Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | 67 | 119-133
Tytuł artykułu

Procedure for Selecting Significant Website Quality Evaluation Criteria Based on Feature Selection Methods

Warianty tytułu
Procedura selekcji istotnych kryteriów oceny jakości serwisów internetowych z wykorzystaniem metod selekcji cech
Języki publikacji
EN
Abstrakty
Badania przedstawione w pracy polegały na zbadaniu stosowalności metod selekcji cech (CFS, FCBF, Symmetrical Uncertainty, ReliefF, LVF, Significance Attribute) w zadaniu selekcji istotnych kryteriów oceny jakości serwisów internetowych i przypisywania im wag. Stosowalność metod została zbadana na tle podejścia polegającego na określaniu wag kryteriów oceny serwisów internetowych przez użytkowników. (abstrakt oryginalny)
EN
The research discussed in the article consists of examining the applicability of feature selection methods (CFS, FCBF, Symmetrical Uncertainty, ReliefF, LVF, Significance Attribute) in the task of selecting website assessment criteria and assigning weights to them. The applicability of the chosen methods was examined against the approach in which the weight of website assessment criteria is defined by users. The research results support the use of the SU method as part of the procedure, as a tool for the selection and weighting of the criteria. (original abstract)
Rocznik
Tom
67
Strony
119-133
Opis fizyczny
Twórcy
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
  • Zachodniopomorski Uniwersytet Technologiczny w Szczecinie
Bibliografia
  • [1] International Telecommunication Union, [Online]. Dostępne: http://www.itu.int/ITUD/ict/statistics/at_glance/ KeyTelecom.html.
  • [2] Netcraft, [Online]. Dostępne: http://news.netcraft.com/archives/2011/09/06/ september2011-web-server-survey.html.
  • [3] Kim S., Stoel L., Dimensional hierarchy of retail website quality, Information & Management, (2004), No. 41, pp. 619-633.
  • [4] Grigoroudis E., Litos C., Moustakis V.A., Politis Y., Tsironis L., The assessment of userperceived web quality: Application of a satisfaction benchmarking approach, European Journal of Operational Research, (2008), No. 187, pp. 1346-1357.
  • [5] Barnes S.J., Vidgen R.T., Data triangulation and web quality metrics: A case study in egovernment, Information & Management, (2006), No. 43, pp. 767-777.
  • [6] Ahn T., Ryu S., Han I., The impact of Web quality and playfulness on user acceptance of online retailing, Information & Management, (2007), No. 44, pp. 263-275.
  • [7] Parasuraman A., Zeithaml V.A., Malhotra A., E-S-QUAL A Multiple-Item Scale for Assessing Electronic Service Quality, Journal of Service Research, 7 (2005), No. 10, pp. 1- 21.
  • [8] Demchak C.C., Friis C., La Porte T.M., Webbing Governance: National Differences in Constructing the Face of Public Organizations. Handbook of public information systems, 77 (2000), pp. 179-196.
  • [9] Lee Y., Kozar K.A., Investigating the effect of website quality on e-business success: An analytic hierarchy process approach, Decision Support Systems, (2006), No. 42, pp. 1383- 1401.
  • [10] Feng K., Hongyan L., Applying fuzzy analytic hierarchy process to evaluate success factors of e-commerce, International Journal of Information and System Sciences, 1 (2005), No. 3-4, pp. 406-412.
  • [11] Lin H.F., An application of fuzzy AHP for evaluating course website quality, Computers & Education, (2010), No. 54, pp. 877-888.
  • [12] Ziemba P., Piwowarski M., Procedure of reducing website assessment criteria and user preference analyses, Foundations of Computing and Decision Sciences, (2011), Vol. 36, No. 3-4, pp. 315-325.
  • [13] Chmielarz W., Quality assessment of selected bookselling websites, Polish Journal of Management Studies, (2010), No. 1, pp. 127-146.
  • [14] Ho C., Lee Y., The development of an e-travel service quality scale, Tourism Management, (2007), No. 28, pp. 1434-1449.
  • [15] Yang Z., Cai S., Zhou Z., Zhou N., Development and validation of an instrument to measure user perceived service quality of information presenting Web portals, Information & Management, (2005), No. 42, pp. 575-589.
  • [16] Ou C.X., Sia C.L., Consumer trust and distrust: An issue of website design, International Journal of Human-Computer Studies, (2010), No. 68, pp. 913-934.
  • [17] Hwang J., Yoon Y.S., Park N.H., Structural effects of cognitive and affective responses to web advertisements, website and brand attitudes, and purchase intentions: The case of casual-dining restaurants, International Journal of Hospitality Management, (2011), No. 30, pp. 897-907.
  • [18] Yang Q., Shao J., Scholz M., Plant C., Feature selection methods for characterizing and classifying adaptive Sustainable Flood Retention Basins, Water Research, (2011), No. 45, pp. 993-1004.
  • [19] Zenebe A., Zhou L., Norcio A.F., User preferences discovery using fuzzy models, Fuzzy Sets and Systems, (2010), No. 161, pp. 3044-3063.
  • [20] Ziemba P., Budziński R., Dobór kryteriów dla oceny serwisów informacyjnych w portalach internetowych, Studia i materiały Polskiego Stowarzyszenia Zarządzania Wiedzą, (2011), No.37, 368-378
  • [21] Chizi B., Maimon O., Dimension Reduction and Feature Selection, [In]: Maimon O., Rokach L. (eds.), Data Mining and Knowledge Discovery Handbook, Springer (2010), pp. 83-100.
  • [22] Guyon I., Practical Feature Selection: from Correlation to Causality, [In]: Fogelman-Soulié F., Perrotta D., Piskorski J., Steinberger R., (eds.), Mining massive data sets for security: advances in data mining, search, social networks and text mining, and their applications to security, IOS Press (2008), pp. 27-43.
  • [23] Hand D., Mannila H., Smyth D., Eksploracja danych, WNT (2005), pp. 414-416.
  • [24] Witten I.H., Frank E., Data Mining. Practical Machine Learning Tools and Techniques, Elsevier (2005), pp. 288-295.
  • [25] Hall M.A., Holmes G., Benchmarking Attribute Selection Techniques for Discrete Class Data Mining, IEEE Transactions on Knowledge and Data Engineering, 15 (2003), No. 3, pp. 1437-1447.
  • [26] Hsu H., Hsieh C., Lu M., Hybrid feature selection by combining filters and wrappers, Expert Systems with Applications, (2011), No. 38, pp. 8144-8150.
  • [27] Chang C.C., Generalized iterative RELIEF for supervised distance metric learning, Pattern Recognition, (2010), No. 43, pp. 2971-2981.
  • [28] Kononenko I., Hong S.J., Attribute Selection for Modelling, Future Generation Computer Systems, 13 (1997), No. 2-3, pp. 181-195.
  • [29] Liu H., Yu L., Motoda H., Feature Extraction, Selection, and Construction, [In]: Ye N. (eds.), The Handbook of Data Mining, Lawrence Erlbaum Associates (2003), pp. 409-424.
  • [30] Ahmad A., Dey L., A feature selection technique for classificatory analysis, Pattern Recognition Letters, (2005), No. 26, pp. 43-56.
  • [31] Yu L., Liu H., Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution, Proceedings of The 20th International Conference on Machine Leaning (ICML-03), (2003), pp. 856-863.
  • [32] Hall M.A., Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning, Proceedings of the 17th International Conference on Machine Learning (ICML '00), (2000), pp. 359-366.
  • [33] Senthamarai Kannan S., Ramaraj N., A novel hybrid feature selection via Symmetrical Uncertainty ranking based local memetic search algorithm, Knowledge-Based Systems, (2010), No. 23, pp. 580-585.
  • [34] Barnes S.J., Vidgen R.T., The eQual Approach to the Assessment of E-Commerce Quality: A Longitudinal Study of Internet Bookstores, [In]: Suh W. (eds.), Web Engineering: Principles and Techniques, Idea Group Publishing (2005), pp. 161-181.
  • [35] Barnes S.J., Vidgen R.T., Assessing the Quality of a Cross-National e-Government Website: a Case Study of the Forum on Strategic Management Knowledge Exchange, Proceedings of the 36th Annual Hawaii International Conference on System Sciences (HICSS'03), (2003), 135.1.
  • [36] Barnes S.J., Vidgen R.T., WebQual: An Exploration of Website Quality, Proceedings of the Eight European Conference on Information Systems, 1 (2000), pp. 298-305.
  • [37] Rokach L., Maimon O., Classification Trees, [In]: Maimon O., Rokach L. (eds.), Data Mining and Knowledge Discovery Handbook, Springer (2010), pp. 149-174.
  • [38] Webb G.I., Association Rules, [In]: Ye N. (eds.), The Handbook of Data Mining, Lawrence Erlbaum Associates (2003), pp. 25-40.
  • [39] Rokach L., Maimon O., Supervised Learning, [In]: Maimon O., Rokach L. (eds.), Data Mining and Knowledge Discovery Handbook, Springer 2010, pp. 133-148.
  • [40] Ziemba P., Zastosowanie korelacji i metody wielokryterialnego podejmowania decyzji przy doborze kryteriów oceny serwisów internetowych, Ekonometria, (2011), No. 34, pp. 154- 164.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171636142
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.