Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | 3(1) Selected Aspects of Production Engineering in Management and Materials Engineering | 9-20
Tytuł artykułu

Production of Hydrogen from Coke Oven Gas in JSW Group

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The publication analyses the possibility of separating hydrogen from coke oven gas for further use in the transport sector in the FCEV segment (fuel cell electric vehicles). The construction of the separation installation using the PSA (pressure swing adsorption) method guaranteeing high purity of hydrogen was assumed, according to the requirements of ISO 14678-2:2012 and SAE J-2719 standards. The PSA technology is widely used in industrial gas separation processes, however, due to the composition of coal gas, which apart from hydrogen and methane consists of impurities in the form of hydrocarbons, sulphur compounds, chlorine, etc., it needs to be adapted to the needs of separation of hydrogen from coke oven gas. The study shows the total possible hydrogen production potential and then, in agreement with the JSW Group's Coking Plants, limits were set for hydrogen production in PSA technology at Przyjaźń, Jadwiga and Radlin Coking Plants, without the negative impact of the separation installation on technological processes associated with coke oven battery firing, operation of existing power units, gas compression systems and taking into account securing the needs of external customers for coke oven gas. Additionally, in order to determine the Polish market demand for high-purity hydrogen, an analysis was carried out which indicates that in 2030 the share of FCEVs will be 2%, so the demand for hydrogen in this segment would be negligible compared to the supply of hydrogen produced in a large-scale installation. Due to the need to build such a market and adapt the parameters of the installation to the variable parameters of coke oven gas, the pilot scale of the installation and the target location of the installation at the Przyjaźń Coking Plant were indicated as the most optimal. (original abstract)
Twórcy
  • JSW KOKS S.A., Poland
Bibliografia
  • JSW for the environment. Available at: https://www.jsw.pl/odpowiedzialny-biznes/jswna-rzecz-srodowiska-naturalnego [Accessed 03 March 2020]
  • Josecka F., Wang M., Wub Y. (2008). Potential energy and greenhouse gas emission effects of hydrogen production from coke oven gas in U.S. steel mills. International Journal of Hydrogen Energy. Volume 33, Issue 4, February 2008, pp. 1445-1454.
  • Więcław-Solny l., Krótki A., Spietz T., Dobras Sz., Chwoła T., Billig T., Stec M., Popowicz J., Kolon P., Bigda J., Lajnert R., Fitko H., Tatarczuk A. (2019). Studium wykonalności produkcji wodoru z gazu koksowniczego z wykorzystaniem technologii oferowanej przez CTYC w warunkach polskich. Feasibility Study. September 2019.
  • M. Ohi J., Vanderborgh N., Gerald Voecks Consultants. (2016), Hydrogen Fuel Quality Specifications for Polymer Electrolyte Fuel Cells in Road Vehicles Report to the Safety, Codes and Standards Program Fuel Cell Technologies Office U.S. Department of Energy. November 2, 2016.
  • Internal joint publication (2019). Sprawozdanie z realizacji Projektu Wodorowego. JSW Innowacje S.A. January, 2019.
  • Jun Shen, Zhi-zhong Wang, Huai-wang Yang, Run-sheng Yao (2007). A New Technology for Producing Hydrogen and Adjustable Ratio Syngas from Coke Oven Gas. Energy Fuels 2007, 21, 6, pp. 3588-3592.
  • Moyseowicz A., K. Labus K. (2015). Analiza i monitoring środowiska Detekcja i usuwanie CO2 metodą zmiennociśnieniowej adsorpcji (PSA). Wroclaw University of Technology, 2015.
  • Production of liquefied hydrogen sourced by COG. Nippon Steel Techn. Rep., 2005.
  • Nomura S., Kato K., Nakagawa T., Komaki I. (2003). The effect of plastic on coal caking properties during carbonization. Fuel 2003, 82, pp. 1775-1782.
  • Heino J., Gornostayev S., Kokkonen T., Huttunen S., Fabritius T. (2013). Waste plastic as a recyclable raw material of metallurgical coke to produce hydrogen as byproduct. Mat. 2nd Intern. Symp. on Green Chemistry, La Rochelle, 2013.
  • Zhibin Yang, Yunyan Zhang, Xueguang Wang, Yuwen Zhang, Xionggang Lu, Weizhong Ding (2010). Steam Reforming of Coke Oven Gas for Hydrogen Production over a NiO/MgO Solid Solution Catalyst. Energy Fuels 2010, 24, 2, pp. 785-788.
  • Budner Z., Mrowiec B. (1989). Technologia wydzielania wodoru z gazu koksowniczego. Przemysł Chemiczny, t. 68, nr 5, pp. 207-210, 1989.
  • Low-Carbon cars in Europe: Asocio-economic assessment, Cambridge Econometrics Cambridge and Brussels. 2018.
  • Ministerstwo Energii. Ustawa o elektromobilności i paliwach alternatywnych z dnia 11 stycznia 2018 r. Dz. U. 2018 poz. 317.
  • Staffell I. et al., (2019). The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, vol. 12, 2, pp. 463-491, 2019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171617136
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.