Warianty tytułu
Modele krótkoterminowe w równowadze a modele bez arbitrażu: przegląd literatury i przykłady obliczeniowe
Języki publikacji
Abstrakty
W artykule porównano krótkoterminowe modele równowagi z modelami krótko-terminowymi bez arbitrażu. Opracowanie składa się ze wstępu do przeglądu literatury oraz przykładów estymacji jednoczynnikowych modeli krótkoterminowych, modelu Coxa-Ingersolla-Rossa (CIR) oraz modelu Vasicka. Modele bezarbitrażowe zostały zaprezentowane poprzez model Hulla-White'a (HW), model siatki dwumianowej do wyceny obligacji i modelowania stóp procentowych, model Blacka- -Karasińskiego (BK) oraz model Heath-Jarrow-Morton (HJM). Wyniki dowodzą, że nie istnieje jeden model stóp procentowych, który można wykorzystać do wszystkich celów. Modele te porównano pod względem zmienności, procesu rewersji średniej i konwergencji. Wyniki końcowe potwierdzają zależność zmienności od wskaźnika poziomu jako determinanty sukcesu predykcyjnego tych modeli.(abstrakt oryginalny)
In this paper equilibrium short-rate models are compared against no-arbitrage short-rate models. This article is composed of the introduction to this literature and a review, followed by numerical examples of one-factor short-rate models; the Cox-Ingersoll-Ross (CIR) model and the Vasicek model. No-arbitrage models were presented through the Hull-White (HW) model, the Binomial lattice model for bond pricing and interest rate modelling, the Black-Karasinski (BK) model, and the Heath-Jarrow-Morton (HJM) model. The results prove that no single interest rate model exists that can be used for all purposes. These models were compared in terms of volatility, mean reversion process and convergence. The end results confirm the dependence of volatility on the level rate as a determinant of the predictive success of these models. (original abstract)
Słowa kluczowe
Rocznik
Tom
Numer
Strony
42-71
Opis fizyczny
Twórcy
autor
- Business Administration, University Goce Delchev, Stip, Macedonia
autor
- Business Administration, University Goce Delchev, Stip, Macedonia
Bibliografia
- Ahn, D.-H., and Gao, B. (1999). A parametric nonlinear model of term structure dynamics. Review of Financial Studies, 12, 721-762.
- Aït-Sahalia, Y. (1996). Testing continuous-time models of the spot interest rate. Review of Financial Studies, 9(2), 385-426.
- Aït-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions. Journal of Finance, 54, 1361-1395.
- Andersen, T. G., and Lund, J. (1997). Estimating continuous-time stochastic volatility models of the short-term interest rate. Journal of Econometrics, 77(2), 343-377.
- Bali, T. G. (1999). An empirical comparison of continuous time models of the short term interest rate. Journal of Futures Markets, 19(7), 777-797.
- Benninga, S., and Wiener, Z. (1998). Binomial term structure models. Mathematica in Education and Research, 7(3), 1-10. Retrieved from https://pluto.mscc.huji.ac.il/~mswiener/research/ Benninga73.pdf
- Birge, J. R. (2013). Financial engineering. In Gass, S.I., Fu, M.C. (Eds.) Encyclopedia of Operations Research and Management Science. Boston, MA: Springer. https://doi.org/10.1007/978-1-4419-1153-71144
- Björk, T. (2009). Arbitrage theory in continuous time (3rd ed.). Oxford: Oxford University Press.
- Björk, T., and Slinko, I. (2006). Towards a general theory of good-deal bounds. Review of Finance, 10, 221-260.
- Black, F., and Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 3, 637-654.
- Black, F., Derman, E., and Toy, W. (1990). A one-factor model of interest rates and its application to treasury bond options (PDF). Financial Analysts Journal, 24-32.
- Black, F., and Karasinski, P. (1991). Bond and option pricing when short rates are lognormal. Financial Analysts Journal, 47(4), 52-59.
- Brennan, M., and Schwartz, E. (1979). A continuous time approach to the pricing of bonds. Journal of Banking & Finance, 3(2), 133-155.
- Brennan, M., and Schwartz, E. (1982). An equilibrium model of bond pricing and a test of market efficiency. Journal of Financial and Quantitative Analysis, 17, 301-329.
- Brigo, D., and Mercurio, F. (2006). Interest rate models - Theory and practice. Springer Finance.
- Buetow, G. W., Fabozzi, F. J., and Sochacki, J. (2012). A review of no arbitrage interest rate models. Encyclopedia of Financial Models, I.
- Buetow, G. W. Jr., Hanke, B., and Fabozzi, F. J. (2001). Impact of different interest rate models on bond value measures. The Journal of Fixed Income.
- Cairns, A. (2004). Interest rate models: An introduction. Princeton, Oxford: Princeton University Press.
- Chan, K. C., Karolyi, G. A., Longstaff, F. A., and Sanders, A. B. (1992). An empirical comparison of alternative models of the short-term interest rate. Journal of Finance, 47, 1209-1227.
- Chen, L. (1996). Stochastic mean and stochastic volatility - A three-factor model of the term structure of interest rates and its application to the pricing of interest rate derivatives. Financial Markets, Institutions & Instruments, 5, 1-88.
- Cox, J. C., Ingersoll, J., and Ross, S. (1980). An analysis of variable rate loan contracts. Journal of Finance, 35, 389-403.
- Cox, J. C., Ingersoll J. E., and Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53, 385-407. doi:10.2307/1911242
- Doob, J. L. (1953). Stochastic processes. New York: Wiley.
- Dothan, U. L. (1978). On the term structure of interest rates. Journal of Financial Economics, 7, 59-69.
- Dybvig, P. H. (1989). Bond and option pricing based on current term structure (Working paper). St. Louis, Missouri: Washington University.
- Ewald, Ch.-O. (2007). Introduction to continuous time financial market models. School of Economics and Finance University of St. Andrews.
- Fama, E. F. (1984). Term premiums in bond returns. Journal of Financial Economics, 13, 529-546.
- Feller, W. (1971). An introduction to probability theory and its applications. Wiley, Vol. 2.
- Filipovic, D. (2009). Term-structure models. Springer Finance Textbooks.
- Glasserman, P. (2004). Monte Carlo methods in financial engineering. Springer.
- Gurrieri, S., Nakabayashi, M., and Wong, T. (2009). Calibration methods of hull-white model. Derivatives eJournal.
- Heath, D., Jarrow, R., and Morton, A. (1990). Bond pricing and the term structure of interest rates: A discrete time approximation. Journal of Financial and Quantitative Analysis, 25, 419-440.
- Heath, D., Jarrow, R., and Morton, A. (1991). Contingent claims valuation with a random evolution of interest rates. Review of Futures Markets, 9, 54-76.
- Heath, D., Jarrow, R., and Morton, A. (1992). Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica, 60(1), 77-105.
- Hillebrand, E. (2003). A mean-reversion theory of stock-market crashes. Economic papers. Retrieved from http://www.bus.lsu.edu/
- Ho, T. S. Y., and Lee, S. B. (1986). Term structure movements and pricing interest rate contingent claims. Journal of Finance, 41. doi:10.2307/2328161
- Ho, T. S. Y., and Lee, S. B. (2004). The Oxford Guide to financial modeling: Applications for capital markets, corporate finance, risk management and financial institutions. Oxford: Oxford University Press.
- Hull, J., and White, A. (1990). Pricing interest-rate derivative securities. The Review of Financial Studies, 3(4), 573-592.
- Hull, J., and White, A. (1993). One factor interest rate models and the valuation of interest rate derivative securities. Journal of Financial and Quantitative Analysis, 28(2), June, 235-254.
- Hull, J., and White, A. (1996). Using Hull-White interest rate trees. Journal of Derivatives, 3(3), Spring, 26-36.
- Hull, J. (2011). Options, futures, and other derivatives. Prentice-Hall. Jamshidian, F. (1991). Bond and options evaluation in the gaussian interest rate model. Research in Finance, 9, 131-170.
- Jamshidian, F. (2010). An overview of interest-rate option models (Working paper), FELAB, University of Twente.
- Krishna, P. (2021). Bond Price using Binomial Lattice Model. Retrieved April 25, 2021 from https://www.mathworks.com/matlabcentral/fileexchange/33891-bond-price-using-binomial-lattice-model. MATLAB Central File Exchange.
- Li, A., Ritchken, P., and Sankarasubramanian, L. (1995). Lattice Models for pricing American interest rate claims. The Journal of Finance, 50(2), 719-737.
- Longstaff, F. (1989). A non-linear general equilibrium model of the term structure of interest rates. Journal of Financial Economics, 23, 195-224.
- Longstaff, F. (1992). Multiple equilibria and term structure models. Journal of Financial Economics, 32, 333-344.
- Longstaff, F., and Schwartz, E. (1992). Interest rate volatility and the term structure: A two-factor general equilibrium model. Journal of Finance, 47, 1259-1282.
- Maghsoodi, Y. (1996). Solution of the extended CIR Term Structure and Bond Option Valuation. Mathematical Finance, (6), 89-109.
- Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141-183.
- Mishkin, F. S. (1978). Efficient markets theory: Implications for monetary policy. Brookings Papers on Economic Activity, 3, 707-752.
- Pesando, J. E. (1979). On the random walk characteristics of short- and long-term interest rates in an efficient market". Journal of Money, Credit and Banking, 11(4), 457-466.
- Poterba, J. M., and Summers, L. H. (1988). Mean reversion in stock prices: Evidence and implications. Journal of Financial Economics, 22(1), 27-35.
- Ritchken, P., and Sankarasubramanian, L. (1995). Volatility structures of forward rates and the dynamics of the term structure. Mathematical Finance, 5, 55-72.
- Rudin, W. (1987). Real & complex analysis. McGraw-Hill.
- Stroock, D. W. (1999). Probability theory: An analytic view. Cambridge: Cambridge University Press.
- Svoboda, S. (2004). Interest rate modelling. London: Palgrave Macmillan.
- Treepongkaruna, S., and Gray, S. (2003). On the robustness of short-term interest rate models. Accounting and Finance, 43(1), 87-121. doi: 10.1111/1467-629x.00084
- Vasicek, O. (1977). An equilibrium characterization of the term structure. Journal of Financial Economics, 5(2), 177-188. CiteSeerX 10.1.1.164.447. Retrieved from http://homepages.ulb.ac.be/ ~cazizieh/Statf508_files/vasicek-1977.pdf
- Weisstein, E. W. (n.d.). Wiener Process. Retrieved from http://mathworld.wolfram.com/Wiener Process.html
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171637349