Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | 7 (21) | nr 1 | 26-46
Tytuł artykułu

Repeated Weighting in Mixed-Mode Censuses

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main aim of the paper is to use the repeated weighting (RW) method on data from the National Census of Population and Housing 2011 (NCPH) and Labour Force Survey (LFS) to ensure consistency between margins of final tables derived from different statistical sources. This technique, based on different data sources, would ensure consistency between estimates in final output tables. This is the first application of the RW approach on data from official statistics in Poland. The results obtained by applying the RW method to data from the NCPH and additional surveys (e.g. LFS) may be used by Statistics Poland for the formulation of conclusions and recommendations for the upcoming census in 2021. The method may be also considered as an important step towards the production of timely and more detailed statistical information in Poland based on multi-source data infrastructure in general.(original abstract)
Rocznik
Tom
Numer
Strony
26-46
Opis fizyczny
Twórcy
  • Uniwersytet Ekonomiczny w Poznaniu
autor
  • Uniwersytet Ekonomiczny w Poznaniu
Bibliografia
  • Boonstra, H. (2004). A simulation study of repeated weighting estimation. Voorburg/ Heerlen: Statistics Netherlands.
  • Boonstra, H., van den Brakel, J., Knottnerus, P., Nieuwenbroek, N., & Renssen, R. (2003). Dacseis deliverable 7.2: A strategy to obtain consistency among tables of survey estimates. Heerlen: Statistics Netherlands.
  • Chambers, R., & Diniz da Silva, A. (2020). Improved secondary analysis of linked data: A framework and an illustration. Journal of the Royal Statistical Society: Series A (Statistics in Society), 183(1), 37-59.
  • De Waal, T. (2016). Obtaining numerically consistent estimates from a mix of administrative data and surveys. Statistical Journal of the IAOS, 32(2), 231-243.
  • De Waal, T., van Delden, A., & Scholtus, S. (2020). Multi-source statistics: Basic situations and methods. International Statistical Review, 88(1), 203-228.
  • Deville, J.-C., & Särndal, C.-E. (1992). Calibration estimators in survey sampling. Journal of the American Statistical Association, 87(418), 376-382.
  • Harron, K., Goldstein, H., & Dibben, C. (2015). Methodological developments in data linkage. Hoboken: John Wiley & Sons.
  • Haziza, D., & Lesage, É. (2016). A discussion of weighting procedures for unit nonresponse. Journal of Official Statistics, 32(1), 129-145.
  • Houbiers, M. (2004). Towards a social statistical database and unified estimates at Statistics Netherlands. Journal of Official Statistics, 20(1), 55.
  • Houbiers, M., Knottnerus, P., Kroese, A., Renssen, R., & Snijders, V. (2003). Estimating consistent table sets: Position paper on repeated weighting. (Statistics Netherlands, Discussion Paper, No. 3005).
  • Kalton, G., & Flores-Cervantes, I. (2003). Weighting methods. Journal of Official Statistics, 19(2), 81.
  • Knottnerus, P., & van Duin, C. (2006). Variances in repeated weighting with an application to the dutch labour force survey. Journal of Official Statistics, 22(3), 565.
  • Kott, P. S. (2006). Using calibration weighting to adjust for nonresponse and coverage errors. Survey Methodology, 32(2), 133.
  • Kott, P. S., & Chang, T. (2010). Using calibration weighting to adjust for nonignorable unit nonresponse. Journal of the American Statistical Association, 105(491), 1265-1275.
  • Kroese, A., & Renssen, R. (1999). Weighting and imputation at Statistics Netherlands. (Proceedings of the IASS conference on Small Area Estimation, Riga August 1999, 109-120).
  • Lundström, S., & Särndal, C.-E. (1999). Calibration as a standard method for treatment of nonresponse. Journal of Official Statistics, 15(2), 305.
  • Luppes, M., & Nielsen, P. B. (2020). Micro data linking: Addressing new emerging topics without increasing the respondent burden. Statistical Journal of the IAOS, 1-13.
  • Nordholt, E. S. (2005). The Dutch virtual census 2001: A new approach by combining different sources. Statistical Journal of the United Nations Economic Commission for Europe, 22(1), 25-37.
  • Nordholt, E. S., van Zeijl, J., & Hoeksma, L. (2014). Dutch Census 2011: Analysis and Methodology. The Hague / Heerlen: Statistics Netherlands.
  • R Core Team. (2019). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  • Rässler, S. (2012). Statistical matching: A frequentist theory, practical applications, and alternative Bayesian approaches (vol. 168). New York: Springer Science & Business Media.
  • Renssen, R., Kroese, A., & Willeboordse, A. (2001). Aligning estimates by repeated weighting. Heerlen: Statistics Netherlands.
  • Roszka, W. (2013). Statystyczna integracja danych w badaniach społeczno-ekonomicznych. (Unpublished doctoral dissertation). Poznań: Poznań University of Economics and Business.
  • Särndal, C.-E. (2007). The calibration approach in survey theory and practice. Survey Methodology, 33(2), 99-119.
  • Särndal, C.-E., & Lundström, S. (2005). Estimation in surveys with nonresponse. Hoboken: John Wiley & Sons.
  • Sayers, A., Ben-Shlomo, Y., Blom, A. W., & Steele, F. (2016). Probabilistic record linkage. International Journal of Epidemiology, 45(3), 954-964.
  • Statistics Poland. (2014). The methodology of THE 2011 National Population and Housing Census: Selected aspects.
  • Szymkowiak, M. (2019). Podejście kalibracyjne w badaniach społeczno-ekonomicznych. Poznań: Wydawnictwo Uniwersytetu Ekonomicznego w Poznaniu.
  • Van der Laan, J. (2018). Reclin: record linkage toolkit. R package version 0.1.1. Retrieved from https://cran.r-project.org/web/packages/reclin/reclin.pdf.
  • Wu, C. & Lu, W. W. (2016). Calibration weighting methods for complex surveys. International Statistical Review, 84(1), 79-98.
  • Yang, S., & Kim, J. K. (2020). Statistical data integration in survey sampling: A review. Japanese Journal of Statistics and Data Science, 3, 625-650.
  • Zhang, L.-C., & Tuoto, T. (2020). Linkage-data linear regression. Journal of the Royal Statistical Society: Series A (Statistics in Society), 1-26.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.ekon-element-000171616164
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.