Warianty tytułu
Analysis of the Perceived Accuracy of Fake News Among Students: The Similarity of Super Fake News to Real News
Języki publikacji
Abstrakty
Cel i hipoteza: przedmiotem badań prezentowanych w artykule jest postrzeganie prawdziwości fake newsów w zależności od sposobu ich definiowania: jako dezinformacji intencjonalnej (wąska definicja) lub niezamierzonej dezinformacji (szeroka definicja). U podstaw analizy leży hipoteza, zgodnie z którą fake newsy definiowane wąsko będą skuteczniej udawały prawdziwe wiadomości niż fake newsy definiowane szeroko, a zatem użytkownicy będą obie te grupy fake newsów postrzegać w różny sposób. Metody badań: metoda sondażu diagnostycznego, zawierającego skalę fake newsów, oraz psychologiczny pomiar poziomu analitycznego myślenia i aktywnie otwartego myślenia. Wyniki i wnioski: analiza udowadnia, że użytkownicy postrzegają prawdziwość fake newsów w dwojaki sposób: twarde fake newsy (fake newsy definiowane szeroko) są postrzegane jako mniej prawdziwe, a super fake newsy (fake newsy definiowane wąsko) są postrzegane jako bardziej prawdziwe. Ponadto, podczas gdy analityczne myślenie wpływa korzystnie jedynie na rozpoznawanie twardych fake newsów, to aktywnie otwarte myślenie chroni przed uwierzeniem zarówno w twarde, jak i super fake newsy. Wartość poznawcza: w artykule przedstawiono medioznawczo-psychologiczną analizę postrzegania prawdziwości różnych grup fake newsów i dzięki temu wskazano różne sposoby projektowania działań edukacyjnych w tym obszarze.(abstrakt oryginalny)
Scientifi c objective: The subject of research presented in the article is the perceived accuracy of fake news depending on how it is defi ned: as disinformation (narrow defi nition) or misinformation (broad defi nition). The analysis is based on the hypothesis that narrowly defi ned fake news will more effectively pretend to be real news than broadly defi ned fake news, so users will perceive both of these groups of fake news in different ways. Research methods: a diagnostic survey method including a scale of fake news, and psychological measurement of the level of analytical thinking and active open-minded thinking. Results and conclusions: The analysis proves that users perceive the accuracy of fake news in two ways: hard fake news (broadly defi ned fake news) is perceived as less accurate and super fake news (narrowly defi ned fake news) is perceived as more accurate. Moreover, while analytical thinking only benefi ts the recognition of hard fake news, active open-minded thinking prevents one from believing both hard and super fake news. Cognitive value: The article presents a media-psychological analysis of the perceived accuracy of various groups of fake news, and thus different ways of designing educational activities in this area were determined.(original abstract)
Twórcy
autor
- Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie
autor
- SWPS Uniwersytet Humanistycznospołeczny w Poznaniu
autor
- SWPS Uniwersytet Humanistycznospołeczny w Poznaniu
Bibliografia
- Allcott, H. & Gentzkow, M. (2017). Social Media and Fake News in the 2016 Election. The Journal of Economic Perspectives, 31(2), 211-236. DOI: 10.1257/jep.31.2.211.
- Baron, S. & Crootof, R. (2017). Fighting Fake News. Retrieved on November 6, 2020, from https://law.yale.edu/sites/default/files/area/center/isp/documents/fighting_fake_news_-_workshop_report.pdf
- Barua, Z., Barua, S., Aktar, S., Kabir, N., & Li, M. (2020). Effects of Misinformation on COVID-19 Individual Responses and Recommendations for Resilience of Disastrous Consequences of Misinformation. Progress in Disaster Science, 8, 100119. DOI: 10.1016/j.pdisas.2020.100119.
- BBC News. (2018). How WhatsApp Helped Turn an Indian Village Into a Lynch Mob. Retrieved on November 6, 2020, from https://bbc.co.uk/news/world-asia-india-44856910
- Bode, L. & Vraga, E.K. (2015). In Related News, That Was Wrong: The Correction of Misinformation Through Related Stories Functionality in Social Media. Journal of Communication, 65(4), 619-638. DOI: 10.1111/jcom.12166.
- Bronstein, M.V., Pennycook, G., Bear, A., Rand, D.G., & Cannon, T.D. (2019). Belief in Fake News is Associated with Delusionality, Dogmatism, Religious Fundamentalism, and Reduced Analytic Thinking. Journal of Applied Research in Memory and Cognition, 8(1), 108-117. DOI: 10.1016/j.jarmac.2018.09.005.
- Burbules, N.C. & Berk, R. (1999). Critical Thinking and Critical Pedagogy: Relations, Differences, and Limits. In T.S. Popkewitz & L. Fendler (Eds.), Critical Theories in Education: Changing Terrains of Knowledge and Politics (pp. 45-65). New York: Routledge.
- Campitelli, G. & Gerrans, P. (2014). Does the Cognitive Reflection Test Measure Cognitive Reflection? A Mathematical Modeling Approach. Memory & Cognition, 42(3), 434-447. DOI: 10.3758/s13421-013-0367-9.
- Conroy, N.J., Rubin V.L., & Chen, Y. (2015). Automatic Deception Detection: Methods for Finding Fake News. Proceedings of the Association for Information Science and Technology, 52(1), 1-4. DOI: 10.1002/ pra2.2015.145052010082.
- Dewey, J. (1997). How We Think. Boston: Health & Co.
- European Commission. (2018). Final Report of the High-Level Expert Group on Fake News and Online Disinformation. Retrieved on November 6, 2020, from https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=50271
- Fazio, L.K., Rand, D.G., & Pennycook, G. (2019). Repetition Increases Perceived Truth Equally for Plausible and Implausible Statements. Psychonomic Bulletin & Review, 26(5), 1705-1710. DOI: 10.3758/s13423-019-01651-4.
- Gorwa, R. (2017). Computational Propaganda in Poland: False Amplifiers and the Digital Public Sphere. In P. Howard & S. Woolley (Eds.), Computational Propaganda Research Project (pp. 1-32). Oxford: University of Oxford.
- Guess, A., Nagler, J., & Tucker, J. (2019). Less Than You Think: Prevalence and Predictors of Fake News Dissemination on Facebook. Science Advances, 5(1), eaau4586. DOI: 10.1126/sciadv.aau4586.
- Hobbs, R. (2010). Digital and Media Literacy: A Plan of Action. A White Paper on the Digital and Media Literacy Recommendations of the Knight Commission on the Information Needs of Communities in a Democracy. Washington: Aspen Institute.
- Ireton, C. & Posetti, J. (2018). Journalism, Fake News & Disinformation: Handbook for Journalism Education and Training. Paris: UNESCO Publishing. Retrieved on November 6, 2020, from https://en.unesco.org/sites/default/files/journalism_fake_news_disinformation_print_friendly_0.pdf
- Iyengar, S. & Massey, D.S. (2019). Scientific communication in a post-truth society. Proceedings of the National Academy of Sciences, 116(16), 7656-7661. DOI: 10.1073/PNAS.1805868115.
- Jang, S.M. & Kim, J.K. (2018). Third Person Effects of Fake News: Fake News Regulation and Media Literacy Interventions. Computers in Human Behavior, 80, 295-302. DOI: 10.1016/j.chb.2017.11.034.
- Jones-Jang, M., Mortensen, T., & Liu, J. (2019). Does Media Literacy Help Identification of Fake News? Information Literacy Helps, but Other Literacies Don't. American Behavioral Scientist, 65(2), 371-388. DOI: 10.1177/0002764219869406.
- Kumar, S. & Shah, N. (2018). False Information on Web and Social Media: A Survey. In Social Media Analytics: Advances and Applications (in press). Preprint retrieved on November 6, 2020, from arxiv.org/pdf/1804.08559.pdf
- Lazer, D.M., Baum, M.A., Benkler, Y., Berinsky, A.J., Greenhill, K.M., Menczer, F., & Schudson, M. (2018). The Science of Fake News. Science, 359(6380), 1094-1096. DOI: 10.1126/science.aao2998.
- Lee, N.M. (2018). Fake News, Phishing, and Fraud: A Call for Research on Digital Media Literacy Education Beyond the Classroom. Communication Education, 67(4), 460-466. DOI: 10.1080/03634523.2018.1503313.
- Lewandowsky, S., Ecker, U.K.H., & Cook, J. (2017). Beyond Misinformation: Understanding and Coping With the "Post-Truth" Era. Journal of Applied Research in Memory and Cognition, 6(3), 53-69. DOI: 10.1016/j.jarmac.2017.07.008.
- Lewandowsky, S., Ecker, U.K.H., Seifert, C.M., Schwarz, N., Cook, J. (2012). Misinformation and its Correction: Continued Influence and Successful Debiasing. Psychological Science in the Public Interest, 13(3), 106-131. DOI: 10.1177/1529100612451018.
- Likert, R. (1932). A Technique for the Measurement of Attitudes. Archives of Psychology, 22(140), 5-55.
- van der Linden, S., Leiserowitz, A., Rosenthal, S., & Maibach, E. (2017). Inoculating the Public Against Misinformation About Climate Change. Global Challenges, 1(2), 1600008. DOI: 10.1002/gch2.201600008.
- Martel, C., Pennycook, G., & Rand, D.G. (2020). Reliance on Emotion Promotes Belief in Fake News. Cognitive Research: Principles and Implications, 5(1), 1-20. DOI: 10.1186/s41235-020-00252-3.
- McGrew, S. (2020). Learning to Evaluate: An Intervention in Civic Online Reasoning. Computers & Education, 145, 103711. DOI: 10.1016/j.compedu.2019.103711.
- Nyhan, B. & Reifler, J. (2010). When Corrections Fail: The Persistence of Political Misperceptions. Political Behavior, 32(2), 303-330. DOI: 10.1007/s11109-010-9112-2.
- Olszewska, A. & Sobków, A. (2019, 8-10 maja). Pomiar myślenia refleksyjnego zamiast pomiaru refleksyjności w zadaniach matematycznych? Walidacja polskiej wersji werbalnego testu refleksyjnego myślenia. Prezentacja podczas XIII Konferencji Psychologia Ekonomiczna, Poznań, Polska.
- Pennycook, G. & Rand, D.G. (2019). Lazy, not Biased: Susceptibility to Partisan Fake News is Better Explained by Lack of Reasoning Than by Motivated Reasoning. Cognition, 188, 39-50. DOI: 10.1016/j.cognition.2018.06.011.
- Pennycook, G. & Rand, D.G. (2020). Who Falls for Fake News? The Roles of Bullshit Receptivity, Overclaiming, Familiarity, and Analytic Thinking. Journal of Personality, 88(2), 185-200. DOI: 10.1111/jopy.12476.
- Poland, G.A. & Spier, R. (2010). Fear, Misinformation, and Innumerates: How the Wakefield Paper, the Press, and Advocacy Groups Damaged the Public Health. Vaccine, 28(12), 2361-2362. DOI: 10.1016/j.vaccine.2010.02.052.
- Potthast, M., Kiesel, J., Reinartz, K., Bevendor, J., & Stein, B. (2017). A Stylometric Inquiry into Hyperpartisan and Fake News. In I. Gurevych & Y. Miyao (Eds.), Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 231-240). DOI: 10.18653/v1/P18-1022.
- Ptaszek, G. (2019). Edukacja medialna 3.0. Krytyczne rozumienie mediów cyfrowych w dobie Big Data i algorytmizacji. Kraków: WUJ.
- Rapp, D.N. & Salovich, N.A. (2018). Can't We Just Disregard Fake News? The Consequences of Exposure to Inaccurate Information. Policy Insights from the Behavioral and Brain Sciences, 5(2), 232-239. DOI: 10.1177/2372732218785193.
- Rosińska, K.A. & Brzóska, P. (2020). Analiza indywidualnej podatności użytkowników mediów społecznościowych na fake newsy - perspektywa polska. Studia Medioznawcze, 21(3), 661-688. DOI: 10.33077/uw.24511617.ms.2020.3.280.
- Rubin, V.L., Conroy, N., Chen, Y., & Cornwell, S. (2016). Fake News or Truth? Using Satirical Cues to Detect Potentially Misleading News. In T. Fornaciari, E. Fitzpatrick, & J. Bachenko (Eds.), Proceedings of the Second Workshop on Computational Approaches to Deception Detection (pp. 7-17). San Diego, CA: Association for Computational Linguistics. DOI: 10.18653/v1/W16-0802.
- Schulz, A., Wirth, W., & Müller, P. (2018). We Are the People and You Are Fake News: A Social Identity Approach to Populist Citizens' False Consensus and Hostile Media Perceptions. Communication Research, 47(2), 1-26. DOI: 10.1177/0093650218794854.
- Sethi, R.J. (2017). Crowdsourcing the Verification of Fake News and Alternative Facts. In P. Dolog (Ed.), Proceedings of the 28th ACM Conference on Hypertext and Social Media (pp. 315-316). New York: ACM. DOI: 10.1145/3078714.3078746.
- Shao, C., Ciampaglia, G.L., Varol, O., Yang, K.C., Flammini, A., & Menczer, F. (2018). The Spread of Low-Credibility Content by Social Bots. Nature Communications, 9(1), 4787. DOI: 10.1038/s41467-018-06930-7.
- Shearer, E. & Matsa, K.E. (2018, September). News Use Across Social Media Platforms 2018. Retrieved on November 6, 2020, from journalism.org/2018/09/10/news-use-across-social-media-platforms-2018
- Sirota, M., Dewberry, C., Juanchich, M., Valuš, L., & Marshall, A.C. (2020). Measuring cognitive reflection without maths: Development and validation of the verbal cognitive reflection test. Journal of Behavioral Decision Making, 2020, 1-22. DOI: 10.1002/bdm.2213.
- Stanovich, K.E. & West, R.F. (1997). Reasoning Independently of Prior Belief and Individual Differences in Actively Open-Minded Thinking. Journal of Educational Psychology, 89(2), 342-357. DOI: 10.1037/0022-0663.89.2.342.
- Taylor, R. (1990). Interpretation of the Correlation Coefficient: A Basic Review. Journal of Diagnostic Medical Sonography, 6(1), 35-39. DOI: 10.1177/875647939000600106.
- Toplak, M.E., West, R.F., & Stanovich, K.E. (2014). Assessing Miserly Information Processing: An Expansion of the Cognitive Reflection Test. Thinking & Reasoning, 20(2), 147-168. DOI: 10.1080/13546783.2013.844729.
- Törnberg, P. (2018). Echo chambers and viral misinformation: Modeling fake news as complex contagion. PLoS ONE, 13(9), 1-21. DOI: 10.1371/journal.pone.0203958.
- Vargo, C.J., Guo, L., & Amazeen, M.A. (2018). The agenda-setting power of fake news: A big data analysis of the online media landscape from 2014 to 2016. New Media & Society, 20(5), 2028-2049. DOI: 10.1177/1461444817712086.
- Vegetti, F. & Mancosu, M. (2020). The Impact of Political Sophistication and Motivated Reasoning on Misinformation. Political Communication, 37(5), 678-695. DOI: 10.1080/10584609.2020.1744778.
- Vosoughi, S., Roy, D., & Aral, S. (2018). The Spread of True and False News Online. Science, 359(6380), 1146-1151. DOI: 10.1126/science.aap9559.
- Walter, N. & Tukachinsky, R. (2019). A Meta-Analytic Examination of the Continued Influence of Misinformation in the Face of Correction: How Powerful Is It, Why Does It Happen, and How to Stop It? Communication Research, 47(2), 155-177. DOI: 10.1177/0093650219854600
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171616172