Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 14 | nr 1 | 201-215
Tytuł artykułu

Financial Distress Prediction in Slovakia: An Application of the CART Algorithm

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The topic of predicting financial distress situation has been of interest to many economists and scientists from around the world for several years. As it turned out in practice, the application of existing prediction models to predict the financial difficulties of Slovak companies brings lower prediction accuracy, as these models were created in the conditions of another country. Therefore, the main aim of the article is to create the model for the prediction of the financial distress of the Slovak companies, based on the real conditions of Slovak economics. For this analysis, a dataset of the most important financial ratios that may affect the financial health of the Slovak companies was obtained from the Amadeus database, containing the data on more than 100,000 real companies operating in the Slovak economy in the period 2016 to 2018. For the creation of the models for the prediction of the financial distress of companies one year and two years in advance, the CART algorithm generating the binomial decision tree was used. The developed models achieve an overall accuracy of 87.3% and 91.9% and are very simple to the real application. The results from this prediction are important not only for companies themselves but also for all their stakeholders, as they could help the company to mitigate or eliminate the threat of financial distress and the other corporate risks related to such a situation in the company. (original abstract)
Rocznik
Tom
14
Numer
Strony
201-215
Opis fizyczny
Twórcy
autor
  • The University of Zilina, Slovakia
  • University of Zilina, Slovak Republic
  • University of Zilina, Slovak Republic
Bibliografia
  • Affes, Z., & Hentati-Kaffel, R. (2018). Forecast bankruptcy using a blend of clustering and MARS model: case of US banks. Annals of Operations Research, 281(1-2), 27-64. doi:10.1007/s10479-018-2845-8
  • Alaminos, D., Castillo, A. D., & Fernández, M. Á. (2016). A Global Model for Bankruptcy Prediction. Plos One, 11(11). doi: 10.1371/journal.pone.0166693
  • Altman, E. I. (1968). Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy. The Journal of Finance, 23(4), 589-609. doi: 10.1111/j.1540-6261.1968.tb00843.x
  • Altman, E. I. (1993). Corporate financial distress and bankruptcy: a complete guide to predicting and avoiding distress and profiting from bankruptcy. New York: Wiley.
  • Balcaen, S., & Ooghe, H. (2006). 35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems. The British Accounting Review, 38(1), 63-93. doi: 10.1016/j.bar.2005.09.001
  • Boettcher, J., Cavanagh, G., & Xu, M. (2014). Ethical Issues that arise in Bankruptcy. Business and Society Review, 119(4), 473-496. doi: 10.1111/basr.12042
  • Breiman, L., Friedman, J., Stone, C. J., & Olsen, R. A. (1984). Classification and regression trees. Belmont, CA: Wadsworth International Group.
  • Brozyna, J., Mentel, G., & Pisula, T. (2016). Statistical methods of the bankruptcy prediction in the logistics sector in Poland and Slovakia. Transformations in Business & Economics, 15(1), 93-114.
  • Chen, M.-Y. (2011). Predicting corporate financial distress based on the integration of decision tree classification and logistic regression. Expert Systems with Applications, 38(9), 11261-11272. doi: 10.1016/j.eswa.2011.02.173
  • Chrastinova, Z. (1998). Metody hodnotenia ekonomickej bonity a predikcie financnej situacie polnohospodarskych podnikov. Bratislava, Slovakia: VEUPP.
  • Cohen, S., Doumpos, M., Neofytou, E., & Zopounidis, C. (2012). Assessing financial distress where bankruptcy is not an option: An alternative approach for local municipalities. European Journal of Operational Research, 218(1), 270-279. doi: 10.1016/j.ejor.2011.10.021
  • Dimitras, A. I., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business failures with an emphasis on prediction methods and industrial applications. European Journal of Operational Research, 90(3), 487-513. doi: 10.1016/0377-2217(95)00070-4
  • du Jardin, P., & Severin, E. (2012). Forecasting financial failure using a Kohonen map: A comparative study to improve model stability over time. European Journal of Operational Research, 221(2), 378-396. doi: 10.1016/j.ejor.2012.04.006
  • Durica, M., Frnda, J., & Svabova, L. (2019). Decision tree based model of business failure prediction for Polish companies. Oeconomia Copernicana, 10(3), 453-469. doi: 10.24136/oc.2019.022
  • Frydman, H., Altman, E. I., & Kao, D.-L. (1985). Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. The Journal of Finance, 40(1), 269-291. doi: 10.1111/j.1540-6261.1985.tb04949.x
  • Gandolfi, G. C., Regalli, M. C., Soana, M.-G. C., & Arcuri, M. C. (2018). Underpricing And Long-Term Performance Of Ipos: Evidence From European Intermediary-Oriented Markets. Economics, Management, and Financial Markets, 13(3), 11-36. doi: 10.22381/emfm13320181
  • Gavurova, B., Janke, F., Packova, M., & Pridavok, M. (2017). Analysis of Impact of Using the Trend Variables on Bankruptcy Prediction Models Performance. Ekonomicky casopis, 65(4), 370-383.
  • Georgescu, V. (2017). Using genetic algorithms to evolve type-2 fuzzy logic systems for predicting bankruptcy. Kybernetes, 46(1), 142-156. doi: 10.1108/k-06-2016-0152
  • Gregova, E., Valaskova, K., Adamko, P., Tumpach, M., & Jaros, J. (2020). Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods. Sustainability, 12(10), 3954. doi:10.3390/su12103954
  • Gulka, M. (2016). Predictive Model of Corporate Failure in the Slovak Business Environment. Forum Statisticum Slovacum, 12(1), 16-22.
  • Gurcik, L. (2012). G-index - the financial situation prognosis method of agricultural enterprises. Agricultural Economics, 48(8), 373-378. doi: 10.17221/5338-agricecon
  • Hurtosova, J. (2009). Konstrukcia ratingoveho modelu, nastrojahodnotenia uverovej sposobilosti podniku (dissertation). University of Economics in Bratislava, Slovakia.
  • Irimia-Dieguez, A. I., Blanco-Oliver, A., & Vazquez-Cueto, M. J. (2015). A Comparison of Classification/Regression Trees and Logistic Regression in Failure Models. Procedia Economics and Finance, 23, 9-14. doi: 10.1016/s2212-5671(15)00493-1
  • Jones, S., Johnstone, D., & Wilson, R. (2016). Predicting Corporate Bankruptcy: An Evaluation of Alternative Statistical Frameworks. Journal of Business Finance & Accounting, 44(1-2), 3-34. doi: 10.1111/jbfa.12218
  • Karas, M., & Reznakova, M. (2017). Predicting the Bankruptcy of Construction Companies: A CART-Based Model. Engineering Economics, 28(2), 145-154. doi: 10.5755/j01.ee.28.2.16353
  • Karas, M., & Srbova, P. (2019). Predicting bankruptcy in construction business: Traditional model validation and formulation of a new model. Journal of International Studies, 12(1), 283-296. doi: 10.14254/2071-8330.2019/12-1/19
  • Kasgari, A. A., Divsalar, M., Javid, M. R., & Ebrahimian, S. J. (2012). Prediction of bankruptcy Iranian corporations through artificial neural network and Probit-based analyses. Neural Computing and Applications, 23(3-4), 927-936. doi: 10.1007/s00521-012-1017-z
  • Kliestik, T., Vrbka, J., & Rowland, Z. (2018). Bankruptcy prediction in Visegrad group countries using multiple discriminant analysis. Equilibrium. Quarterly Journal of Economics and Economic Policy, 13(3), 569-593. doi: 10.24136/eq.2018.028
  • Kliestikova, J., Misankova, M., & Kliestik, T. (2017). Bankruptcy in Slovakia: international comparison of the creditor´s position. Oeconomia Copernicana, 8(2), 221-237. doi: 10.24136/oc.v8i2.14
  • Korol, T. (2013). Early warning models against bankruptcy risk for Central European and Latin American enterprises. Economic Modelling, 31, 22-30. doi: 10.1016/j.econmod.2012.11.017
  • Kovacova, M., Valaskova, K., Durana, P., & Kliestikova, J. (2019). Innovation Management of the Bankruptcy: Case Study of Visegrad Group Countries. Marketing and Management of Innovations, (4), 241-251. doi: 10.21272/mmi.2019.4-19
  • Kovacova, M., & Kliestik, T. (2017). Logit and Probit application for the prediction of bankruptcy in Slovak companies. Equilibrium, 12(4), 775-791. doi: 10.24136/eq.v12i4.40
  • Kovacova, M., Kliestik, T., Kubala, P., Valaskova, K., Radisic, M., & Borocki, J. (2018). Bankruptcy Models: Verifying Their Validity As A Predictor Of Corporate Failure. Polish Journal of Management Studies, 18(1), 167-179. doi: 10.17512/pjms.2018.18.1.13
  • Koyuncugil, A. S., & Ozgulbas, N. (2012). Financial early warning system model and data mining application for risk detection. Expert Systems with Applications, 39(6), 6238-6253. doi: 10.1016/j.eswa.2011.12.021
  • Kral, P., Musa, H., Lazaroiu, G., Misankova, M., & Vrbka, J. (2018). Comprehensive assessment of the selected indicators of financial analysis in the context of failing companies. Journal of International Studies, 11(4), 282-294. doi: 10.14254/2071-8330.2018/11-4/20
  • Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review. European Journal of Operational Research, 180(1), 1-28. doi: 10.1016/j.ejor.2006.08.043
  • Li, H., & Sun, J. (2009). Gaussian case-based reasoning for business failure prediction with empirical data in China. Information Sciences, 179(1-2), 89-108. doi: 10.1016/j.ins.2008.09.003
  • Li, H., Sun, J., & Wu, J. (2010). Predicting business failure using classification and regression tree: An empirical comparison with popular classical statistical methods and top classification mining methods. Expert Systems with Applications, 37(8), 5895-5904. doi: 10.1016/j.eswa.2010.02.016
  • Liu, J., & Wu, C. (2017). A gradient-boosting decision-tree approach for firm failure prediction: an empirical model evaluation of Chinese listed companies. The Journal of Risk Model Validation, 11(2), 43-64. doi: 10.21314/jrmv.2017.170
  • Mihalovic, M. (2016). Performance Comparison of Multiple Discriminant Analysis and Logit Models in Bankruptcy Prediction. Economics & Sociology, 9(4), 101-118. doi: 10.14254/2071-789x.2016/9-4/6
  • Ohlson, J. A. (1980). Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18(1), 109-131. doi: 10.2307/2490395
  • Paliwal, M., & Kumar, U. A. (2009). Neural networks and statistical techniques: A review of applications. Expert Systems with Applications, 36(1), 2-17. doi: 10.1016/j.eswa.2007.10.005
  • Shin, K.-S., & Lee, Y.-J. (2002). A genetic algorithm application in bankruptcy prediction modeling. Expert Systems with Applications, 23(3), 321-328. doi: 10.1016/s0957-4174(02)00051-9
  • Tsai, C.-F., Hsu, Y.-F., & Yen, D. C. (2014). A comparative study of classifier ensembles for bankruptcy prediction. Applied Soft Computing, 24, 977-984. doi: 10.1016/j.asoc.2014.08.047
  • Valaskova, K., Durana, P., Adamko, P., & Jaros, J. (2020). Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities. Journal of Risk and Financial Management, 13(5), 92. doi:10.3390/jrfm13050092
  • Valaskova, K., Kliestik, T., & Kovacova, M. (2018). Management of financial risks in Slovak enterprises using regression analysis. Oeconomia Copernicana, 9(1), 105-121. doi: 10.24136/oc.2018.006
  • Virag, M., & Nyitrai, T. (2014). Is there a trade-off between the predictive power and the interpretability of bankruptcy models? The case of the first Hungarian bankruptcy prediction model. Acta Oeconomica, 64(4), 419-440. doi: 10.1556/aoecon.64.2014.4.2
  • Zhao, D., Huang, C., Wei, Y., Yu, F., Wang, M., & Chen, H. (2016). An Effective Computational Model for Bankruptcy Prediction Using Kernel Extreme Learning Machine Approach. Computational Economics, 49(2), 325-341. doi: 10.1007/s10614-016-9562-7
  • Zieba, M. K., Tomczak, S. M., & Tomczak, J. undefined. (2016). Ensemble boosted trees with synthetic features generation in application to bankruptcy prediction. Expert Systems with Applications, 58, 93-101. doi: 10.1016/j.eswa.2016.04.001
  • Zmijewski, M. E. (1984). Methodological Issues Related to the Estimation of Financial Distress Prediction Models. Journal of Accounting Research, 22, 59-82. doi: 10.2307/2490859
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171616616
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.