Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 21 | nr 2 | 189-200
Tytuł artykułu

New Linear Model for Optimal Cluster Size in Cluster Sampling

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a nonlinear model is proposed for improving the relationship between the size of a cluster and the variance within the cluster. This model describes the most appropriate functional relation between the within-cluster variance and the cluster size. Through this model, we can obtain the optimum size of a cluster and an estimate of the variance between clusters. The proposed model leads to further improvement in the estimation of the optimum size of a cluster, and the formula for the determination of optimum cluster size leads to explicit solution of models. (original abstract)
Rocznik
Tom
21
Numer
Strony
189-200
Opis fizyczny
Twórcy
  • D. A-V. College, India
  • Babasaheb Bhimrao Ambedkar University, Lucknow, India
Bibliografia
  • DRAPER, N. R., SMITH, H., (1998). Applied regression analysis. 3rd Ed., John Wiley & Sons,. GUJARATI, D. N., SANGEETHA, (2007). Basic Econometrics, 4th Ed, Tata McGrawHill.
  • HANSEN, M. H., HURWITZ, W. N., (1942). Relative efficiencies of various sampling units in population enquiries, Journal of American Statistical Association, 37, pp. 89-94.
  • JESSEN, R. J., (1942 (). Statistical investigation of sample survey for obtaining farm facts, Iowa Agricultural Experiment Station, Research Bulletin, p. 304.
  • KAPLAN, S., GURCAN, E. K., (2018). Comparison of growth curves using non-linear regression function in Japanese quail, Journal of Applied Animal Research, 46, 1, pp. 112-117.
  • LAWSON, N., SKINNER, C., (2017). Estimation of a cluster-level regression model under nonresponse within clusters, Metron, 75, pp. 319-331.
  • MAHALANOBIS, P. C., (1940). A sample survey of acreage under jute in Bengal, Sankhya, 4, pp. 511-530.
  • MAHALANOBIS, P. C., (1942). General report on the sample census of area under jute in Bengal, Indian Central Jute Committee.
  • MISRA, G. C., YADAV, S. K., SHUKLA, A. K., RAJ, B., (2010). Use of a non-linear model for improved estimation in cluster sampling, Journal of Reliability and Statistical Studies, 3, 2, pp. 73-78.
  • MONTGOMERY D. C., PECK E. A., VINING G. C., (2012). Introduction to Linear Regression Analysis, 5th Ed., Wiley.
  • RIAZOSHAMS, H., MIDI, H., GHILAGABER, G., (2019). Robust Nonlinear Regression: with Applications using R, 1st Ed, Wiley.
  • SCARNECIU, C. C., SANGEORZAN, L., RUS, H., SCARNECIU, V. D., VARCIU, M. S., ANDREESCU, O., SCARNECIU, I., (2017). Comparison of linear and nonlinear regression analysis to determine Pulmonary Pressure in Hyperthyroidism, Pakistan Journal of Medical Sciences, 33, 1, pp. 111-120.
  • SINGH, D., CHAUDHARY, F. S., (2009). Theory and Analysis of Sample Survey Designs, New Age International.
  • SMITH, H. F., (1938). An empirical law describing heterogeneity in the yields of agricultural crops, Journal of Agricultural Science, 28, pp. 1-23.
  • SUKHATME, P. V., SUKHATME, B. V., SUKHATME, S., ASOK, C., (1984). Sampling theory of surveys with applications, Indian Society of Agricultural Statistics.
  • SHUKLA, A.K., YADAV, S. K., (2016). Asymptotic Non-Linear Models for Uniformity Trial Experiments, Elixir International Journal, 94, 1, pp. 40042-40044.
  • SHUKLA, A. K., YADAV, S. K., MISRA, G. C., (2013). A Linear Model for Uniformity Trial Experiments, Statistics in Transition-new series, 14, 1, pp. 161-170.
  • TIWARI, R. B., MISRA, G. C., (2011). Estimation of optimum cluster size, IFRSA's International Journal of Computing, l, 4, pp. 717-722.
  • ZAKKULA G., (1999). Elements of Sampling Theory and Methods, Printice Hall Publication.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171617976
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.