Warianty tytułu
Języki publikacji
Abstrakty
After finishing the mining process, the best way to deal with the residual of open-cut coal mines in the north-western region of the Czech Republic has been proposed to be hydric recultivation. The area of our study is the first artificial Lake Most (formerly known as Ležáky-Most coal quarry) finished in 2014 and opened to the public in 2020 for recreational purposes. Since the lake is a closed system without natural inflow and outflow, the prediction of evaporation plays a crucial role in the securitization of long-term sustainability based on the capability of keeping the stable level of a dimension of the final water level. In this paper, we use the historical data consisting of the altitude of the lake level, its area, the perimeter of the shoreline, and especially the volume of refilled water. These data are compared against the computational methods; namely, the Penman-Monteith Equation and Hargreaves-Samani model calibrated by the method proposed in our previous work. (original abstract)
Słowa kluczowe
Rocznik
Tom
Strony
221-231
Opis fizyczny
Twórcy
autor
- VSB-TUO Ostrava, Czech Republic
autor
- VSB-TUO Ostrava, Czech Republic
autor
- VSB-TUO Ostrava, Czech Republic
Bibliografia
- Allen, R.G., Pereira, L., Raes, D. and Smith, M. (1998). Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; United Nation-Food and Agriculture organisation: Rome, Italy.
- Benzaghta, M.A., Mohammed, T.A. and Ekhmaj, A.I. (2012). Prediction of Evaporation from Algardabiya Reservoir. Libyan Agriculture Research Center Journal International, 3(3): pp. 120-128.
- Brutsaert, W. (2005). Hydrology: An Introduction. Cambridge, UK: Cambridge University Press.
- Dlouhá, D., Dubovský, V. and Pospíšil, L. (2021). Optimal Calibration of Evaporation Models against Penman-Monteith Equation. Water, 13(11):1484.
- Dubovský, V., Dlouhá, D. and Pospíšil, L. (2021). The Calibration of Evaporation Models against the Penman-Monteith Equation on Lake Most. Sustainability, 13(1):313.
- Hargreaves, G. (1975). Moisture Availability and Crop Production. Transactions of the ASAE, 18, pp. 980-984.
- Hargreaves, G. and Samani, Z. (1985). Reference Crop Evapotranspiration from Temperature. Applied engineering in agriculture, 1, pp. 96-99.
- Jensen, M.E. and Allen, R.G. (2016). Evaporation, Evapotranspiration, and Irrigation Water Requirements, 2nd edition. Reston, VA, USA: American Society of Civil Engineers.
- Lang, D., Zheng, J., Shi, J., Liao, F., Ma, X., Wang, W., Chen, X. and Zhang, M. (2017). A Comparative Study of Potential Evapotranspiration Estimation by Eight Methods with FAO Penman-Monteith Method in Southwestern China. Water, 9, 734.
- Nash, J. and Sutcliffe, J. (1970). River flow forecasting through conceptual models part I - A discussion of principles. Journal of hydrology 1970, 10, pp. 282-290.
- pku.cz, (2021). Palivový Kombinát Ústí PKU Official Web Page. [online] Available at: https://www.pku.cz/ [Accessed 13 Apr. 2021].
- Stone, M. (1974). Cross-Validatory Choice and Assessment of Statistical Predictions. Journal of the Royal Statistical Society: Series B (Methodological), 36, pp. 111-133.
- Tabari, H., Grismer, M. and Trajkovic, S. (2011). Comparative Analysis of 31 Reference Evapotranspiration Methods under Humid Conditions. Irrigation Science, pp. 107-117.
- Tolasz, R. (2007). Atlas podnebí Česka (Climate atlas of Czechia). Olomouc, CZE: Univerzita Palackého v Olomouci-ČHMU.
- Trenberth, K.E., Fasullo, J.T. and Mackaro, J. (2011). Atmospheric Moisture Transports from Ocean to Land and Global Energy Flows in Reanalyses. Journal of Climate, 24, pp. 4907-4924.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171633806