Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Land Surface Temperature (LST) is an important variable within global climate change. With the appearance of remote sensing techniques and advanced GIS software, it is now possible to estimate LST. In this study, the effect of lock-down during COVID-19 on the LST was assessed using Landsat 8 Imagery. LST dynamic was investigated for three different periods: Before, during and after the COVID-19 lockdown. The study was conducted in Casablanca City. The results showed that during the emergence of COVID-19 with lock-down policy applied, the LST decreases remarkably compared to the previous 4-years' average LST. After the easing of restrictions, the LST increased to exceed the previous 4-year mean LST. Furthermore, throughout all studied periods, the LST recorded its higher values in industrial zones and areas with high urban density and urban transportation, which indicates the conspicuous impact of anthropogenic activities on the LST variation. These findings indicate an ability to assess the feasibility of planned lockdowns intended as a potential preventive mechanism to reduce LST peaks and the loss of air quality in metropolitan environments in the future. (original abstract)
Czasopismo
Rocznik
Numer
Strony
105-120
Opis fizyczny
Twórcy
autor
- Hassan II University of Casablanca, Morocco
autor
- Hassan II University of Casablanca, Morocco
autor
- Hassan II University of Casablanca, Morocco
Bibliografia
- Amir Siddique M., Dongyun L., Li P., Rasool U., Ullah Khan T., Javaid Aini Farooqi T., Wang L., Fan B., Rasool M.: Assessment and simulation of land use and land cover change impacts on the land surface temperature of Chaoyang District in Beijing, China. PeerJ, vol. 8, 2020. https://doi.org/10.7717/peerj.9115.
- Anderson M.C., Norman J.M., Kustas W.P., Houborg R., Starks P.J., Agam N.: A thermal-based remote sensing technique for routine mapping of land-sur-face carbon, water and energy fluxes from field to regional scales. Remote Sens-ing of Environment, vol. 112, 2008, pp. 4227-4241. https://doi.org/10.1016/ j.rse.2008.07.009.
- Bahi H., Rhinane H., Bensalmia A., Fehrenbach U., Scherer D.: Effects of Ur-banization and Seasonal Cycle on theSurface Urban Heat Island Patterns in the CoastalGrowing Cities: A Case Study ofCasablanca, Morocco. Remote Sensing, vol. 8, issue 829, 2016, art. no. 829. https://doi.org/10.3390/rs8100829.
- Bouhrara I.: Etat d'urgence sanitaire 3: Casablanca, unereprise en douce. 2020. https://www.ecoactu.ma/etat-durgence-sanitaire-3-casablanca-reprise/ [ac-cess: 5.12.2020].
- Brunsell N.A., Gillies R.R.: Length scale analysis of surface energy fluxes derived from remote sensing. Journal of Hydrometeorology, vol. 4, 2002, pp. 1212-1219.
- Buyantuyev A., Wu J.: Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecology, vol. 25, 2010, pp. 17-33. https://doi.org/10.1007/s10980-009-9402-4.
- Carlos W.G., Dela Cruz C.S., Cao B., Pasnick S., Jamil S.: Novel Wuhan (2019-nCoV) Coronavirus. American Journal of Respiratory and Critical Care Medicine, vol. 201, 2020, pp. 7-8.
- Carlson T., Ripley D.: On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sensing of Environment, vol. 62, issue 3, 1997, pp. 241-252. https://doi.org/10.1016/S0034-4257(97)00104-1.
- Cascella M., Rajnik M., Cuomo A., Dulebohn S.C., Di Napoli R.: Features, Evaluation and Treatment Coronavirus (COVID-19). StatPearls, 2020. https://www.ncbi.nlm.nih.gov/books/NBK554776/ [access: 1.02.2021].
- Firano Z., Filali Adib F.: The COVID-19: macroeconomics scenarii and role of containment in Morocco. One Health, vol. 10, 2020, art. no. 100152. https://doi.org/10.1016/j.onehlt.2020.100152.
- González-Márquez L.C., Torres-Bejarano F.M., Torregroza-Espinosa A.C., Hansen-Rodríguez I.R., Rodríguez-Gallegos H.B.: Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. Jour-nal of South American Earth Sciences, vol. 82, 2018, pp. 231-238. https://doi.org/10.1016/j.jsames.2018.01.004.
- Hadibasyir H.Z., Rijal S.S., Sari D.R.: Comparison of Land Surface Temperature During and Before the Emergence of Covid-19 using Modis Imagery in Wuhan City, China. Forum Geografi, vol. 34, issue 1, 2020. https://doi.org/10.23917/forgeo.v34i1.10862
- Hu T., Renzullo L.J., Dijk A.I.J.M.v., He J., Tian S., Xu Z., Zhou J., Liu T., Liu Q.: Monitoring agricultural drought in Australia using MTSAT-2 land surface temperature retrievals. Remote Sensing of Environment, vol. 236, 2020, art. no. 111419. https://doi.org/10.1016/j.rse.2019.111419.
- Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B.: Clinical features of patients infected with 2019 novel coronavirus in Wu-han, China. The Lancet, vol. 395, 2020, pp. 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.
- Jimenez-Munoz J.C., Sobrino J.A., Gillespie A., Sabol D., Gustafson W.T.: Im-proved land surface emissivities over agricultural areas using ASTER NDVI. Re-mote Sensing of Environment, vol. 103, issue 4, 2006, pp. 474-487.
- Karimi A., Pahlavani P., Bigdeli B.: Land use analysis on Land Surface Tempera-ture in urban areas using a geographically weighted regression and Landsat 8 im-agery, a case study: Tehran, Iran. International Archives of the Photogramme-try, Remote Sensing and Spatial Information Sciences, vol. XLII-4/W4, 2017, pp. 117-122. https://doi.org/10.5194/isprs-archives-XLII-4-W4-117-2017.
- Latif M.S.: Land Surface temperature retrival of Landsat-8 data using split window algorithm - a case study of Ranchi district. International Journal of Engineering Development and Research, vol. 2, issue 4, 2014, pp. 3840-3849.
- Li L., Tan Y., Ying S., Yu Z., Li Z., Lan H.: Impact of land cover and popula-tion density on land surface temperature: case study in Wuhan, China. Journal of Applied Remote Sensing, vol. 8, issue 1, 2014, art. no. 084993. https://doi.org/10.1117/1.JRS.8.084993
- Li X., Li W., Middel A., Harlan S.L., Brazel A.J., Turner II B.L.: Remote sensing of the surface urban heat island and land architecture in Phoenix, Arizona: Combined effects of land composition and configuration and cadastral-demographic-economic factors. Remote Sensing of Environment, vol. 174, issue 1, 2016, pp. 233-243.
- Maithani S., Nautiyal G., Sharma A.: Investigating the Effect of Lockdown During COVID-19 on Land Surface Temperature: Study of Dehradun City, India.Journal of the Indian Society of Remote Sensing, vol. 48, 2020, pp. 1297-1311. https://doi.org/10.1007/s12524-020-01157-w.
- Otmani A., Benchrif A., Tahri M., Bounakhla M., Chakir E.M., El Bouch M., Krombid M.H.: Impact of Covid-19 lockdown on PM10, SO2 and NO2 concentra-tions in Salé City (Morocco). Science of the Total Environment, vol. 735, 2020, art. no. 139541. https://doi.org/10.1016/j.scitotenv.2020.139541.
- Shah H.L., Zhou T., Huang M., Mishra V.: Strong Influence of Irrigation on Water Budget and Land Surface Temperature in Indian Subcontinental River Ba-sins. IGR Atmospheres, vol. 124, issue 3, 2019, pp. 1449-1462. https://doi.org/ doi.org/10.1029/2018JD029132.
- Shereen M.A., Khan S., Kazmi A., Bashir N., Siddique R.: COVID-19 infec-tion: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research, vol. 24, 2020, pp. 91-98. https://doi.org/10.1016/ j.jare.2020.03.005.
- Smith T.M., Reynolds R.W., Peterson T.C., Lawrimore J.: Improvements to NOAA's Historical Merged Land-Ocean Surface Temperature Analysis (1880-2006). Journal of Climate, vol. 21, issue 10, 2008, pp. 2283-2296. https://doi.org/10.1175/2007JCLI2100.1.
- Stathopoulou M.,Cartalis C.: Daytime urban heat islands from Landsat ETM+ and Corine land cover data: an application to major cities in Greece. Solar Energy, vol. 81, issue 3, 2007, pp. 358-368.
- USGS: Using the USGS Landsat Level-1 Data Product. https://www.usgs.gov/core-science-systems/nli/landsat/using-usgs-landsat-level-1-data-product[access: 1.02.2020].
- Wang C., Li Y., Myint S.W., Zhao Q., Wentz E.A.: Impacts of spatial clustering of urban land cover on land surface temperature across Köppen climate zones in the contiguous United States. Landscape and Urban Planning, vol. 192, 2019, art. no. 103668. https://doi.org/10.1016/j.landurbplan.2019.103668.
- Weng Q., Firozjaei M.K., Kiavarz M., Alavipanah S.K., Hamzeh S.: Normaliz-ing land surface temperature for environmental parameters in mountainous and ur-ban areas of a cold semi-arid climate. Science of The Total Environment, vol. 650, 2019, pp. 515-529. https://doi.org/10.1016/j.scitotenv.2018.09.027.
- World Health Organization: Coronavirus disease 2019 (COVID-19) Situa-tion Report - 67. WHO, 2020. https://apps.who.int/iris/bitstream/handle/ 10665/331613/nCoVsitrep27Mar2020-eng.pdf?sequence=1&isAllowed=y [ac-cess: 27.03.2020].
- World Health Organization: Coronavirus disease 2019 (COVID-19) situa-tion report - 50. WHO, 2020. https://apps.who.int/iris/bitstream/handle/ 10665/331450/nCoVsitrep10Mar2020-eng.pdf?sequence=1&isAllowed=y [ac-cess: 10.03.2020].
- World Health Organization: Weekly Operational Update on COVID-19: 30 No-vember 2020. Interim Guidance, 2020. https://www.who.int/publications/m/item/weekly-operational-update---30-november-2020 [access: 27.03.2020].
- Wuhan Municipal Health Commission: Report on current pneumonia epidemic situation in the city. 2019. http://wjw.wuhan.gov.cn/front/web/showDetail/ 2019123108989 [access: 8.10.2020].
- X H.-Q.,Chen B.-Q.: Remote sensing of the urban heat island and its changes in Xiamen City of SE China. Journal of Environmental Sciences, vol. 16, issue 2, 2004, pp. 276-281.
- Zhana Q., Meng F., Xiao Y.: Exploring the relationships of between land surface temperature, ground coverage ratio and building volume density in an urbanized environment. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-7/W3, 2015, pp. 255-260. https://doi.org/10.5194/isprsarchives-XL-7-W3-255-2015.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171616374