Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
In the unit-load warehouse (UW) design, the aisle design problem dealing with storage space layout is the first among the three main problems. Several conventional and non-conventional designs have been proposed in the literature. In general, the assessment of UW designs is commonly carried out using analytical approaches. However, such an approach may be inadequate due to assumptions or approximations, making results unrealistic. Aiming to bridge this gap, this research develops an assessment framework that employs the FlexSim software for simulating the conventional, Flying-V and Fishbone designs based on a real case from a Philippine manufacturing company. Using a computer simulation, this research investigates factors not yet tractable with present analytical methods. The factors employed for the comparative assessment are "picking run-time", "travel distance", and "capacity". The results suggest that the Fishbone design provides the most advantage compared to the Flying-V and other conventional designs. With the proposed Fishbone design, the company is expected to save, on average, 52.39% of picking run-time, 32.25% travel distance, and increase storage capacity by 7.5%. The research findings are compared to previous studies based on analytical approaches. (original abstract)
Rocznik
Numer
Strony
89-103
Opis fizyczny
Twórcy
autor
- University of San Jose-Recoletos, Philippines
- University of San Jose-Recoletos, Philippines
autor
- University of San Jose-Recoletos, Philippines
autor
- University of San Jose-Recoletos, Philippines
autor
- University of San Jose-Recoletos, Philippines
autor
- Cebu Technological University, Philippines
autor
- Cebu Technological University, Philippines
Bibliografia
- Berry, J.R. (1968). Elements of warehouse layout. International Journal of Production Research, 7(2), 105-121. doi: 10.1080/00207546808929801
- Cardona, L.F., Rivera, L., & Martínez, H.J. (2012). Analytical study of the Fishbone warehouse layout. International Journal of Logistics Research and Applications, 15(6), 365-388. doi: 10.1080/13675567.2012.743981
- Cardona, L.F., Soto D.F., Rivera, L., & Martínez, H.J. (2015). Detailed design of fishbone warehouse layouts with vertical travel. International Journal of Production Economics, 170, 825-837. doi: 10.1016/j.ijpe.2015.03.006
- Çelik, M., & Süral, H. (2014). Order picking under random and turnover-based storage policies in fishbone aisle warehouses. IIE Transactions, 46(3), 283-300. doi: 10.1080/0740817X.2013.768871
- Clark, K.A., & Meller, R.D. (2013). Incorporating vertical travel into non-traditional cross aisles for unit-load warehouse designs. IIE Transactions, 45(12), 1322-1331. doi: 10.1080/0740817X.2012.724188
- Dukic, G., & Opetuk, T. (2012). Warehouse layouts. In R. Manzini (Ed.), Warehousing in the Global Supply Chain (pp. 55-69). London, UK: Springer. doi: 10.1007/978-1-4471-2274-6
- Feng, L., Qi, M., Hua, S., & Zhou, Q. (2018). Picking station location in traditional and flying-v aisle warehouses for robotic mobile fulfilment system. In 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (pp. 1436-1440). IEEE. doi: 10.1109/IEEM.2018.8607301
- Francis, R.L. (1967a). On some problems of rectangular warehouse design and layout. Journal of Industrial Engineering, 18(10), 595-604.
- Francis, R.L. (1967b). Sufficient conditions for some optimum-property facility designs. Operations Research, 15(3), 448-466.
- Glock, C.H., & Grosse, E.H. (2012). Storage policies and order picking strategies in U-shaped order-picking systems with a movable base. International Journal of Production Research, 50(16), 4344-4357. doi: 10.1080/00207543.2011.588621
- Gue, K.R., & Meller, R.D. (2009). Aisle configurations for unit-load warehouses. IIE Transactions, 41(3), 171-182. doi: 10.1080/07408170802112726
- Gue, K.R., Ivanović, G., & Meller, R.D. (2012). A unit-load warehouse with multiple pickup and deposit points and non-traditional aisles. Transportation Research Part E: Logistics and Transportation Review, 48(4), 795-806. doi: 10.1016/j.tre.2012.01.002
- Huihui, S., Xiaoxia, M., & Xiangguo, M. (2016). Simulation and optimization of warehouse operation based on Flexsim. Journal of Applied Science and Engineering Innovation, 3(4), 125-128.
- Kęsek, M., Adamczyk, A., & Klaś, M. (2018). Computer simulation of the operation of a longwall complex using the "Process Flow" concept of FlexSim software. In International Conference on Intelligent Systems in Production Engineering and Maintenance (pp. 97-106). Cham, UK: Springer.
- Kocaman, Y., Öztürkoğlu, Ö., & Gümüşoğlu, Ş. (2021). Aisle designs in unit-load warehouses with different flow policies of multiple pickup and deposit points. Central European Journal of Operations Research, 29, 323-355. doi: 10.1007/s10100-019-00646-9
- Liu, T., Duan, Y., & Liu, Y. (2016). Simulation and optimization of the AS/RS based on Flexsim. In J. Hung, N. Yen, & K.C. Li (Eds.), Frontier computing (pp. 855-863). Lecture Notes in Electrical Engineering, 375. Springer. doi: 10.1007/978-981-10-0539-8_84
- Masae, M., Glock, C.H., & Grosse, E.H. (2020a). Order picker routing in warehouses: A systematic literature review. International Journal of Production Economics, 224, 107564. doi: 10.1016/j.ijpe.2019.107564
- Masae, M., Glock, C.H., & Vichitkunakorn, P. (2020b). Optimal order picker routing in the chevron warehouse. IISE Transactions, 52(6), 665-687. doi: 10.1080/24725854.2019.1660833
- Masae, M., Vichitkunakorn, P., & Glock, C.H. (2019). Optimal routing of order pickers in the leaf warehouse. In The 24th International Symposium on Logistics (ISL 2019), Würzburg, Germany.
- Meller, R.D., & Gue, K.R. (2009). The application of new aisle designs for unit-load warehouses. In Proceedings of 2009 NSF Engineering Research and Innovation Conference, Honolulu, Hawaii.
- Moder, J.J., & Thornton, H.M. (1965). Quantitative analysis of factors affecting floorspace utilization of palletized storage. Journal of Industrial Engineering, 16(1), 8-18.
- Öztürkoğlu, Ö. (2016). Effects of varying input and output points on new aisle designs in warehouses. In 2016 IEEE Congress on Evolutionary Computation (CEC) (pp. 3925-3932). IEEE. doi: 10.1109/CEC.2016.7744287
- Öztürkoğlu, Ö., & Hoser, D. (2019). A discrete cross aisle design model for order-picking warehouses. European Journal of Operational Research, 275(2), 411-430. doi: 10.1016/j.ejor.2018.11.037
- Öztürkoğlu, O., Gue, K.R., & Meller, R.D. (2012). Optimal unit load warehouse designs for single-command operations. IIE Transactions, 44(6), 459-475. doi: 10.1080/0740817X.2011.636793
- Pohl, L.M., Meller, R.D., & Gue, K.R. (2009a). Optimizing fishbone aisles for dual-command operations in a warehouse. Naval Research Logistics, 56(5), 389-403. doi: 10.1002/nav.20355
- Pohl, L.M., Meller, R.D., & Gue, K.R. (2009b). An analysis of dual-command operations in common warehouse designs. Transportation Research Part E: Logistics and Transportation Review, 45(3), 367-379. doi: 10.1016/j.tre.2008.09.010
- Pohl, L.M., Meller, R.D., & Gue, K.R. (2011). Turnover-based storage in non-traditional unit-load warehouse designs. IIE Transactions, 43(10), 703-720. doi: 10.1080/0740817X.2010.549098
- Tang, X.Y., Yang, L.L., Zhang, J.J., Shi, J., & Chen, L.C. (2013). Research on AS/RS simulation based on Flexsim. Applied Mechanics and Materials, 347-350, 406-410. doi: 10.4028/www.scientific.net/amm.347-350.406
- Venkitasubramony, R., & Adil, G.K. (2016). Analytical models for pick distances in fishbone warehouse based on exact distance contour. International Journal of Production Research, 54(14), 4305-4326. doi: 10.1080/00207543.2016.1148277
- White, J.A. (1972). Optimum design of warehouses having radial aisles1. AIIE Transactions, 4(4), 333-336. doi: 10.1080/05695557208974871
- Yafei, L., Qingming, W., & Peng, G. (2018, March). Research on simulation and optimization of warehouse logistics based on flexsim-take C company as an example. In 2018 7th International Conference on Industrial Technology and Management (ICITM) (pp. 288-293). IEEE. doi: 10.1109/ICITM.2018.8333963
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171618988