Czasopismo
Tytuł artykułu
Warianty tytułu
Koncentracja uwagi jako element tworzący systemy CBIR
Języki publikacji
Abstrakty
Artykuł rozważa modele koncentracji uwagi oparte o mapy istotności, jako element tworzący systemy wyszukiwania obrazów po zawartości, które mogą znajdować szerokie zastosowanie w gospodarce elektronicznej. Przedstawiony został szczegółowy opis każdego z poziomów przetwarzania w inspirowanym biologią modelu koncentracji uwagi Itti'ego. Przedstawione zostały zalety, ograniczenia, problemy do rozwiązania, niektóre hipotezy związane z przyszłym rozwojem wyszukiwania informacji wizualnej. (abstrakt oryginalny)
The consideration of saliency-based visual attention model as building block of content-based image retrieval systems, which are widely used in e-commerce is given in this paper. Application of CBIR-system in the searching mechanism for such kind of e-commerce as photobanks or photo stocks is proposed. The detailed operating description of each processing level in the Itti's biologically inspired visual attention model architecture is explored. There are shown advantages and limitations, open questions, some hypotheses of the future advance of visual information retrieval. (original abstract)
Rocznik
Tom
Strony
204-215
Opis fizyczny
Twórcy
autor
- Volyn National University, Lutsk, Ukraine
autor
- Odessa National Polytechnic University
autor
- Lviv Polytechnic National University
Bibliografia
- [1] Amudha J., Soman K., Saliency based visual tracking of vehicle, International Journal of Recent Trends in Engineering, V. 2, No. 2, 2009: p. 114-116.
- [2] Clark J., Spatial attention and latencies of saccadic eye movements, Vision Res., V. 39, No. 3, 1998: p. 583-600.
- [3] Duncan J. and other, Integrated mechanisms of selective attention, Curr. Opin. Biol., V. 7, 1997: p. 255-261.
- [4] Eakins J., Graham M. Content-based Image Retrieval, Newcastle, 1999.
- [5] Greenspan H. and other. Over complete Steerable Pyramid Filters and Rotation Invariance, Proc. IEEE Computer Vision and Pattern Recognition, 1994: p. 222-228.
- [6] Grossberg S., A neural theory of attentive visual search: interactions of boundary, surface, spatial and object representations, Psychological Rev., V. 10, No. 3, 1994: p. 470-489.
- [7] Itti L., Koch C., Niebur E., A model of saliency-based visual attention for rapid scene analysis, IEEE Trans. Pattern Anal. Machine Intel., V. 20, No. 11, 1998: p. 1254-1259.
- [8] Itti L., Automatic foveation for video compression using a neurobiological model of visual attention, IEEE Trans. on Image Processing, V.13, 2003: p. 669-673.
- [9] Juan F. and other, Using visual attention in a Nao humanoid to face the RoboCup any-ball challenge, Proc. of the 5th Workshop on Humanoid Soccer Robots, 2010: p. 1-6.
- [10] Kato T. Database architecture for content-based image retrieval, Image Storage and Retrieval Systems, Proc SPIE 1662, 1992: p.112-123.
- [11] Koch C. Biophysics of Computation: Information Processing in Single Neurons, Oxford Univ. Press, New York: 1998.
- [12] Koch C., Ullman C., Shifts in selective visual attention: towards the underlying neural circuitry, Human Neurobiology, V. 4, 1985: p. 219-227.
- [13] Mayron Liam M. Image retrieval using visual attention: PhD thesis, Boca Raton, Florida, 2008: 217 p.
- [14] Mendi E., Milanova M., Contour-Based Image Segmentation Using Selective Visual Attention, J. Software Engineering & Applications, V. 3, 2010: p. 796-802.
- [15] Mozer M. C., M.S. Sitton., Computational modeling of spatial attention, In H. Pashler (Ed.), "Attention": p. 341-393.
- [16] Neisser U. Cognitive psychology, Appleton-Century-Crofts, New York: 1967.
- [17] Treisman A., Gelade G. A Feature-Integration Theory of Attention, Cognitive Psychology, V. 12, No. 1, 1980: p. 97-136.
- [18] Tsotsos J.K. and other, Modelling visual attention via selective tuning, Artificial Intelligence, V. 78, 1995: p. 507-545.
- [19] Yaoru Sun, Robert Fisher, Object-based visual attention for computer vision, Artificial Intelligence, V. 146, 2003: p 77-123.
- [20] Yarbus D.L., Eye motion and vision, Plenum Press, New York 1967.
- [21] Idee Inc. Idee inc. - the visual search company. http://ideeinc.com.
- [22] Riya Inc. Like visual search - find things by appearance with our new likeness technology. http://like.com.
- [23] VIMA Technologies. VIMA Technologies: Image search and image categorization software based on image content filtering:. http://vimatech.com.
- [24] Royalty-free stock. http://www.photos.com/.
- [25] Stock Photography and Stock Footage PHOTOSEARCH. http://www.fotosearch.com/
- [26] http://www.webopedia.com/TERM/S/stock_photo.html.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171639601