaction. Polish Journal of Management Studies, 14(1), 206-213. doi: 10.17512/pjms.2016.14.1.1910.17512/pjms.2016.14.1.19
  • Totterdill, P., & Exton, R. (2014). Defining workplace innovation. Strategic Direction, 30(9), 12-16. doi: 10.1108/SD-09-2014-011210.1108/SD-09-2014-0112
  • van Horn, J.E., Reinders, M., Eisenberg, M.J., de Lima-Heijns, A., & Posthumus, J. (2016). Using structural equation modeling to assess the impact of factors on sexual risk and delinquent behavior in Dutch female offenders. Children and Youth Services Review, 71, 233-240. doi: 10.1016/j.childyouth.2016.11.02310.1016/j.childyouth.2016.11.023
  • Weston, R., & Paul, A.G.J. (2006). A Brief guide to structural equation modeling. The Counseling Psychologist, 34(5), 719-751. doi: doi: 10.1177/001100000628634510.1177/0011000006286345
  • Williamson, J.M., Lounsbury, J.W., & Han, L.D. (2013). Key personality traits of engineers for innovation and technology development. Journal of Engineering and Technology Management, 30(2), 157-168. doi: 10.1016/j.jengtecman.2013.01.00310.1016/j.jengtecman.2013.01.003
  • Wipulanusat, W., Panuwatwanich, K., & Stewart, R.A. (2017). Statistical data analysis of culture for innovation using an open data set from the Australian Public Service. Lecture Notes in Computer Science, 10365, 78-89. doi: 10.1007/978-3-319-60795-5_710.1007/978-3-319-60795-5_7
  • Wipulanusat, W., Panuwatwanich, K., & Stewart, R.A. (2018). Pathways to workplace innovation and career satisfaction in the public service: The role of leadership and culture. International Journal of Organizational Analysis, 26(5), 890-914. doi: 10.1108/IJOA-03-2018-137610.1108/IJOA-03-2018-1376
  • Wipulanusat, W., Panuwatwanich, K., Stewart, R.A., Arnold, S.L., & Wang, J. (2020). Bayesian network revealing pathways to workplace innovation and career satisfaction in the public service. Journal of Management Analytics, 7(2), 253-280. doi: 10.1080/23270012.2020.174990010.1080/23270012.2020.1749900
  • Wipulanusat, W., Panuwatwanich, K., Stewart, R.A., Parnphumeesup, P., & Sunkpho, J. (2020). Unraveling key drivers for engineer creativity and meaningfulness of work: Bayesian network approach. Management and Production Engineering Review, 11(2), 26-37. doi: 10.24425/mper.2020.133726
  • Wipulanusat, W., Panuwatwanich, K., Stewart, R.A., & Sunkpho, J. (2019). Drivers and barriers to innovation in the Australian public service: a qualitative thematic analysis. Engineering Management in Production and Services, 11(1), 7-22.10.2478/emj-2019-0001
  • Wipulanusat, W., Panuwatwanich, K., Stewart, R.A., & Sunkpho, J. (2020). Applying mixed methods sequential explanatory design to innovation management. Lecture Notes in Mechanical Engineering, 485-495.10.1007/978-981-15-1910-9_40
  • Wipulanusat, W., Sunkpho, J., & Stewart, R.A. (2021). Effect of cross-departmental collaboration on performance: Evidence from the Federal Highway Administration. Sustainability, 13(11), 6024. doi: 10.3390/su1311602410.3390/su13116024
  • Wu, W.W. (2010). Linking Bayesian networks and PLS path modeling for causal analysis. Expert Systems with Applications, 37(1), 134-139. doi: 10.1016/j.eswa.2009.05.02110.1016/j.eswa.2009.05.021
  • Yates, A. (2001). Raising the status of engineers. Barton, ACT: Institution of Engineers.
  • Yates, A. (2012). The challenges for agencies in maintaining in-house engineering professional staff. In Engineer Australia (Ed.), Government as an informed buyer: How the public sector can most effectively procure engineering-intensive products and services (pp. 70-79). Barton, A.C.T.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.ekon-element-000171641525
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.